
CSE 548: Analysis of Algorithms

Lecture 4

(Divide-and-Conquer Algorithms:

Polynomial Multiplication)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2014

Coefficient Representation of Polynomials

� � � �������	
�
�� �� � �	� � �
�
 �⋯� ���	���	

� � is a polynomial of degree bound � represented as a vector � � ��, �	, ⋯ , ���	 of coefficients.

The degree of � � is � provided it is the largest integer such that �� is nonzero. Clearly, 0 � � � � � 1.

Evaluating � � 	at a given point:

Takes Θ � time using Horner’s rule:

� �� � �� � �	�� � �
 ��
 �⋯� ���	 �� ��	
� �� � �� �	 � �� �
 �⋯� �� ���
 � �� ���	 ⋯

Then , where, for .

Coefficient Representation of Polynomials

� � � � ������	
�
�

Adding Two Polynomials:

Adding two polynomials of degree bound � takes Θ � time.

�� � �� � ��

� � � � � � � �
� � � �������	

�
� � � � �������	
�
�where, and .

0 � � � � � 1

Then , where, for .

Coefficient Representation of Polynomials

� � � � ����
��

�
�

Multiplying Two Polynomials:

The product of two polynomials of degree bound � is another

polynomial of degree bound 2� � 1.

�� � ��������
�
�

� � � � � � �
� � � �������	

�
� � � � �������	
�
�where, and .

0 � � � 2� � 2
The coefficient vector � � ��, �	,⋯ , �
��
 , denoted by � � �	⊗	�,

is also called the convolution of vectors � � ��, �	, ⋯ , ���	 and � � ��, �	, ⋯ , ���	 .

Clearly, straightforward evaluation of � takes Θ �
 	time.

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��

����

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��

���	� � �	���

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��

���
�
 � �	�	�
 � �
���

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��
��� � � �	�
� � �
�	� � � ���

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��
�	� �! � �
�
�! � � �	�!

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��
�
� �" � � �
�"

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��
� � �#

Then

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

We can use Karatsuba’s algorithm (assume � to be a power of 2):

� � � � � � �� �	 � �	 � � �$% �	 � �
 � � �
 � �	 � � �� �
 � �
 �

� � � ����� � �����
�
�	
�
� � ��
 ���
&���

�
�	
�
� � �	 � � ��
�
 ���	

�
�
� � � ����� � �����

�
�	
�
� � ��
 ���
&���

�
�	
�
� � �	 � � ��
�
 ���	

�
�

But �	 � �
 � � �
 � �	 �
� �	 � ��
 � �	 � ��
 � � �	 � �	 � � �
 � �
 �

3 recursive multiplications of polynomials of degree bound
�
 .

Similar recurrence as in Karatsuba’s integer multiplication

algorithm leading to a complexity of Ο �()*% � Ο �	."+ .

Point-Value Representation of Polynomials

If then

Adding Two Polynomials:

Suppose we have point-value representations of two polynomials

of degree bound � using the same set of � points.

� � � � � � � �

�: ��, -�. , �	, -	. , … , ���	, -��	.
�: ��, -�0 , �	, -	0 , … , ���	, -��	0

�: ��, -�. � -�0 , �	, -	. � -	0 , … , ���	, -��	. � -��	0
Thus polynomial addition takes Θ � time.

A point-value representation of a polynomial � � is a set of � point-

value pairs ��, -� , �	, -	 , … , ���	, -��	 such that all �� are

distinct and -� � � �� for 0 � � � � � 1.

A polynomial has many point-value representations.

Point-Value Representation of Polynomials

If then

Multiplying Two Polynomials:

Suppose we have extended (why?) point-value representations of

two polynomials of degree bound � using the same set of 2� points.

� � � � � � �

�: ��, -�. , �	, -	. , … , �
��	, -
��	.
�: ��, -�0 , �	, -	0 , … , �
��	, -
��	0

�: ��, -�.-�0 , �	, -	.-	0 , … , �
��	, -
��	. -
��	0
Thus polynomial multiplication also takes only Θ � time!

(compare this with the Θ �
 time needed in the coefficient form)

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � �	� � ⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� � ⋯� �
��	�
��	

� �� , � ��� �	 , � �	⋮� �
��	 , � �
��	
� ��� �	⋮� �
��	

ordinary

multiplication

Time Θ �

pointwise

multiplication

Time Θ �

e
v
a

lu
a

ti
o

n

T
im

e
?

in
te

rp
o

la
ti

o
n

T
im

e
?

Using Horner’s rule this approach takes Θ �
 time.

Coefficient Representation ⇒⇒⇒⇒ Point-Value Representation:

We select any set of � distinct points ��, �	, … , ���	 , and

evaluate � �� for 0 � � � � � 1.

This again takes Θ �
 time.

Point-Value Representation ⇒⇒⇒⇒ Coefficient Representation:

We can interpolate using Lagrange’s formula:

� � � � ∏ � � ���3�∏ �� � ���3� -���	
�
�

In both cases we need to do much better!

Faster Polynomial Multiplication?
(in Coefficient Form)

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

� ��� �	···� ���	
�

1 �� ��
 ⋯ �� ��	1 �	 �	
 ⋯ �	 ��	· · · ⋯ ·· · · ⋯ ·· · · ⋯ ·1 ���	 ���	
 ⋯ ���	 ��	

���	···���	

� � � �� � �	� � ⋯� ���	���	A polynomial of degree bound �:

A set of � distinct points: ��, �	, … , ���	
Compute point-value form: ��, � �� , �	, � �	 , … , ���	, � ���	
Using matrix notation:

We want to choose the set of points in a way that simplifies the

multiplication.

In the rest of the lecture on this topic we will assume:5 is a power of 2.

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

� ��� �	·� ��
⁄ �		� ��
⁄ &�� ��
⁄ &	·� ��
⁄ & �
⁄ �	

�

1 �� ��
 ⋯ �� ��	1 �	 �	
 ⋯ �	 ��	· · · ⋯ ·1 ��
⁄ �	 ��
⁄ �	
 ⋯ ��
⁄ �	 ��		 	 	 	 	1 ��� ���
 ⋯ ��� ��	1 ��	 ��	
 ⋯ ��	 ��	· · · ⋯ ·1 ���
⁄ �	 ���
⁄ �	
 ⋯ ���
⁄ �	 ��	

���	·····���	

Let’s choose ��
⁄ &� � ��� for 0 � � � � 2⁄ � 1. Then

��
⁄ &� � � 7 �� � , 			89	� � :;:�,� �� � , 	89	� � <==.Observe that for 0 � � � � 2⁄ � 1:

Thus we have just split the original � > � matrix into two almost

similar
�
 > � matrices!

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

How and how much do we save?

where, and .

� � � ��?�? ���	
?
� � �
?�
?�
⁄ �	

?
� � � �
?&	�
?&	�
⁄ �	
?
�

										� � �
? �
 ?�
⁄ �	
?
� � � � �
?&	 �
 ?�
⁄ �	

?
� � �@A@� �
 � ��BCC �
 ,
�@A@� � � � �
?�?�
⁄ �	

?
� �BCC � � � �
?&	�?�
⁄ �	
?
�

Observe that for 0 � � � � 2⁄ � 1: � �� � �@A@� ��
 � ���BCC ��
� ��
⁄ &� � � ��� � �@A@� ��
 � ���BCC ��

So in order to evaluate � �� for all 0 � � � � � 1, we need:� 2⁄ evaluations of �@A@� and � 2⁄ evaluations of �BCC� multiplications� 2⁄ additions and � 2⁄ subtractions

Thus we save about half the computation!

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

If we can recursively evaluate �@A@� and �BCC using the same

approach, we get the following recurrence relation for the running

time of the algorithm:

D � � 7Θ 1 , 																		89	� � 1,2D �2 � Θ � , 			<EF:GH8I:.
� 	Θ � log �

Our trick was to evaluate � at � (positive) and �� (negative).

But inputs to �@A@� and �BCC are always of the form �
 (positive)!

How can we apply the same trick?

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

�@A@� ���@A@� �	···�@A@� ��
⁄ �	
�

1 ��
 �� ! ⋯ �� ��
1 �	
 �	 ! ⋯ �	 ��
· · · ⋯ ·· · · ⋯ ·· · · ⋯ ·1 ��
⁄ �	
 ��
⁄ �	 ! ⋯ ��
⁄ �	 ��

���
�!··���

Let us consider the evaluation of �@A@� �� for 0 � � � � 2⁄ � 1:

In order to apply the same trick on �@A@� we must set:�� !&�⁄
 � � ��

for 0 � � � � 4⁄ � 1

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

In �@A@� we set: �� !&�⁄
 � ���
 for 0 � � � � 4⁄ � 1. Then

This means setting �� !&�⁄ � 8��, where 8 � �1 (imaginary)!

This also allows us to apply the same trick on �BCC.

�@A@� ���@A@� �	·�@A@� �� !⁄ �		�@A@� �� !⁄ &��@A@� �� !⁄ &	·�@A@� �� !⁄ & � !⁄ �	

�

1 ��
 ��

 ⋯ ��
 �
�	
1 �	
 �	

 ⋯ �	
 �
�	· · · ⋯ ·1 �� !⁄ �	
 �� !⁄ �	

 ⋯ �� !⁄ �	
 �
�		 	 	 	 	1 ���
 ���

 ⋯ ���
 �
�	
1 ��	
 ��	

 ⋯ ��	
 �
�	· · · ⋯ ·1 ��� !⁄ �	
 ���
⁄ �	

 ⋯ ��� !⁄ �	
 �
�	

���
�!····���

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

We can apply the trick once if we set:��
&�⁄ � ��� for 0 � � � � 2⁄ � 1
We can apply the trick (recursively) 2 times if we also set:

��
%&�⁄
 � � ��

for 0 � � � � 2
⁄ � 1

We can apply the trick (recursively) 3 times if we also set:

��
N&�⁄
% � � ��
%
for 0 � � � � 2 ⁄ � 1

We can apply the trick (recursively) � times if we also set:

��
O&�⁄
OPQ � � ��
OPQ
for 0 � � � � 2�⁄ � 1

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Consider the ERS primitive root of unity:

TR � :%UVW � cos
ZR � 8 · sin
ZR 8 � �1
��
&�⁄ � ���		⇒ ��
Q&�⁄ � T
Q · ��Then

��
%&�⁄
 � � ��

⇒ ��
%&�⁄ � T
% · ��

��
N&�⁄
% � � ��
%
⇒ ��
N&�⁄ � T
N · ��

��
O&�⁄
OPQ � � ��
OPQ
⇒ ��
O&�⁄ � T
O · ��

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

If � � 2� we would like to apply the trick � times recursively.

What values should we choose for ��, �	, … , ���	 ?
Example: For � � 2 we need to choose ��, �	, … , �^ .

Choose: �� � 1
� � 3: �	 � T
N · ��� � 2: �
 � T
% · ��� � T
% · �	
� � 1: �! � T
Q · ���" � T
Q · �	�# � T
Q · �
�^ � T
Q · �

� T	̀
� T
̀
� T ̀
� T!̀
� T"̀
� T#̀
� T`̂

� T�̀

1�1

8

�8

T�̀ � T`̀

T	̀
T
̀

T ̀

T!̀

T"̀
T#̀

T`̂

complex abc roots of unity

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

For a polynomial of degree bound � � 2�, we need to apply the

trick recursively at most log � � � times.

We choose �� � 1 � T�� and set �� � T�� for 1 � � � � � 1.

Then we compute the following product:

-�-	-
··-��	
�

� 1� T�� T�
··� T���	
�

1 1 1 ⋯ 11 T� T�
 ⋯ T� ��	1 T�
 T�

 ⋯ T�
 ��	· · · ⋯ ·· · · ⋯ ·1 T���	 T���	
 ⋯ T���	 ��	

���	�
··���	
The vector - � -�, -	, ⋯ , -��	 is called the discrete Fourier

transform (DFT) of ��, �	, ⋯ , ���	 .

This method of computing DFT is called the fast Fourier transform

(FFT) method.

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Rec-FFT ((a0, a1, …, an - 1)) { n = 2k for integer k ≥ 0 }

1. if n = 1 then

3. ωn ← e2πi/n

5. yeven
← Rec-FFT ((a0, a2, …, an - 2))

2. return (a0)

7. for j ← 0 to n/2 − 1 do

8. yj ← yj
even + ω yj

odd

11. return y

4. ω ← 1

6. yodd
← Rec-FFT ((a1, a3, …, an - 1))

9. yn/2+j ← yj
even

− ω yj
odd

10. ω ← ω ωn

D � � 7Θ 1 , 																		89	� � 1,2D �2 � Θ � , 			<EF:GH8I:.
� 	Θ � log �

Running time:

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � �	� � ⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� � ⋯� �
��	�
��	

� T
�� , � T
��� T
�	 , � T
�	⋮� T
�
��	 , � T
�
��	
� T
��� T
�	⋮� T
�
��	

ordinary

multiplication

Time Θ �

pointwise

multiplication

Time Θ �

fo
rw

a
rd

 F
F

T

T
im

e
 Θ

�log
�

in
te

rp
o

la
ti

o
n

T
im

e
?

Next Lecture will Cover Interpolation

