CSE 548: Analysis of Algorithms

Lectures 27 & 28
(Analyzing I/O and Cache Performance)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2014
Iterative Matrix-Multiply Variants

\[
\text{double } Z[n][n], X[n][n], Y[n][n];
\]

I-J-K

\[
\text{for (int } i = 0; i < n; i++)
\]
\[
\text{for (int } j = 0; j < n; j++)
\]
\[
\text{for (int } k = 0; k < n; k++)
\]
\[
Z[i][j] += X[i][k] \times Y[k][j];
\]

I-K-J

\[
\text{for (int } i = 0; i < n; i++)
\]
\[
\text{for (int } k = 0; k < n; k++)
\]
\[
\text{for (int } j = 0; j < n; j++)
\]
\[
Z[i][j] += X[i][k] \times Y[k][j];
\]

J-I-K

\[
\text{for (int } j = 0; j < n; j++)
\]
\[
\text{for (int } i = 0; i < n; i++)
\]
\[
\text{for (int } k = 0; k < n; k++)
\]
\[
Z[i][j] += X[i][k] \times Y[k][j];
\]

J-K-I

\[
\text{for (int } j = 0; j < n; j++)
\]
\[
\text{for (int } k = 0; k < n; k++)
\]
\[
\text{for (int } i = 0; i < n; i++)
\]
\[
Z[i][j] += X[i][k] \times Y[k][j];
\]

K-I-J

\[
\text{for (int } k = 0; k < n; k++)
\]
\[
\text{for (int } i = 0; i < n; i++)
\]
\[
\text{for (int } j = 0; j < n; j++)
\]
\[
Z[i][j] += X[i][k] \times Y[k][j];
\]

K-J-I

\[
\text{for (int } k = 0; k < n; k++)
\]
\[
\text{for (int } j = 0; j < n; j++)
\]
\[
\text{for (int } i = 0; i < n; i++)
\]
\[
Z[i][j] += X[i][k] \times Y[k][j];
\]
Performance of Iterative Matrix-Multiply Variants

Processor: 2.7 GHz Intel Xeon E5-2680 (used only one core)

Caches & RAM: private 32KB L1, private 256KB L2, shared 20MB L3, 32 GB RAM

Optimizations: none (icc 13.0 with –O0)

For different values of \(n \):

- **\(n = 1000 \)**
- **\(n = 2000 \)**
- **\(n = 3000 \)**
For efficient computation we need

- fast processors
- fast and large (but not so expensive) memory

But memory cannot be cheap, large and fast at the same time, because of

- finite signal speed
- lack of space to put enough connecting wires

A reasonable compromise is to use a memory hierarchy.
A memory hierarchy is

- almost as fast as its fastest level
- almost as large as its largest level
- inexpensive
To perform well on a memory hierarchy algorithms must have **high locality** in their memory access patterns.
Locality of Reference

Spatial Locality: When a block of data is brought into the cache it should contain as much useful data as possible.

Temporal Locality: Once a data point is in the cache as much useful work as possible should be done on it before evicting it from the cache.
CPU-bound vs. Memory-bound Algorithms

The Op-Space Ratio: Ratio of the number of operations performed by an algorithm to the amount of space (input + output) it uses.

Intuitively, this gives an upper bound on the average number of operations performed for every memory location accessed.

CPU-bound Algorithm:
- high op-space ratio
- more time spent in computing than transferring data
- a faster CPU results in a faster running time

Memory-bound Algorithm:
- low op-space ratio
- more time spent in transferring data than computing
- a faster memory system leads to a faster running time
The two-level I/O model [Aggarwal & Vitter, CACM'88] consists of:

- an internal memory of size M
- an arbitrarily large external memory partitioned into blocks of size B.

I/O complexity of an algorithm

= number of blocks transferred between these two levels

Basic I/O complexities: $scan(N) = \Theta \left(\frac{N}{B} \right)$ and $sort(N) = \Theta \left(\frac{N}{B \log_{M} \frac{N}{B}} \right)$

Algorithms often crucially depend on the knowledge of M and B

⇒ algorithms do not adapt well when M or B changes
The ideal-cache model [Frigo et al., FOCS’99] is an extension of the I/O model with the following constraint:

algorithms are not allowed to use knowledge of M and B.

Consequences of this extension

- algorithms can simultaneously adapt to all levels of a multi-level memory hierarchy
- algorithms become more flexible and portable

Algorithms for this model are known as cache-oblivious algorithms.
The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement & full associativity
The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
 - LRU & FIFO allow for a constant factor approximation of optimal [Sleator & Tarjan, JACM’85]
- Exactly two levels of memory
- Automatic replacement & full associativity
The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
 - can be effectively removed by making several reasonable assumptions about the memory hierarchy [Frigo et al., FOCS’99]
- Automatic replacement & full associativity
The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement & full associativity
 - in practice, cache replacement is automatic (by OS or hardware)
 - fully associative LRU caches can be simulated in software with only a constant factor loss in expected performance

[Frigo et al., FOCS’99]
The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement & full associativity

Often makes the following assumption, too:

- $M = \Omega(B^2)$, i.e., the cache is *tall*
The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement & full associativity

Often makes the following assumption, too:

- \(M = \Omega(B^2) \), i.e., the cache is *tall*
 - most practical caches are tall
Cache-oblivious vs. cache-aware bounds:

- Basic I/O bounds (same as the cache-aware bounds):

 \[\text{scan}(N) = \Theta \left(\frac{N}{B} \right) \]

 \[\text{sort}(N) = \Theta \left(\frac{N}{B} \log_{M} \frac{N}{B} \right) \]

- Most cache-oblivious results match the I/O bounds of their cache-aware counterparts

- There are few exceptions; e.g., no cache-oblivious solution to the *permutation* problem can match cache-aware I/O bounds [Brodal & Fagerberg, STOC’03]
Some Known Cache Aware / Oblivious Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cache-Aware Results</th>
<th>Cache-Oblivious Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Scanning (scan(N))</td>
<td>(O\left(\frac{N}{B}\right))</td>
<td>(O\left(\frac{N}{B}\right))</td>
</tr>
<tr>
<td>Sorting (sort(N))</td>
<td>(O\left(\frac{N \log_M N}{B}\right))</td>
<td>(O\left(\frac{N \log_M N}{B}\right))</td>
</tr>
<tr>
<td>Selection</td>
<td>(O\left(\text{scan}(N)\right))</td>
<td>(O\left(\text{scan}(N)\right))</td>
</tr>
<tr>
<td>B-Trees [Am] (Insert, Delete)</td>
<td>(O\left(\log_B N\right))</td>
<td>(O\left(\log_B N\right))</td>
</tr>
<tr>
<td>Priority Queue [Am] (Insert, Weak Delete, Delete-Min)</td>
<td>(O\left(\frac{1}{B} \log_M N\right))</td>
<td>(O\left(\frac{1}{B} \log_M N\right))</td>
</tr>
<tr>
<td>Matrix Multiplication</td>
<td>(O\left(\frac{N^3}{B \sqrt{M}}\right))</td>
<td>(O\left(\frac{N^3}{B \sqrt{M}}\right))</td>
</tr>
<tr>
<td>Sequence Alignment</td>
<td>(O\left(\frac{N^2}{BM}\right))</td>
<td>(O\left(\frac{N^2}{BM}\right))</td>
</tr>
<tr>
<td>Single Source Shortest Paths</td>
<td>(O\left((V + \frac{E}{B}) \cdot \log_B V\right))</td>
<td>(O\left((V + \frac{E}{B}) \cdot \log_B V\right))</td>
</tr>
<tr>
<td>Minimum Spanning Forest</td>
<td>(O\left(\min\left(\text{sort}(E)\log_2 \log_2 V, V + \text{sort}(E)\right)\right))</td>
<td>(O\left(\min\left(\text{sort}(E)\log_2 \log_2 \frac{VB}{E}, V + \text{sort}(E)\right)\right))</td>
</tr>
</tbody>
</table>

Table 1: \(N = \#\text{elements}, \ V = \#\text{vertices}, \ E = \#\text{edges}, \ \text{Am} = \text{Amortized.}\)
Matrix Multiplication
Iterative Matrix Multiplication

\[z_{ij} = \sum_{k=1}^{n} x_{ik} y_{kj} \]

Iter-MM(X, Y, Z, n)

1. for \(i \leftarrow 1 \) to \(n \) do
2. \hspace{1em} for \(j \leftarrow 1 \) to \(n \) do
3. \hspace{2em} for \(k \leftarrow 1 \) to \(n \) do
4. \hspace{3em} \(z_{ij} \leftarrow z_{ij} + x_{ik} \times y_{kj} \)
Iterative Matrix Multiplication

\[\text{Iter-MM}(X, Y, Z, n) \]

1. \(\text{for } i \leftarrow 1 \text{ to } n \text{ do} \)
2. \(\text{for } j \leftarrow 1 \text{ to } n \text{ do} \)
3. \(\text{for } k \leftarrow 1 \text{ to } n \text{ do} \)
4. \(z_{ij} \leftarrow z_{ij} + x_{ik} \times y_{kj} \)

Each iteration of the \textbf{for} loop in line 3 incurs \(O(n)\) cache misses.

I/O-complexity of \textit{Iter-MM}, \(Q(n) = O(n^3)\)
Each iteration of the *for* loop in line 3 incurs $O\left(1 + \frac{n}{B}\right)$ cache misses.

I/O-complexity of *Iter-MM*, $Q(n) = O\left(n^2 \left(1 + \frac{n}{B}\right)\right) = O\left(\frac{n^3}{B} + n^2\right)$
Block Matrix Multiplication

Block-MM(X, Y, Z, n)

1. for i ← 1 to n / m do
2. for j ← 1 to n / m do
3. for k ← 1 to n / m do
4. Iter-MM(X_{ik}, Y_{kj}, Z_{ij})

cache (size = M)
Choose \(m = \sqrt{M/3} \), so that \(X_{ik}, Y_{kj} \) and \(Z_{ij} \) just fit into the cache.

Then line 4 incurs \(\Theta \left(m \left(1 + \frac{m}{B} \right) \right) \) cache misses.

I/O-complexity of \(\text{Block-MM} \) [assuming a \textit{tall cache}, i.e., \(M = \Omega(B^2) \)]

\[
= \Theta \left(\left(\frac{n}{m} \right)^3 \left(m + \frac{m^2}{B} \right) \right) = \Theta \left(\frac{n^3}{m^2} + \frac{n^3}{Bm} \right) = \Theta \left(\frac{n^3}{M} + \frac{n^3}{B\sqrt{M}} \right) = \Theta \left(\frac{n^3}{B\sqrt{M}} \right)
\]

(Optimal: Hong & Kung, STOC’81)
Block Matrix Multiplication

Choose \(m = \sqrt[3]{M/2} \), so that \(X, Y, \) and \(Z \) just fit into the cache.

The I/O-complexity is:

\[
\Theta \left(\left(\frac{n}{m} \right)^3 \left(m + \frac{m^2}{B} \right) \right) = \Theta \left(\frac{n^3}{m^2} + \frac{n^3}{Bm} \right) = \Theta \left(\frac{n^3}{m^2} + \frac{n^3}{B \sqrt{M}} \right) = \Theta \left(\frac{n^3}{B \sqrt{M}} \right)
\]

Optimal for any algorithm that performs the operations given by the following definition of matrix multiplication:

\[
z_{ij} = \sum_{k=1}^{n} x_{ik} y_{kj}
\]

(Optimal: Hong & Kung, STOC’81)
Block-MM(X, Y, Z, n)
1. for i ← 1 to n / s do
2. for j ← 1 to n / s do
3. for k ← 1 to n / s do
4. Iter-MM(X_{ik}, Y_{kj}, Z_{ij}, s)
Multiple Levels of Cache

Block-MM(X, Y, Z, n)

1. for \(i_1 \leftarrow 1 \) to \(n / s \) do
2. \hspace{0.5cm} for \(j_1 \leftarrow 1 \) to \(n / s \) do
3. \hspace{1cm} for \(k_1 \leftarrow 1 \) to \(n / s \) do
4. \hspace{1.5cm} for \(i_2 \leftarrow 1 \) to \(s / t \) do
5. \hspace{2cm} for \(j_2 \leftarrow 1 \) to \(s / t \) do
6. \hspace{2.5cm} for \(k_2 \leftarrow 1 \) to \(s / t \) do
7. Iter-MM(\((X_{i_1k_1})_{i_2k_2} \), \((Y_{k_1j_1})_{k_2j_2} \), \((X_{i_1j_1})_{i_2j_2} \), \(t \))
Multiple Levels of Cache

One Parameter Per Caching Level!

Block-MM(X, Y, Z, n)

1. for \(i_1 \leftarrow 1 \) to \(n / s \) do
2. \hspace{1em} for \(j_1 \leftarrow 1 \) to \(n / s \) do
3. \hspace{2em} for \(k_1 \leftarrow 1 \) to \(n / s \) do
4. \hspace{3em} for \(i_2 \leftarrow 1 \) to \(s / t \) do
5. \hspace{4em} for \(j_2 \leftarrow 1 \) to \(s / t \) do
6. \hspace{5em} for \(k_2 \leftarrow 1 \) to \(s / t \) do
7. \hspace{6em} \text{Iter-MM}((X_{i_1k_1})_{i_2k_2}, (Y_{k_1j_1})_{k_2j_2}, (X_{i_1j_1})_{i_2j_2}, t) \)
Recursive Matrix Multiplication

\[
\begin{align*}
Z &= \\
\begin{array}{ccc}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22} \\
\end{array} & \quad X &= \\
\begin{array}{ccc}
X_{11} & X_{12} \\
X_{21} & X_{22} \\
\end{array} & \quad Y &= \\
\begin{array}{ccc}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22} \\
\end{array} \\
&= \\
\begin{array}{ccc}
X_{11} Y_{11} + X_{12} Y_{21} & X_{11} Y_{12} + X_{12} Y_{22} \\
X_{21} Y_{11} + X_{22} Y_{21} & X_{21} Y_{12} + X_{22} Y_{22} \\
\end{array}
\end{align*}
\]
Recursive Matrix Multiplication

Rec-MM (Z, X, Y)

1. *if* Z equal 1 × 1 matrix *then* Z ← Z + X · Y
2. *else*
3. Rec-MM (Z₁₁, X₁₁, Y₁₁), Rec-MM (Z₁₁, X₁₂, Y₂₁)
4. Rec-MM (Z₁₂, X₁₂, Y₁₂), Rec-MM (Z₁₂, X₁₂, Y₂₂)
5. Rec-MM (Z₂₁, X₂₁, Y₁₁), Rec-MM (Z₂₁, X₂₂, Y₂₁)
6. Rec-MM (Z₂₂, X₂₁, Y₁₂), Rec-MM (Z₂₂, X₂₂, Y₂₂)
Recursive Matrix Multiplication

\[\text{Rec-MM}(Z, X, Y) \]

1. if \(Z \equiv 1 \times 1 \) matrix then \(Z \leftarrow Z + X \cdot Y \)
2. else
3. \(\text{Rec-MM}(Z_{11}, X_{11}, Y_{11}), \text{Rec-MM}(Z_{11}, X_{12}, Y_{21}) \)
4. \(\text{Rec-MM}(Z_{12}, X_{12}, Y_{12}), \text{Rec-MM}(Z_{12}, X_{12}, Y_{22}) \)
5. \(\text{Rec-MM}(Z_{21}, X_{21}, Y_{11}), \text{Rec-MM}(Z_{21}, X_{22}, Y_{21}) \)
6. \(\text{Rec-MM}(Z_{22}, X_{21}, Y_{12}), \text{Rec-MM}(Z_{22}, X_{22}, Y_{22}) \)

I/O-complexity (for all \(n \)), \(Q(n) = \begin{cases} 0 \left(n + \frac{n^2}{B}\right), & \text{if } n^2 \leq \alpha M \\ 8Q\left(\frac{n}{2}\right) + O(1), & \text{otherwise} \end{cases} \)

\[
0 \left(\frac{n^3}{M} + \frac{n^3}{B\sqrt{M}} \right) = 0 \left(\frac{n^3}{B\sqrt{M}} \right), \text{when } M = \Omega(B^2)
\]

I/O-complexity (for all \(n \)) = \(0 \left(\frac{n^3}{B\sqrt{M}} + \frac{n^2}{B} + 1 \right) \) (why?)
Recursive Matrix Multiplication with Z-Morton Layout
Recursive Matrix Multiplication with Z-Morton Layout

\[
\begin{pmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{pmatrix}
\]
Recursive Matrix Multiplication with Z-Morton Layout

\[
\begin{array}{cccc}
Z_{1111} & Z_{1112} & Z_{1211} & Z_{1212} \\
Z_{1121} & Z_{1122} & Z_{1221} & Z_{1222} \\
Z_{2111} & Z_{2112} & Z_{2211} & Z_{2212} \\
Z_{2121} & Z_{2122} & Z_{2221} & Z_{2222} \\
\end{array}
\]
Recursive Matrix Multiplication with Z-Morton Layout

Source: wikipedia
Recursive Matrix Multiplication with Z-Morton Layout

\[\text{Rec-MM}(Z, X, Y) \]

1. \textbf{if} \: Z \equiv 1 \times 1 \text{ matrix} \text{ then } Z \leftarrow Z + X \cdot Y
2. \text{else}
3. \text{Rec-MM}(Z_{11}, X_{11}, Y_{11}), \: \text{Rec-MM}(Z_{11}, X_{12}, Y_{21})
4. \text{Rec-MM}(Z_{12}, X_{12}, Y_{12}), \: \text{Rec-MM}(Z_{12}, X_{12}, Y_{22})
5. \text{Rec-MM}(Z_{21}, X_{21}, Y_{11}), \: \text{Rec-MM}(Z_{21}, X_{22}, Y_{21})
6. \text{Rec-MM}(Z_{22}, X_{21}, Y_{12}), \: \text{Rec-MM}(Z_{22}, X_{22}, Y_{22})

\[Q(n) = \begin{cases} 0 \left(1 + \frac{n^2}{B}\right), & \text{if } n^2 \leq \alpha M \\ 8Q\left(\frac{n}{2}\right) + O(1), & \text{otherwise} \end{cases} \]

\[= 0 \left(\frac{n^3}{M\sqrt{M}} + \frac{n^3}{B\sqrt{M}}\right) = 0 \left(\frac{n^3}{B\sqrt{M}}\right), \text{when } M = \Omega(B) \]

I/O-complexity (for all \(n \)) = \(O\left(\frac{n^3}{B\sqrt{M}} + \frac{n^2}{B} + 1\right) \)
Recursive Matrix Multiplication with Z-Morton Layout

<table>
<thead>
<tr>
<th>x: 000</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>000100</td>
<td>001000</td>
<td>010000</td>
<td>010100</td>
<td>010110</td>
<td>011010</td>
<td>011110</td>
</tr>
<tr>
<td>000100</td>
<td>001100</td>
<td>010000</td>
<td>010100</td>
<td>010110</td>
<td>011010</td>
<td>011110</td>
<td>011111</td>
</tr>
<tr>
<td>001000</td>
<td>001100</td>
<td>010100</td>
<td>011000</td>
<td>011010</td>
<td>011110</td>
<td>011111</td>
<td>100000</td>
</tr>
<tr>
<td>001100</td>
<td>011000</td>
<td>011010</td>
<td>011100</td>
<td>011110</td>
<td>110000</td>
<td>110100</td>
<td>110110</td>
</tr>
<tr>
<td>100000</td>
<td>100100</td>
<td>101000</td>
<td>110000</td>
<td>110100</td>
<td>111000</td>
<td>111100</td>
<td>111110</td>
</tr>
<tr>
<td>100100</td>
<td>101000</td>
<td>101100</td>
<td>111000</td>
<td>111100</td>
<td>111100</td>
<td>111110</td>
<td>111111</td>
</tr>
</tbody>
</table>

Source: wikipedia
Searching (Static B-Trees)
A perfectly balanced binary search tree

- Static: no insertions or deletions
- Height of the tree, $h = \Theta(\log_2 n)$

$h = \Theta(\log_2 n)$
A Static Search Tree

- A perfectly balanced binary search tree
- Static: no insertions or deletions
- Height of the tree, \(h = \Theta(\log_2 n) \)
- A search path visits \(O(h) \) nodes, and incurs \(O(h) = O(\log_2 n) \) I/Os
Each node stores B keys, and has degree $B + 1$

Height of the tree, $h = \Theta(\log_B n)$
Each node stores B keys, and has degree $B + 1$

- Height of the tree, $h = \Theta(\log_B n)$

- A search path visits $O(h)$ nodes, and incurs $O(h) = O(\log_B n)$ I/Os
Cache-Oblivious Static B-Trees?
van Emde Boas Layout

A binary search tree

h
If the tree contains n nodes, each subtree contains $\Theta(2^{h/2}) = \Theta(\sqrt{n})$ nodes, and $k = \Theta(\sqrt{n})$.

van Emde Boas Layout
If the tree contains n nodes, each subtree contains $\Theta(2^{h/2}) = \Theta(\sqrt{n})$ nodes, and $k = \Theta(\sqrt{n})$.

Recursive Subdivision
van Emde Boas Layout

If the tree contains n nodes, each subtree contains $\Theta(2^{h/2}) = \Theta(\sqrt{n})$ nodes, and $k = \Theta(\sqrt{n})$.

Recursive Subdivision
If the tree contains n nodes, each subtree contains $\Theta(2^{h/2}) = \Theta(\sqrt{n})$ nodes, and $k = \Theta(\sqrt{n})$.

Recursive Subdivision
van Emde Boas Layout

If the tree contains n nodes, each subtree contains $\Theta(2^{h/2}) = \Theta(\sqrt{n})$ nodes, and $k = \Theta(\sqrt{n})$.
I/O-Complexity of a Search

- The height of the tree is $\log n$
- Each \triangle has height between $\frac{1}{2} \log B$ & $\log B$.
- Each \triangle spans at most 2 blocks of size B.
The height of the tree is $\log n$.

Each triangle has height between $\frac{1}{2}\log B$ & $\log B$.

Each triangle spans at most 2 blocks of size B.

$p = \text{number of } \triangle \text{'s visited by a search path}$

Then $p \geq \frac{\log n}{\log B} = \log_B n$, and $p \leq \frac{\log n}{\frac{1}{2}\log B} = 2\log_B n$.

The number of blocks transferred is $\leq 2 \times 2 \log_B n = 4 \log_B n$.

The image includes a diagram illustrating a search path through a tree structure, with annotations corresponding to the textual points.
Sorting
(Mergesort)
Merge Sort

\[\text{Merge-Sort (A, p, r)} \quad \{ \text{sort the elements in A[p ... r]} \}\]

1. if \(p < r \) then
2. \(q \leftarrow \lfloor (p + r) / 2 \rfloor \)
3. \(\text{Merge-Sort (A, p, q)} \)
4. \(\text{Merge-Sort (A, q + 1, r)} \)
5. \(\text{Merge (A, p, q, r)} \)
Merging k Sorted Sequences

- $k \geq 2$ sorted sequences S_1, S_2, \ldots, S_k stored in external memory
- $|S_i| = n_i$ for $1 \leq i \leq k$
- $n = n_1 + n_2 + \cdots + n_k$ is the length of the merged sequence S
- S (initially empty) will be stored in external memory
- Cache must be large enough to store
 - one block from each S_i
 - one block from S

Thus $M \geq (k + 1)B$
Merging k Sorted Sequences

- Let B_i be the cache block associated with S_i, and let B be the block associated with S (initially all empty)
- Whenever a B_i is empty fill it up with the next block from S_i
- Keep transferring the next smallest element among all B_is to B
- Whenever B becomes full, empty it by appending it to S
- In the Ideal Cache Model the block emptying and replacements will happen automatically \Rightarrow cache-oblivious merging

I/O Complexity

- Reading S_i: #block transfers $\leq 2 + \frac{n_i}{B}$
- Writing S: #block transfers $\leq 1 + \frac{n}{B}$
- Total #block transfers $\leq 1 + \frac{n}{B} + \sum_{1 \leq i \leq k} \left(2 + \frac{n_i}{B}\right) = O\left(k + \frac{n}{B}\right)$
Cache-Oblivious 2-Way Merge Sort

\[\text{Merge-Sort} (A, p, r) \quad \{ \text{sort the elements in } A[p \ldots r] \} \]

1. \textbf{if } p < r \textbf{ then}
2. \quad \textbf{q} \leftarrow \lfloor \frac{p + r}{2} \rfloor
3. \quad \text{Merge-Sort} (A, p, q)
4. \quad \text{Merge-Sort} (A, q + 1, r)
5. \quad \text{Merge} (A, p, q, r)

\textbf{I/O Complexity: } Q(n) = \begin{cases} O \left(1 + \frac{n}{B}\right), & \text{if } n \leq M, \\ 2Q \left(\frac{n}{2}\right) + O \left(1 + \frac{n}{B}\right), & \text{otherwise.} \end{cases}

= O \left(\frac{n}{B} \log \frac{n}{M}\right)

How to improve this bound?
Cache-Oblivious k-Way Merge Sort

I/O Complexity: $Q(n) = \begin{cases}
O \left(1 + \frac{n}{B} \right), & \text{if } n \leq M, \\
 k \cdot Q \left(\frac{n}{k} \right) + O \left(k + \frac{n}{B} \right), & \text{otherwise.}
\end{cases}$

$$
= O \left(k \cdot \frac{n}{M} + \frac{n}{B} \log_k \frac{n}{M} \right)
$$

How large can k be?

Recall that for k-way merging, we must ensure

$$
M \geq (k + 1)B \Rightarrow k \leq \frac{M}{B} - 1
$$
Cache-Aware \(\left(\frac{M}{B} - 1 \right) \)-Way Merge Sort

I/O Complexity: \(Q(n) = \begin{cases} O \left(1 + \frac{n}{B} \right), & \text{if } n \leq M, \\ k \cdot Q \left(\frac{n}{k} \right) + O \left(k + \frac{n}{B} \right), & \text{otherwise.} \end{cases} \)

\[= O \left(k \cdot \frac{n}{M} + \frac{n}{B} \log_k \frac{n}{M} \right) \]

Using \(k = \frac{M}{B} - 1 \), we get:

\[Q(n) = O \left(\left(\frac{M}{B} - 1 \right) \frac{n}{M} + \frac{n}{B} \log_{\frac{M}{B}} \left(\frac{n}{M} \right) \right) = O \left(\frac{n}{B} \log_{\frac{M}{B}} \left(\frac{n}{M} \right) \right) \]
Sorting (Funnelsort)
k-Merger (k-Funnel)

$k \geq 2$ sorted input sequences

\sqrt{k} linking buffers (each of size $2k^{\frac{3}{2}}$)

\sqrt{k}-merger (one)

\sqrt{k} - mergers (\sqrt{k} of them)

Memory layout of a k-merger:

$$
\begin{array}{ccccccc}
R & L_1 & B_1 & L_2 & B_2 & L_{\sqrt{k}} & B_{\sqrt{k}} \\
\end{array}
$$
k-Merger (k-Funnel)

$k \geq 2$ sorted input sequences

\sqrt{k} - mergers (\sqrt{k} of them)

\sqrt{k} - merger (one)

\sqrt{k} linking buffers (each of size $2k^2$)

one merged output sequence

Memory layout of a k-merger:

$R \ L_1 \ B_1 \ L_2 \ B_2 \ L_{\sqrt{k}} \ B_{\sqrt{k}}$

Space usage of a k-merger:

$$S(k) = \begin{cases}
\Theta(1), & \text{if } k \leq 2, \\
(\sqrt{k} + 1)S(\sqrt{k}) + \Theta(k^2), & \text{otherwise.}
\end{cases}$$

$$= \Theta(k^2)$$

A k-merger occupies $\Theta(k^2)$ contiguous locations.
Each invocation of a k-merger

- produces a sorted sequence of length k^3
- incurs $O\left(1 + k + \frac{k^3}{B} + \frac{k^3}{B} \log_M \left(\frac{k}{B}\right)\right)$ cache misses provided $M = \Omega(B^2)$
Cache-complexity:

\[
Q'(k) = \begin{cases}
O \left(1 + k + \frac{k^3}{B} \right), & \text{if } k < \alpha \sqrt{M}, \\
\left(2k^2 + 2 \sqrt{k} \right) Q'(\sqrt{k}) + \Theta(k^2), & \text{otherwise}.
\end{cases}
\]

\[
= O \left(\frac{k^3}{B} \log_M \left(\frac{k}{B} \right) \right), \quad \text{provided } M = \Omega(B^2)
\]
k-Merger (k-Funnel)

- Let \(r_i \) be the number of items extracted from the \(i \)-th input queue. Then \(\sum_{i=1}^{k} r_i = O(k^3) \).

- Since \(k < \alpha \sqrt{M} \) and \(M = \Omega(B^2) \), at least \(\frac{M}{B} = \Omega(k) \) cache blocks are available for the input buffers.

- Hence, the number of cache-misses for accessing the input queues (assuming circular buffers) is:

\[
\sum_{i=1}^{k} O \left(1 + \frac{r_i}{B} \right) = O \left(k + \frac{k^3}{B} \right)
\]
k-Merger (k-Funnel)

$k \geq 2$ sorted input sequences

\sqrt{k} linking buffers (each of size $2k^{\frac{3}{2}}$)

\sqrt{k}-merger (one)

\sqrt{k}-mergers (\sqrt{k} of them)

one merged output sequence

Memory layout of a k-merger:

| R | L_1 | B_1 | L_2 | B_2 | ... | $L_{\sqrt{k}}$ | $B_{\sqrt{k}}$ |

Cache-complexity:

$$Q'(k) = \begin{cases}
O\left(1 + k + \frac{k^3}{B}\right), & \text{if } k < \alpha\sqrt{M}, \\
(2k^{\frac{3}{2}} + 2\sqrt{k})Q'(\sqrt{k}) + \Theta(k^2), & \text{otherwise.}
\end{cases}$$

$$= O\left(\frac{k^3}{B} \log_M \left(\frac{k}{B}\right)\right), \quad \text{provided } M = \Omega(B^2)$$

$k < \alpha\sqrt{M}$: $Q'(k) = O\left(1 + k + \frac{k^3}{B}\right)$

- #cache-misses for accessing the input queues $= O\left(k + \frac{k^3}{B}\right)$
- #cache-misses for writing the output queue $= O\left(1 + \frac{k^3}{B}\right)$
- #cache-misses for touching the internal data structures $= O\left(1 + \frac{k^2}{B}\right)$
- Hence, total #cache-misses $= O\left(1 + k + \frac{k^3}{B}\right)$
k-Merger (k-Funnel)

- Each call to R outputs k^2 items. So, times merger R is called $= \frac{k^3}{3} = k^2$.

- Each call to an L_i puts k^2 items into B_i. Since k^3 items are output, and the buffer space is $\sqrt{k} \times 2k^2 = 2k^2$, times the L_i’s are called $\leq k^2 + 2\sqrt{k}$.

- Before each call to R, the merger must check each L_i for emptiness, and thus incurring $O(\sqrt{k})$ cache-misses. So, such cache-misses $= k^2 \times O(\sqrt{k}) = O(k^2)$.

Cache-complexity:

$$Q'(k) = \begin{cases}
O\left(1 + k + \frac{k^3}{B}\right), & \text{if } k < \alpha \sqrt{M}, \\
(2k^2 + 2\sqrt{k})Q'(\sqrt{k}) + \Theta(k^2), & \text{otherwise}.
\end{cases}$$

$$= O\left(\frac{k^3}{B} \log_M \left(\frac{k}{B}\right)\right), \quad \text{provided } M = \Omega(B^2)$$
Funnelsort

- Split the input sequence A of length n into $\frac{1}{n^3}$ contiguous subsequences $A_1, A_2, \ldots, A_{\frac{1}{n^3}}$ of length $\frac{2}{n^3}$ each
- Recursively sort each subsequence
- Merge the $\frac{1}{n^3}$ sorted subsequences using a n^3-merger

Cache-complexity:

\[
Q(n) = \begin{cases}
O \left(1 + \frac{n}{B} \right), & \text{if } n \leq M, \\
\frac{1}{n^3} Q \left(\frac{2}{n^3} \right) + Q' \left(\frac{1}{n^3} \right), & \text{otherwise.}
\end{cases}
\]

\[
= \begin{cases}
O \left(1 + \frac{n}{B} \right), & \text{if } n \leq M, \\
\frac{1}{n^3} Q \left(\frac{2}{n^3} \right) + O \left(\frac{n}{B} \log_M \left(\frac{n}{B} \right) \right), & \text{otherwise.}
\end{cases}
\]

\[
= O \left(1 + \frac{n}{B} \log_M n \right)
\]