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Coefficient Representation of Polynomials

� � � �������	
�
�� �� � �	� � �
�
 �⋯� ���	���	

� � is a polynomial of degree bound � represented as a vector � � ��, �	, ⋯ , ���	 of coefficients.

The degree of � � is � provided it is the largest integer such that �� is nonzero. Clearly, 0 � � � � � 1.

Evaluating � � 	at a given point:

Takes Θ � time using Horner’s rule:

� �� � �� � �	�� � �
 �� 
 �⋯� ���	 �� ��	
� �� � �� �	 � �� �
 �⋯� �� ���
 � �� ���	 ⋯



Then                        ,  where,                    for                      .

Coefficient Representation of Polynomials

� � � � ������	
�
�

Adding Two Polynomials:

Adding two polynomials of degree bound � takes Θ � time.

�� � �� � ��

� � � � � � � �
� � � �������	

�
� � � � �������	
�
�where,                           and                          .

0 � � � � � 1



Then                        ,  where,                           for                        .

Coefficient Representation of Polynomials

� � � � ����
��

�
�

Multiplying Two Polynomials:

The product of two polynomials of degree bound � is another 

polynomial of degree bound 2� � 1.

�� � ��������
�
�

� � � � � � �
� � � �������	

�
� � � � �������	
�
�where,                           and                          .

0 � � � 2� � 2
The coefficient vector � � ��, �	,⋯ , �
��
 , denoted by � � �	⊗	�, 

is also called the convolution of vectors � � ��, �	, ⋯ , ���	 and � � ��, �	, ⋯ , ���	 .

Clearly, straightforward evaluation of � takes Θ �
 	time.



Convolution
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�
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�
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����



Convolution
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Convolution
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Convolution
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Convolution
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�
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�
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�	� �! � �
�
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Convolution
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�
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Convolution
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Then

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

We can use Karatsuba’s algorithm (assume � to be a power of 2):

� � � � � � �� �	 � �	 � � �$% �	 � �
 � � �
 � �	 � � �� �
 � �
 �

� � � ����� � �����
�
�	
�
� � ��
 ���
&���

�
�	
�
� � �	 � � ��
�
 ���	

�
�
� � � ����� � �����

�
�	
�
� � ��
 ���
&���

�
�	
�
� � �	 � � ��
�
 ���	

�
�

But �	 � �
 � � �
 � �	 �
� �	 � ��
 � �	 � ��
 � � �	 � �	 � � �
 � �
 �

3 recursive multiplications of polynomials of degree bound 
�
 .

Similar recurrence as in Karatsuba’s integer multiplication 

algorithm leading to a complexity of Ο �()*%  � Ο �	."+ .



Point-Value Representation of Polynomials

If                                 then

Adding Two Polynomials:

Suppose we have point-value representations of two polynomials 

of degree bound � using the same set of � points.

� � � � � � � �

�: ��, -�. , �	, -	. , … , ���	, -��	.
�: ��, -�0 , �	, -	0 , … , ���	, -��	0

�: ��, -�. � -�0 , �	, -	. � -	0 , … , ���	, -��	. � -��	0
Thus polynomial addition takes Θ � time.

A point-value representation of a polynomial � � is a set of � point-

value pairs ��, -� , �	, -	 , … , ���	, -��	 such that all �� are 

distinct and -� � � �� for 0 � � � � � 1.

A polynomial has many point-value representations. 



Point-Value Representation of Polynomials

If                           then

Multiplying Two Polynomials:

Suppose we have extended (why?) point-value representations of 

two polynomials of degree bound � using the same set of 2� points.

� � � � � � �

�: ��, -�. , �	, -	. , … , �
��	, -
��	.
�: ��, -�0 , �	, -	0 , … , �
��	, -
��	0

�: ��, -�.-�0 , �	, -	.-	0 , … , �
��	, -
��	. -
��	0
Thus polynomial multiplication also takes only Θ � time!

( compare this with the Θ �
 time needed in the coefficient form )



Faster Polynomial Multiplication?
( in Coefficient Form )

� � � �� � �	� � ⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� � ⋯� �
��	�
��	

� �� , � ��� �	 , � �	⋮� �
��	 , � �
��	
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��	

ordinary
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Time Θ �
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Using Horner’s rule this approach takes Θ �
 time.

Coefficient Representation ⇒⇒⇒⇒ Point-Value Representation:

We select any set of � distinct points ��, �	, … , ���	 , and 

evaluate � �� for 0 � � � � � 1. 

This again takes Θ �
 time.

Point-Value Representation ⇒⇒⇒⇒ Coefficient Representation:

We can interpolate using Lagrange’s formula:

� � � � ∏ � � ���3�∏ �� � ���3� -���	
�
�

In both cases we need to do much better!

Faster Polynomial Multiplication?
( in Coefficient Form )



Coefficient Form ⇒⇒⇒⇒ Point-Value Form

� ��� �	···� ���	
�

1 �� �� 
 ⋯ �� ��	1 �	 �	 
 ⋯ �	 ��	· · · ⋯ ·· · · ⋯ ·· · · ⋯ ·1 ���	 ���	 
 ⋯ ���	 ��	

���	···���	

� � � �� � �	� � ⋯� ���	���	A polynomial of degree bound �:

A set of � distinct points: ��, �	, … , ���	
Compute point-value form: ��, � �� , �	, � �	 , … , ���	, � ���	
Using matrix notation: 

We want to choose the set of points in a way that simplifies the 

multiplication.

In the rest of the lecture on this topic we will assume:5 is a power of 2.



Coefficient Form ⇒⇒⇒⇒ Point-Value Form

� ��� �	·� �� 
⁄ �		� �� 
⁄ &�� �� 
⁄ &	·� �� 
⁄ & � 
⁄ �	

�

1 �� �� 
 ⋯ �� ��	1 �	 �	 
 ⋯ �	 ��	· · · ⋯ ·1 �� 
⁄ �	 �� 
⁄ �	 
 ⋯ �� 
⁄ �	 ��		 	 	 	 	1 ��� ��� 
 ⋯ ��� ��	1 ��	 ��	 
 ⋯ ��	 ��	· · · ⋯ ·1 ��� 
⁄ �	 ��� 
⁄ �	 
 ⋯ ��� 
⁄ �	 ��	

���	·····���	

Let’s choose �� 
⁄ &� � ��� for 0 � � � � 2⁄ � 1. Then

�� 
⁄ &� � � 7 �� � , 			89	� � :;:�,� �� � , 	89	� � <==.Observe that for 0 � � � � 2⁄ � 1:

Thus we have just split the original � > � matrix into two almost 

similar 
�
 > � matrices! 



Coefficient Form ⇒⇒⇒⇒ Point-Value Form

How and how much do we save?

where,                                     and                                     .

� � � ��?�? ���	
?
� � �
?�
?� 
⁄ �	

?
� � � �
?&	�
?&	� 
⁄ �	
?
�

										� � �
? �
 ?� 
⁄ �	
?
� � � � �
?&	 �
 ?� 
⁄ �	

?
� � �@A@� �
 � ��BCC �
 ,
�@A@� � � � �
?�?� 
⁄ �	

?
� �BCC � � � �
?&	�?� 
⁄ �	
?
�

Observe that for 0 � � � � 2⁄ � 1: � �� � �@A@� ��
 � ���BCC ��
� �� 
⁄ &� � � ��� � �@A@� ��
 � ���BCC ��

So in order to evaluate � �� for all 0 � � � � � 1, we need:� 2⁄ evaluations of �@A@� and � 2⁄ evaluations of �BCC� multiplications� 2⁄ additions and � 2⁄ subtractions

Thus we save about half the computation!



Coefficient Form ⇒⇒⇒⇒ Point-Value Form

If we can recursively evaluate �@A@� and �BCC using the same 

approach, we get the following recurrence relation for the running 

time of the algorithm:

D � � 7Θ 1 , 																		89	� � 1,2D �2 � Θ � , 			<EF:GH8I:.
� 	Θ � log �

Our trick was to evaluate � at � ( positive ) and �� ( negative ).

But inputs to �@A@� and �BCC are always of the form �
 ( positive )!

How can we apply the same trick?



Coefficient Form ⇒⇒⇒⇒ Point-Value Form

�@A@� ���@A@� �	···�@A@� �� 
⁄ �	
�

1 �� 
 �� ! ⋯ �� ��
1 �	 
 �	 ! ⋯ �	 ��
· · · ⋯ ·· · · ⋯ ·· · · ⋯ ·1 �� 
⁄ �	 
 �� 
⁄ �	 ! ⋯ �� 
⁄ �	 ��


���
�!··���


Let us consider the evaluation of �@A@� �� for 0 � � � � 2⁄ � 1: 

In order to apply the same trick on �@A@� we must set:�� !&�⁄ 
 � � �� 

for 0 � � � � 4⁄ � 1



Coefficient Form ⇒⇒⇒⇒ Point-Value Form

In �@A@� we set: �� !&�⁄
 � ���
 for 0 � � � � 4⁄ � 1. Then

This means setting  �� !&�⁄ � 8��, where 8 � �1 ( imaginary )!

This also allows us to apply the same trick on �BCC.

�@A@� ���@A@� �	·�@A@� �� !⁄ �		�@A@� �� !⁄ &��@A@� �� !⁄ &	·�@A@� �� !⁄ & � !⁄ �	

�

1 ��
 ��
 
 ⋯ ��
 �
�	
1 �	
 �	
 
 ⋯ �	
 �
�	· · · ⋯ ·1 �� !⁄ �	
 �� !⁄ �	
 
 ⋯ �� !⁄ �	
 �
�		 	 	 	 	1 ���
 ���
 
 ⋯ ���
 �
�	
1 ��	
 ��	
 
 ⋯ ��	
 �
�	· · · ⋯ ·1 ��� !⁄ �	
 ��� 
⁄ �	
 
 ⋯ ��� !⁄ �	
 �
�	

���
�!····���




Coefficient Form ⇒⇒⇒⇒ Point-Value Form

We can apply the trick once if we set:�� 
&�⁄ � ��� for 0 � � � � 2⁄ � 1
We can apply the trick ( recursively ) 2 times if we also set:

�� 
%&�⁄ 
 � � �� 

for 0 � � � � 2
⁄ � 1

We can apply the trick ( recursively ) 3 times if we also set:

�� 
N&�⁄ 
% � � �� 
%
for 0 � � � � 2 ⁄ � 1

We can apply the trick ( recursively ) � times if we also set:

�� 
O&�⁄ 
OPQ � � �� 
OPQ
for 0 � � � � 2�⁄ � 1



Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Consider the ERS primitive root of unity: 

TR � :%UVW � cos 
ZR � 8 · sin 
ZR 8 � �1
�� 
&�⁄ � ���		⇒ �� 
Q&�⁄ � T
Q · ��Then

�� 
%&�⁄ 
 � � �� 

⇒  �� 
%&�⁄ � T
% · ��

�� 
N&�⁄ 
% � � �� 
%
⇒  �� 
N&�⁄ � T
N · ��

�� 
O&�⁄ 
OPQ � � �� 
OPQ
⇒  �� 
O&�⁄ � T
O · ��



Coefficient Form ⇒⇒⇒⇒ Point-Value Form

If � � 2� we would like to apply the trick � times recursively.

What values should we choose for ��, �	, … , ���	 ?
Example: For � � 2 we need to choose ��, �	, … , �^ .

Choose:  �� � 1
� � 3: �	 � T
N · ��� � 2: �
 � T
% · ��� � T
% · �	
� � 1: �! � T
Q · ���" � T
Q · �	�# � T
Q · �
�^ � T
Q · � 

� T	̀
� T
̀
� T ̀
� T!̀
� T"̀
� T#̀
� T`̂

� T�̀

1�1

8

�8

T�̀ � T`̀

T	̀
T
̀

T ̀

T!̀

T"̀
T#̀

T`̂

complex abc roots of unity



Coefficient Form ⇒⇒⇒⇒ Point-Value Form

For a polynomial of degree bound � � 2�, we need to apply the 

trick recursively at most log � � � times.

We choose �� � 1 � T�� and set �� � T�� for 1 � � � � � 1.

Then we compute the following product:

-�-	-
··-��	
�

� 1� T�� T�
··� T���	
�

1 1 1 ⋯ 11 T� T� 
 ⋯ T� ��	1 T�
 T�
 
 ⋯ T�
 ��	· · · ⋯ ·· · · ⋯ ·1 T���	 T���	 
 ⋯ T���	 ��	

���	�
··���	
The vector - � -�, -	, ⋯ , -��	 is called the discrete Fourier 

transform ( DFT ) of ��, �	, ⋯ , ���	 . 

This method of computing DFT is called the fast Fourier transform

( FFT ) method.



Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Rec-FFT ( ( a0, a1, …, an - 1 ) )     { n = 2k for integer k ≥ 0 }

1.   if n = 1 then 

3.   ωn ← e2πi/n

5.   yeven
← Rec-FFT ( ( a0, a2, …, an - 2 ) )

2.       return ( a0 )

7.   for j ← 0 to n/2 − 1 do

8.      yj ← yj
even + ω yj

odd

11.   return y

4.   ω ← 1

6.   yodd
← Rec-FFT ( ( a1, a3, …, an - 1 ) )

9.      yn/2+j ← yj
even

− ω yj
odd

10.      ω ← ω ωn

D � � 7Θ 1 , 																		89	� � 1,2D �2 � Θ � , 			<EF:GH8I:.
� 	Θ � log �

Running time:



Faster Polynomial Multiplication?
( in Coefficient Form )

� � � �� � �	� � ⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� � ⋯� �
��	�
��	

� T
�� , � T
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Next Lecture will Cover Interpolation


