Homework #3
(Due: Apr 28)

\textbf{Det-Compatible-Representatives}(\langle S_1, S_2, \ldots, S_m \rangle, n, f)

(Inputs are \(m \geq 2 \) sets \(S_1, S_2, \ldots, S_m \) of size \(n \geq 1 \) each, and a function \(f \). Function \(f(s_1, s_2, \ldots, s_m) \) with \(s_i \in S_i \) for \(1 \leq i \leq m \), returns True provided \(s_1, s_2, \ldots, s_m \) are compatible, and False otherwise. This algorithm (i.e., \textbf{Det-Compatible-Representatives}) returns a set of compatible representatives (with one representative from each \(S_i \)) as soon as it finds one, and returns NULL provided no such set exists.)

1. \textbf{for each} \(s_1 \in S_1 \) \textbf{do}
2. \hspace{1em} \textbf{for each} \(s_2 \in S_2 \) \textbf{do}
3. \hspace{2em} \ldots \hspace{2em} \ldots \hspace{2em} \ldots \hspace{2em} \ldots
4. \hspace{1em} \textbf{for each} \(s_m \in S_m \) \textbf{do}
5. \hspace{2em} \textbf{if} \(f(s_1, s_2, \ldots, s_m) = \text{True} \) \textbf{then} \textbf{return} \(\langle s_1, s_2, \ldots, s_m \rangle \)
6. \textbf{return} NULL

\textbf{Task 1.} [50 Points] \textbf{Compatible Representatives}

In this task you are given \(m \geq 2 \) sets \(S_1, S_2, \ldots, S_m \) of size \(n \geq 1 \) each, and you are required to identify one representative \(s_i \) from each set \(S_i \) (\(1 \leq i \leq m \)) such that \(s_1, s_2, \ldots, s_m \) are compatible as a group. Compatibility is determined by calling a given function \(f \) with \(s_1, s_2, \ldots, s_m \) as input parameters. Function \(f \) returns True provided the group is compatible, and False otherwise. Suppose one can form a total of \(k \) compatible groups from the sets, where \(0 \leq k \leq n^m \). You need to identify only one of them.

(a) [10 Points] Consider the deterministic algorithm \textbf{Det-Compatible-Representatives} given in the figure above. Argue that the algorithm runs in \(\mathcal{O}((n^m - k)t) \) time, where \(t \) is the worst-case time needed by a single execution of \(f \).

(b) [40 Points] Design a randomized algorithm \textbf{Rand-Compatible-Representatives} that returns a compatible group in \(\mathcal{O}((\frac{n^m}{2m})(m + t) \ln n) \) time w.h.p. in \(n \). Observe that \textbf{Rand-Compatible-Representatives} can be considerably faster than \textbf{Det-Compatible-Representatives}, e.g., if \(t = m = 4 \) and \(k = n^3 \) then \textbf{Det-Compatible-Representatives} runs in \(\mathcal{O}(n^4) \) time (worst-case) while \textbf{Rand-Compatible-Representatives} runs in \(\mathcal{O}(n \ln n) \) time (w.h.p.).

\textbf{Task 2.} [90 Points] \textbf{Faster Randomized Min-Cut}

Consider the randomized min-cut algorithm we saw in the class that returns a min-cut with probability \(\geq 1 - \frac{1}{e} \). Given a connected undirected multigraph with \(n \) vertices, the strategy is to run the following algorithm \(\frac{n^2}{2} \) times and return the smallest cut identified by those runs. Each run uses an algorithm that starts with the original \(n \)-vertex graph and performs a sequence of \(n - 2 \) edge contractions. Each contraction is performed on an edge chosen uniformly at random from the current set of edges. A contraction step contracts the two endpoints of the given edge into a
single vertex and removes all edges between them, but retains all other edges (and thus leading to a multigraph). After \(n - 2 \) contraction steps only 2 vertices remain, and all edges between those two vertices are returned as a potential min-cut.

\((a)\) [10 Points] Argue that each contraction step can be implemented to run in \(\mathcal{O}(n) \) time, and thus the randomized min-cut algorithm described above takes \(\mathcal{O}(n^4) \) time to return a min-cut with probability \(\geq 1 - \frac{1}{e} \).

There is a deterministic min-cut algorithm that can return a min-cut (with certainty) in \(\mathcal{O}(n^3) \) worst-case time. So the randomized algorithm described above runs much slower than the deterministic algorithm and also does not always produce a correct solution! In order to speed up the randomized algorithm we can use the following hybrid approach. Starting with the \(n \)-vertex graph we keep performing random edge contractions until we are able to reduce the number of vertices in the graph to \(r \) for some predetermined \(r < n \). We then apply the deterministic algorithm on that \(r \)-vertex graph to find a min-cut.

\((b)\) [30 Points] Show that a single run of the hybrid algorithm executes in \(\mathcal{O}(n^2 + r^3) \) time, and produces a min-cut with probability at least \(\frac{r^2}{n^2} \).

\((c)\) [30 Points] Show that multiple independent runs of the hybrid algorithm from part \((b)\) can produce a min-cut in \(\mathcal{O}\left(\frac{n^4}{r^2} + n^2r\right) \) time with probability at least \(1 - \frac{1}{e} \).

\((d)\) [5 Points] What value of \(r \) produces the best running time for the algorithm in part \((c)\)?

\((e)\) [15 Points] Use the algorithm from part \((c)\) with the value of \(r \) from part \((d)\) to design a Monte-Carlo algorithm that runs asymptotically faster than the best deterministic algorithm (i.e., faster than \(\Theta(n^3) \)) and can produce a min-cut w.h.p. in \(n \).

Task 3. [60 Points] Cluster of Multicores

The following problems involve load-balancing on a cluster of multicore machines.

\((a)\) [20 Points] Suppose you have bought \(n \) (\(\gg 1 \)) multicore machines for \(n \) remote users. Whenever a user has a job he/she chooses a machine uniformly at random and submits the job to that machine. A user can submit and run only one job at a time. Assuming that all \(n \) machines can run in parallel, and a \(k \)-core machine can execute \(k \) jobs in parallel (i.e., one job per core), show that w.h.p. in \(n \) each job can start running as soon as it is submitted provided each machine has at least \(\frac{2 \ln n}{\ln \ln n} \) cores.

\((b)\) [20 Points] Consider the setting in part \((a)\), but suppose now you have \(2n \ln n \) remote users. Show that in this case w.h.p. in \(n \) each job can start running as soon as it is submitted provided each machine has at least \(6 \ln n \) cores.

\((c)\) [20 Points] Consider the setting in part \((b)\). Show that if all users submit jobs simultaneously then w.h.p. in \(n \) no machine will remain idle.