
Chapter 3

Cache-oblivious Buffer Heap and

its Applications

The distance is nothing;
it is only the first step that is difficult.

(Marie Anne du Deffand)

In this chapter we present the buffer heap, a cache-oblivious priority queue that supports
Delete, Delete-Min, and Decrease-Key operations in O

(

1

B
log

2

N

M

)

amortized block transfers
from main memory, where M and B are the (unknown) cache size and block-size, respec-
tively, and N is the number of elements in the queue. We assume that the Decrease-Key

operation only verifies that the element does not exist in the priority queue with a smaller
key value, and hence it also supports the Insert operation in the same amortized bound.
The amortized time bound for each operation is O (log N).

Using the buffer heap we present cache-oblivious algorithms for undirected and
directed single-source shortest path (SSSP) problems for graphs with non-negative real
edge-weights. On a graph with n vertices and m edges, our algorithm for the undi-
rected case performs O

(

n + m

B
log

2

n

M

)

block transfers and for the directed case performs

O
((

n + m

B

)

· log
2

n

B

)

block transfers. Running time of both algorithms is O
(

(m+n) · log n
)

.
For both priority queues with Decrease-Key operation, and for SSSP problems on

general graphs, our results give the first non-trivial cache-oblivious bounds. Our results,
though not known to be optimal, provide substantial improvements over known trivial
bounds.

We also introduce the notion of a slim data structure which captures the situation
when only a limited portion of the cache which we call a slim cache, is available to the data
structure to retain data between data structural operations. We show that a buffer heap au-
tomatically adapts to such an environment and supports all operations in O

(

1

λ
+ 1

B
log

2

N

λ

)

amortized block transfers each when the size of the slim cache is λ. We use buffer heaps
in this setting to improve the cache complexity of the cache-aware all-pairs shortest path
(APSP) problem on weighted undirected graphs.
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3.1 Introduction

The single-source shortest path (SSSP) and the all-pairs shortest path (APSP)
problems are among the most important combinatorial optimization problems with
numerous practical applications (see Chapter 1 for definitions). Under the tradi-
tional von Neumann Model of computation which assumes a single layer of memory
with uniform access cost, the SSSP problem on a directed graph can be solved
efficiently in O (m + n log n) time by Dijkstra’s algorithm [43] implemented using
a Fibonacci heap [51]. For undirected graphs the problem can also be solved in
O (mα(m,n) + n min(log n, log log ρ)) time [99], where ρ is the ratio of the maxi-
mum and the minimum edge-weights in G, and α(m,n) is a certain natural inverse
of Ackermann’s function that evaluates to a small constant for all practical values
of m and n. Faster algorithms exist for special classes of graphs and graphs with
restricted edge-weights. Efficient APSP algorithms have also been developed for this
model [136].

As explained in Chapter 1, modern computers with deep memory hierarchies
differ significantly from the original von Neumann architecture, and demand cache-
efficient algorithms.

3.1.1 Cache-aware Shortest Path Algorithms

In recent years there has been considerable research on developing cache-efficient
graph algorithms (see [127, 77] for recent surveys). Several cache-efficient SSSP algo-
rithms have been developed [31, 83, 77, 89]. As explained in Section 2.1.3 of Chapter
2, in addition to a mechanism to remember visited vertices, cache-efficient imple-
mentations of virtually all SSSP algorithms require cache-efficient priority queues
supporting Decrease-Key operations.

Major known SSSP results for the two-level I/O model are summarized in
Table 3.3 under the caption “Cache-aware Results”. Kumar & Schwabe [83] were the
first to develop a cache-efficient version of Dijkstra’s SSSP algorithm for undirected
graphs. They use a tournament tree as a priority queue and perform some extra
book-keeping using an auxiliary priority queue in order to handle visited vertices.
A cache-efficient tournament tree supports a sequence of k Delete, Delete-Min and
Decrease-Key operations in O

(

k
B

log2
n
M

)

block transfers leading to an SSSP algo-
rithm incurring O

(

n + m
B

log2
n
M

)

cache-misses. The phase approach used in [31] im-
plements a priority queue with Decrease-Keys indirectly and results in an undirected
SSSP algorithm that beats Kumar & Schwabe’s algorithm when n = O

(

M log2
n
M

)

,
i.e., the set of vertices is not too large compared to the size of the cache. In [89]
Meyer & Zeh developed another undirected SSSP algorithm that works on graphs
with real edge-weights, but its performance depends on ρ, the ratio of the largest
and the smallest edge-weights in the graph. This algorithm outperforms Kumar &
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Schwabe’s algorithm for sparse graphs, i.e., when m = O
(

B
log2 ρ

· n
)

. This algorithm

uses a hierarchical decomposition technique to reduce random accesses to adjacency
lists, and a priority queue called the bucket heap that is specifically designed for this
purpose. The bucket heap supports a sequence of k Delete, Delete-Min (Batched-
Delete-Min) and Decrease-Key operations in O

(

sort(k) + k
B

log2 ρ
)

cache-misses.
For directed graphs the survey paper [127] mentions a cache complexity of

O
(

(n + m
B

) · log2
n
B

)

for SSSP using a tournament tree. Using the phase approach
directed SSSP can be solved in O

(

n + mn
BM

log2
n
B

)

block transfers [31, 77].
A straight-forward method of computing APSP is to simply run an SSSP

algorithm from each of the n vertices of the graph. Arge et al. [13] proposed a
cache-aware APSP algorithm for undirected graphs with general non-negative edge-
weights that performs O

(

n ·
(√

mn
B

log n + sort(m)
))

block transfers when m =

O
(

B
log n

· n
)

. They use a priority queue structure called the multi-tournament-tree

which is created by bundling together a number of cache-efficient tournament trees.
The use of this structure reduces unstructured accesses to adjacency lists at the
expense of increasing the cost of each priority queue operation.

3.1.2 Cache-oblivious Shortest Path Algorithms

The cache-oblivious priority queue introduced by Arge et al. [11] and the fun-
nel heap introduced by Brodal & Fagerberg [22] support Insert and Delete-Min in

amortized optimal O
(

1
B

log M
B

N
B

)

cache-misses, where N is the number of elements

in the queue, but they do not support Decrease-Keys. Prior to our work no non-
trivial cache-oblivious results were known for priority queue with Decrease-Keys or
for SSSP on graphs. Very recently, however, Allulli et al. [7] obtained a cache-
oblivious SSSP algorithm for undirected sparse graphs with bounded edge-weights
by extending the cache-aware algorithm in [89] which outperforms our algorithm

when m = O
(

B
log2 ρ

· n
)

and ρ = 2o(B), where ρ is the ratio of the largest and the

smallest edge-weights.

I/O Model Priority Queue Decrease-Key Delete Delete-Min

Cache-aware Tournament Tree [83] O
`

1
B

log2
N
M

´

Cache-oblivious
Buffer Heap (our result)

(see also [24])
O

`

1
B

log2
N
M

´

Table 3.1: Amortized cache complexities for priority queues with Decrease-
Keys. (N = number of items in the queue)
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I/O Model Slim Priority Queue Decrease-Key Delete Delete-Min

Cache-aware

Slim Tournament Tree
ˆ

1 ≤ λ ≤ B
2

˜

(component of

multi-tournament-tree [13])

O
`

1
λ

log2 N
´

Cache-oblivious
Slim Buffer Heap [1 ≤ λ ≤M ]

(our result)
O

`

1
λ

+ 1
B

log2
N
λ

´

Table 3.2: Amortized cache complexities for slim priority queues with
Decrease-Keys. (λ = slim cache size, N = # items)

3.1.3 Our Results

Majority of the results included in this chapter were presented in two conference
papers [32, 33].

We introduce the buffer heap, the first cache-oblivious priority queue to sup-
port Decrease-Key operations. Independently of our work a similar data structure
was also presented in [24]. The buffer heap matches the cache complexity of the
cache-aware tournament tree (see Table 3.1), and we use it to obtain the first cache-
oblivious SSSP algorithms for weighted undirected and directed graphs matching
the cache performance of their cache-aware counterparts (see Table 3.3). Our cache-
miss bounds for SSSP problems are not very impressive for sparse graphs, but they
do provide dramatic improvements for moderately dense graphs. For example, for
undirected graphs, if m ≥ nB

log2 ( n
B )

our algorithm reduces the number of cache-misses

by a factor of B

log2 ( n
B )

over the naïve method. For directed graphs, we obtain the

same improvement if m ≥ nB.
We also introduce the notion of a slim data structure. This notion captures

the scenario where only a limited portion of the cache is available to store data
from the data structure; it is assumed, however, that while executing an individual
operation of the data structure, the entire cache is available for the computation.
We describe and analyze the slim buffer heap which is a slim data structure based
on the buffer heap (see Table 3.2 for a comparison with the only other similar data
structure known), and use it to improve the cache performance of the cache-aware
APSP algorithm for undirected graphs with general non-negative edge-weights given

in [13] to O
(

n ·
(√

mn
B

+ sort(m)
))

when m = O
(

nB

log2 n

)

(see Table 3.3). Recall

that sort(m) is the cache complexity of sorting m data items. For general values of
m our algorithm performs O

(

n ·
(√

mn
B

+ m
B

log m
B

))

block transfers. We also believe
that the notion of a slim data structure is of independent interest.

In this chapter we show that the slim buffer heap can be made oblivious of
the slim cache size without sacrificing its performance. In fact, we show that when a
regular buffer heap (i.e., a buffer heap which is not restricted to using a slim cache)
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is run in an environment that limits the amount λ of cache space available to it to
store data between data structural operations, it automatically adapts to this new
environment and matches the performance bounds of a slim buffer heap with a slim
cache of size λ.

Problem Cache-aware Results Cache-oblivious Results

Weighted

Undirected SSSP

O
`

n + m
B

log2
n
M

´

[83]

O
`

n + mn
BM

+ sort(m)
´

[31, 77]

O
`

p

mn
B

log2 ρ + sort(m + n) log2 log2
nB
m

´

[89]

O
`

n + m
B

log2
n
M

´

(our result)

(see also [24])

Weighted

Directed SSSP

O
``

n + m
B

´

· log2
n
B

´

[127]

O
`

n + mn
BM

log2
n
B

´

[31, 77]

O
``

n + m
B

´

· log2
n
B

´

ˆ

M = Ω
`

B2
´˜

(our result)

Weighted

Undirected APSP

O
`

n ·
`

p

mn
B

log2 n + sort(m)
´´

[13]

O
`

n ·
`

p

mn
B

+ sort(m)
´´

(our result)

O
`

n ·
`

n + m
B

log2
n
M

´´

(derived from our

undirected SSSP

result above)

Table 3.3: Cache complexities for SSSP and APSP problems on weighted graphs.
(n = |V |, m = |E|)

3.1.4 Organization of the Chapter

In Section 3.2, we define a slim data structure. In Section 3.3, we present the
cache-oblivious buffer heap as a slim data structure, prove the correctness of its
implementation and analyze its cache and time complexities. In Section 3.4, we
discuss three major applications of buffer heap. In Sections 3.4.1 and 3.4.2 we use
the buffer heap to obtain cache-oblivious SSSP algorithms for weighted undirected
and directed graphs, respectively. In Section 3.4.3 we describe the application of
buffer heap in obtaining an improved cache-aware APSP algorithm for weighted
undirected graphs. Finally, we present some concluding remarks in Section 3.5.
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3.2 Slim Data Structures

A slim data structure is a data structure with a fixed-size footprint in the cache.
The area in the cache that holds the footprint is called the slim cache. By DS(λ)
we denote a data structure DS, in which a portion of size Θ (λ) is kept in the slim
cache. We continue to assume the behavior of the two-level I/O model, namely
(a) the size of the cache is M and (b) data is transferred between the cache and
the main memory in blocks of size B. Thus 1 ≤ λ ≤ M ; and the data structural
operations must assume that the portion of the data structure that is not stored in
the slim cache is stored in a main memory divided into blocks of size B, and thus
accessing anything outside the slim cache may cause cache-misses. While executing
a data structural operation the operation can use all free cache space for temporary
computation, but after the operation completes only the data in the slim cache is
preserved for reuse by the next operation on the data structure.

Some existing data structures can be viewed trivially as slim data structures.
For example, Arge et al. [13] analyzed each component tournament tree of the multi-
tournament-tree as supporting Decrease-Key, Delete and Delete-Min operations in
O

(

1
λ

log N
)

amortized cache-misses each for 1 ≤ λ ≤ B
2 ; this can be viewed as a

slim data structure for this range of values for λ.
Although our main motivation behind introducing the notion of slim data

structures was to obtain the APSP result in Section 3.4.3, we believe that the need
for slim data structures could arise in other applications. A typical application
would be one in which a number of data structures need to be kept in the cache
simultaneously, and thus only a limited portion of the cache can be dedicated to
each data structure.

In the next section we present our cache-oblivious buffer heap, and analyze
its performance as a slim data structure.

3.3 The Buffer Heap

In this section we present the Buffer Heap, a cache-oblivious priority queue that
supports Delete, Delete-Min and Decrease-Key operations in O

(

1
B

log N
M

)

amortized
cache-misses each, where N is the number of items in the priority queue. A Delete(x)
operation deletes element x from the queue if it exists and a Delete-Min() operation
retrieves and deletes an element with the minimum key from the queue. A Decrease-
Key(x, kx) operation inserts the element x with key kx into the queue if x does not
already exist in the queue, otherwise it replaces the smallest key k′x of x in the queue
with kx provided kx < k′x, and deletes all remaining keys of x in the queue. For
simplicity of exposition, we assume that all keys in the data structure are distinct.

When analyzed as a slim data structure with a slim cache of size λ, we show
that a buffer heap supports each of its three operations in O

(

1
λ

+ 1
B

log2
N
λ

)

amor-
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tized cache-misses. The buffer heap, however, remains oblivious of the parameter
λ; the external application using the data structure may choose to maintain a slim
cache, i.e., impose a restriction on the value of λ. When a buffer heap is restricted to
use a slim cache, we call it a Slim Buffer Heap and denote it by SBH(λ), otherwise
we call it a Regular Buffer Heap. Note that since a buffer heap is not aware of the ex-
istence of a slim cache, both types of buffer heap (slim and regular) have exactly the
same implementation, the only difference is in their analysis. A regular buffer heap
can be viewed as a slim buffer heap with a slim cache of size λ = Θ (M) = Ω (B).

A regular buffer heap matches the cache complexity of a tournament tree
[83], its only cache-aware counterpart that supports the same operations. It has
been shown in [13] that a slim version of the tournament tree (a component of the
multi-tournament-tree introduced in [13]) supports Delete, Delete-Min and Decrease-
Key operations in O

(

1
λ

log N
)

amortized cache-misses each when restricted to use

a slim cache of size λ ∈
[

1, B
2

]

. Hence, a slim buffer heap improves over the cache
complexity of a slim tournament tree.

3.3.1 Structure

A buffer heap on N items consists of r = 1 + ⌈log2 N⌉ levels. For 0 ≤ i ≤ r − 1,
level i consists of an element buffer Bi and an update buffer Ui. Each element in Bi

is of the form (x, kx), where x is the element id and kx is its key. Each update or
operation in Ui is augmented with a timestamp indicating the time of its insertion
into the data structure.
At any time, the following invariants are maintained:

Invariant 3.3.1.

(a) Each Bi (0 ≤ i < r) contains at most 2i elements.
(b) Each Ui (0 ≤ i < r) contains at most 2i updates.

Invariant 3.3.2.

(a) Key of every element in Bi (0 ≤ i < r − 1) is no larger than the key of
any element in Bi+1.

(b) All updates applicable to Bi (0 ≤ i < r−1) that are not yet applied, reside
in U0, U1, . . . , Ui.

Invariant 3.3.3.

(a) Elements in each Bi are kept sorted in ascending order by element id.
(b) Updates in each Ui are divided into (a constant number of) segments with

updates in each segment sorted in ascending order by element id and timestamp.

All buffers are initially empty.
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3.3.2 Layout

The element buffers are stored in a stack SB with elements of Bi placed above
elements of Bj for all i < j. Elements of the same Bi occupy contiguous space in
the stack with an element (x1, k1) stored above another element (x2, k2) provided
x1 < x2. Similarly, update buffers are placed in another stack SU where updates in
any Ui are stored above those in all Uj with j > i. Updates in a single buffer occupy
a contiguous region in the stack. For 0 ≤ i ≤ r−1, the segments of Ui are stored one
above another in the stack, and updates in each segment are stored sorted from top
to bottom first by element id and then by timestamp. An array As of size r stores
information on the buffers. For 0 ≤ i ≤ r− 1, As[i] contains the number of elements
in Bi, and the number of segments in Ui along with the number of updates in each
segment.

The buffer heap uses O (N) space.

3.3.3 Operations

In this section we describe how Delete, Delete-Min and Decrease-Key operations are
implemented.

A Decrease-Key operation is performed by the Decrease-Key function (i.e.,
Function 3.3.1) which inserts it into U0 augmented with the current timestamp.
Further processing is deferred to the next Delete-Min operation except that the
Fix-U function may be called to restore invariant 3.3.1(b) (i.e., overflowing update
buffers) for the structure. A Delete operation is performed by the Delete function
(i.e., Function 3.3.2) in exactly the same way.

The Fix-U function uses a function called Apply-Updates. When called
with a parameter i, Apply-Updates (i.e., Function 3.3.5) applies the updates in Ui

on the elements of Bi, and empties Ui by moving the updates from Ui to Ui+1. It also
moves any overflowing elements from Bi to Ui+1 as Sink operations. A Sink(x, kx)
operation is used to move an element (x, kx) from Bi to Bi+1 through Ui+1.

The Fix-U function (i.e., Function 3.3.6) is called with parameter i when
Ui overflows. This function starts at level i and continues calling Apply-Updates

on each successive level until it reaches a level j such that Uj+1 does not over-
flow when Apply-Updates(j) completes execution. It collects all elements left
in Bi, Bi+2, . . . , Bj in a temporary buffer B′ and returns B′ leaving these element
buffers empty.

Every call to Fix-U is followed by a call to the Redistribute function (i.e.,
Function 3.3.7) which redistributes the elements returned by Fix-U to the shallowest
element buffers.

The Delete-Min function (i.e., Function 3.3.3) executes a Delete-Min op-
eration by first calling the Find-Min function to find an element with the minimum
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key in the data structure, and then calling the Delete function to delete this ele-
ment.

The Find-Min function (i.e., Function 3.3.4) works by finding the shallowest
element buffer Bk that is left non-empty after applying the updates in Uk (by calling
Apply-Updates). The Fix-U function is then called to fix overflowing update
buffers, if any. The elements left in Bk along with the elements returned by Fix-U

are distributed to the shallowest element buffers by calling Redistribute.
After each operation the Reconstruct function (i.e., Function 3.3.8) is

called. This function reconstructs the entire data structure periodically. It remem-
bers the number of elements Ne in the structure immediately after the last recon-
struction, and keeps track of the number of new operations No performed since then.
Initially Ne is set to 0. When No = ⌊Ne

2 ⌋+ 1, the data structure is rebuilt by calling
Apply-Updates for each level, emptying the update buffers and distributing the
remaining elements to the shallowest possible levels. The objective of the function
is to ensure that the number of levels r in the structure is always within ±1 of
log2 N , where N is the current number of elements in the structure. This invariant
is maintained because r can decrease by at most 1 since the last reconstruction (this
happens if all ⌊Ne

2 ⌋ + 1 operations are Delete or Delete-Min operations), and can
increase by at most 1 (if all those operations are Decrease-Keys).

Correctness

We prove the correctness of all buffer heap operations below.

Lemma 3.3.1. Buffer heap correctly supports three external-memory priority queue
operations, namely, Decrease-Key, Delete and Delete-Min operations, on its ele-
ments.

Proof. We will prove that the Decrease-Key/Delete function correctly inserts
the corresponding Decrease-Key/Delete operation into the buffer heap, and the
Delete-Min function correctly extracts the element with the minimum key from
the buffer heap, while correctly applying all relevant Decrease-Key and Delete oper-
ations, and maintaining all invariants.

Before proving the correctness of the three functions mentioned above we
must establish the correctness of Apply-Updates and Fix-U which are called as
subroutines by all of them. The Apply-Updates function is at the core of all buffer
heap functionality.

Apply-Updates. When called with parameter i, Apply-Updates applies all up-
dates in Ui on the elements in Bi under the assumption that all invariants hold
initially except possibly invariant 3.3.1(b) for Ui. All Uj for 0 ≤ j < i are assumed
to be empty.
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Function 3.3.1. Decrease-Key( x, kx )

[Inserts a Decrease-Key operation into the structure, that decreases the key of element x to kx. If
x does not already exist in the structure, this operation results in the insertion of x with key kx.]

1. insert the operation into U0 augmented with current timestamp maintaining inv. 3.3.3(b)

2. B′ ← ∅, i← 0 {list B′ stores elements returned by Fix-U}

Fix-U( i, B′ ) {fix Ui (i.e, restore invariant 3.3.1(b)) in case of overflow}

3. Redistribute( B′ ) {redistribute elements in B′ to shallowest element buffers}

4. Reconstruct( ) {reconstruct the data structure periodically}

Decrease-Key Ends

Function 3.3.2. Delete( x )

[Inserts a Delete operation into the structure, that deletes element x from the structure if exists.]

Same as Function 3.3.1 (Decrease-Key) above

Delete Ends

Function 3.3.3. Delete-Min( ) [Extracts element with the smallest key from the structure.]

1. (x, kx)← Find-Min( ) {find the element with the minimum key}

2. if kx 6= +∞ then Delete( x ) {delete x from the data structure if nonempty}

3. return (x, kx)

Delete-Min Ends

Function 3.3.4. Find-Min( ) [Returns the element with the smallest key in the structure.]

1. i← −1

repeat

(i) i← i + 1

(ii) Apply-Updates( i ) {apply the updates in Ui on the elements in Bi}

until ( |Bi| > 0 ) ∨ ( i = r − 1 )

2. if |Bi| = 0 then {the data structure has become empty}

(i) (x, kx)← (_ , +∞), r ← 1 {will return +∞ as the minimum key}

3. else {the data structure is nonempty}

(i) B′ ← Bi, i← i + 1

Fix-U( i, B′ ) {fix Ui (i.e, restore invariant 3.3.1(b)) in case of overflow}

(ii) Redistribute( B′ ) {redistribute elements in B′ to shallowest element buffers}

(iii) (x, kx)← the element in B0 {B0 has the element with the minimum key}

4. return (x, kx)

Find-Min Ends
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Function 3.3.5. Apply-Updates( i )

[Applies the updates in Ui on the elements in Bi, move remaining updates from Ui to Ui+1 if
i < r − 1, and after applying the updates moves overflowing elements from Bi to Ui+1 as Sinks.

Preconditions: All invariants hold except possibly 3.3.1(b) for Ui. All Uj , j ∈ [0, i− 1] are empty.

Postconditions: All invariants hold except possibly 3.3.1(b) for Ui+1. All Uj , j ∈ [0, i] are empty.]

1. merge the segments of Ui

2. if ( |Bi| = 0 ) ∧ ( i < r − 1 ) then {if i is not the last level and Bi is empty}

(i) empty Ui by moving the contents of Ui as a new segment of Ui+1

3. else

(i) if i = r − 1 then k← +∞ else k ← largest key in Bi

(ii) scan Bi and Ui simultaneously, and for each op ∈ Ui: {apply the updates in Ui on Bi}

(a) if op = Delete( x ) then remove any element (x, kx) from Bi if exists

(b) if op = Decrease-Key( x, kx )/Sink( x, kx ) then

- replace any (x, k′x) ∈ Bi with (x, min(kx, k′x))

- copy (x, kx) to Bi if no (x, k′x) exists in Bi and kx ≤ k

(iii) if i < r − 1 then {move appropriate updates from Ui to Ui+1}

(a) copy each Decrease-Key( x, kx ) in Ui, not applied in step 3(ii)(b) to Ui+1

(b) for each Delete( x ) and each Decrease-Key( x, kx ) in Ui that was applied in
step 3(ii)(b) copy a Delete( x ) to Ui+1

(iv) if |Bi| > 2i then {restore invariant 3.3.1(a) if violated}

(a) if i = r − 1 then r ← r + 1

(b) keep the 2i elements with the smallest 2i keys in Bi and move each remaining
element (x, kx) to Ui+1 as Sink( x, kx )

(v) Ui ← ∅

Apply-Updates Ends

Function 3.3.6. Fix-U( i, B′ )

[Fixes all overflowing update buffers in levels i and up. Update buffer Ui overflows if |Ui| > 2i (see
invariant 3.3.1(b)). For each overflowing Ui collects contents of Bi in B′ after applying Ui on Bi.

Preconditions: All invariants hold except invariant 3.3.1(b) for Ui. All Uj for 0 ≤ j < i are empty.

Postconditions: All invariants hold. If k is the largest index for which the while loop in line 1
was executed, then all Uj for 0 ≤ j ≤ k are empty. The contents of all Bj for i ≤ j ≤ k after
applying all applicable updates on them are collected in B′ leaving those buffers empty.]

1. while ( i < r ) ∧
`

|Ui| > 2i
´

do

(i) Apply-Updates( i ) {apply the updates in Ui on the elements in Bi}

(ii) empty Bi by merging it with B′ {collect in B′ the elements remaining in Bi}

(iii) i← i + 1

Fix-U Ends
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Function 3.3.7. Redistribute( B′ )

[Distributes the elements in B′ to the shallowest element buffers maintaining invariants 3.3.1(a),
3.3.2(a) and 3.3.3(a).

Preconditions: All invariants hold. All Bi and Ui with 0 ≤ i ≤ k are empty, where k is the
smallest integer such that 2k+1 − 1 ≥ |B′|. No key value in the data structure is smaller than any
key value in B′.

Postconditions: All invariants hold. All update buffers remain unchanged, but
Sk

i=0Bi = B′.]

1. i← largest integer such that 2i − 1 < |B′|

2. while i ≥ 0 do

(i) move |B′|−2i +1 elements with the largest |B′|−2i +1 keys from B′ to Bi maintaining
invariant 3.3.3(a)

(ii) i← i− 1

Redistribute Ends

Function 3.3.8. Reconstruct( )

[Reconstructs the data structure when No =
¨

Ne

2

˝

+ 1, where Ne is the number of elements in the
data structure immediately after the last reconstruction (Ne = 0 initially), and No is the number
of operations since the last reconstruction/initialization of the data structure.]

1. if No =
¨

Ne

2

˝

+ 1 then

(i) B′ ← ∅

for i← 0 to r − 1 do

(a) Apply-Updates( i ) {apply the updates in Ui on the elements in Bi}

(b) merge Bi with B′ {collect in B′ the elements remaining in Bi}
Bi ← ∅

(ii) Redistribute( B′ ) {redistribute elements in B′ to shallowest element buffers}

(iii) r ← i, where i is the largest level such that |Bi| > 0

Reconstruct Ends

Observe that since invariant 3.3.2(b) holds initially and for 0 ≤ j < i, |Uj | = 0,
all updates applicable to Bi must reside in Ui. For each element x, this function
considers all updates in Ui that are applicable to x in increasing order of timestamp,
i.e., in the order in which they were inserted into the data structure. For each such
op ∈ Ui taken in order Apply-Updates does the following.

• op = Delete( x ): If any (x, kx) exists in Bi it is deleted. If this element did
not exist in Bi initially then it must have been inserted into Bi by a Decrease-
Key(x, kx)/Sink(x, kx) operation in Ui earlier in the order. Irrespective of whether
this Delete(x) operation was able to delete an element from Bi or not, it is moved to
Ui+1 without changing its timestamp which ensures that any remaining occurrence
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of x in the data structure inserted by operations with earlier timestamps is deleted.

• op = Decrease-Key( x, kx ): If some (x, k′x) appears in Bi it is replaced with
(x,min (kx, k′x)). However, if element x does not appear in Bi, (x, kx) is inserted
into Bi provided kx ≤ k, where k is the largest key in Bi (k = +∞ if i is the
last level). Observe that if x initially existed in Bi but does not exist now, then
it must have been deleted by some Delete(x) operation in Ui earlier in the order.
Since each Decrease-Key(x, kx) operation that cannot be applied to Bi must have
kx > k, it must be applicable to some element buffer in Bi+1, Bi+2, . . . , Br−1, and
so it is moved to Ui+1 in order to ensure that it is applied to the appropriate ele-
ment buffer. For each Decrease-Key(x, kx) operation that is applied to Bi, we copy
a Delete(x) operation with the same timestamp to Ui+1 so that all occurrences of x
in Bi+1, Bi+2, . . . , Br−1 inserted by Decrease-Key(x, kx) /Sink(x, kx) operations with
earlier timestamps are deleted.

• op = Sink( x, kx ): If some (x, k′x) appears in Bi it is replaced with (x,min (kx, k′x)),
otherwise (x, kx) is inserted into Bi. Since a Sink(x, kx) operation is used to move
element (x, kx) from Bi−1 to Bi, we will always have kx ≤ k, where k is the largest
key in Bi (k = +∞ if i is the last level), and so these updates are not applicable to
element buffers in higher levels, i.e., Apply-Updates does not need to carry these
updates to Ui+1.

Clearly, Apply-Updates never violates invariants 3.3.2 and 3.3.3. However,
it can violate invariant 3.3.1(a) if |Bi| > 2i holds after the updates. It fixes this
violation by keeping only the 2i elements with the smallest 2i keys in Bi and moving
the remaining elements to Ui+1 as Sink operations. Each such overflowing item
(x, kx) is moved to Ui+1 as a Sink(x, kx) operation with the current timestamp so
that existing operations in the data structure cannot prevent this operation from
inserting (x, kx) into Bi+1.

Thus after the function terminates all invariants continue to hold except
possibly invariant 3.3.1(b) for Ui+1. Since all updates from Ui are either moved to
Ui+1 or discarded, |Uj | = 0 holds for j ∈ [0, i].

Fix-U. This function is called with parameter i when Ui overflows. It makes the
same assumptions as Apply-Updates. Starting from level i it continues to call
Apply-Updates for each level until it reaches a level j such that Uj+1 does not
overflow when Apply-Updates(j) terminates, i.e., the data structure does not have
any overflowing update buffers and thus all invariants hold. For i ≤ k ≤ j, this
function collects in a temporary buffer B′ the contents of each Bj after applying Uj

to it leaving Bj empty, and returns B′. The correctness of Fix-U follows directly
from the correctness of Apply-Updates.

Decrease-Key( x, kx )/Delete( x ). The function inserts the corresponding
Decrease-Key(x, kx) /Delete(x) operation into U0 augmented with the current times-
tamp so that it is treated by the data structure as the most recent operation. This
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insertion does not violate any invariants except possibly invariant 3.3.1(b) for U0,
i.e., U0 overflows. This violation is fixed by calling Fix-U with parameter i = 0.
Upon return from Fix-U all invariants hold. The set B′ of elements returned by
Fix-U does not have any key value larger than any key in the data structure, and
Fix-U leaves enough empty element buffers at the shallowest possible levels so that
the elements in B′ can be distributed to those buffers without violating any invari-
ant. The Redistribute function performs this distribution. The Reconstruct

function reconstructs the entire data structure periodically. Thus the correctness
of Decrease-Key/Delete follows from the correctness of Fix-U, Redistribute

and Reconstruct. We have already argued the correctness of Fix-U. The proofs
of correctness of Redistribute and Reconstruct are straight-forward and hence
are omitted.

Delete-Min( ). The Delete-Min function first calls Find-Min in order to find
the element with the minimum key in the entire data structure, and then calls
Delete in order to delete this element. We have already argued correctness of
Delete, and hence we only need to prove Find-Min correct.

Observe that if invariant 3.3.2 holds, the smallest level k such that Bk is non-
empty after applying all updates in U0, U1, . . . , Uk on Bk will contain the element
with the smallest key in the entire data structure. The Find-Min function builds on
this observation. Starting from level 0 it calls Apply-Updates for each level until
it reaches the first level k with |Bk| 6= 0 upon return from Apply-Updates. At this
point all invariants hold except possibly invariant 3.3.1(b) for Uk+1. The overflowing
Uk+1 is fixed by calling Fix-U for level k +1. All elements returned by Fix-U along
with the contents of Bk are distributed to the shallowest possible element buffers by
Redistribute. At this point all invariants hold, B0 contains exactly one element
and U0 is empty. Therefore, the element in B0 which is returned by Find-Min is,
indeed, the element with the smallest key. �

Cache Complexity

In this section we will view the buffer heap as a slim data structure with a slim
cache of size Θ (λ) and denote it by SBH(λ). The slim cache is assumed to be large
enough to store B0, B1, . . . , Bt and U0, U1, . . . , Ut+1, where t = log (λ + 1)− 1. The
remaining buffers reside in external memory.

The following two observations will be useful in our analyses.

Observation 3.3.1. For i ∈ [1, r − 1],
(a) Each Sink operation in Ui can be mapped to a unique Decrease-Key/Sink

operation that existed in Ui−1 but does not exist in Ui; and
(b) Ui cannot contain more Sink operations than Delete operations.

30



It is not difficult to see that Observation 3.3.1(a) is valid since each Sink op-
eration in Ui is generated by an element evicted from Bi−1 due to overflow, and each
eviction from Bi−1 can be viewed as caused by a unique Decrease-Key/Sink opera-
tion in Ui−1 that inserted an element into Bi−1. After the insertion the responsible
Decrease-Key/Sink operation ceases to exist: if it is a Decrease-Key operation it is
converted to a Delete operation, and if it is a Sink operation it is simply discarded.
The implication of Observation 3.3.1(a) is that every existing Sink operation in the
queue can be traced back to a unique Decrease-Key operation following a chain of
Sinks.

We know that the unique Decrease-Key operation responsible for the gener-
ation of any given Sink operation in Ui was converted to a Delete at the time it was
applied on an element buffer, and it is not difficult to see that this Delete operation
must now reside in Ui. Thus each Sink operation in Ui maps to a unique Delete
operation in Ui, and Observation 3.3.1(b) follows.

The following lemma which implies that merging the segments of Ui (in line
1 of Apply-Updates) incurs only O

(

1
B

)

amortized cache-misses per operation in
Ui, will be crucial in proving the cache-complexity of buffer heap operations.

Lemma 3.3.2. For 1 ≤ i ≤ r − 1, every empty Ui receives batches of updates at
most a constant number of times before Ui is applied on Bi and emptied again.

Proof. Since |U1| ≤ 2, U1 cannot receive more than two batches of updates before it
overflows, and thus the lemma holds for i = 1. Hence, for the rest of proof we will
assume i > 1.

Update buffer Ui receives at most two batches of updates whenever the ex-
ecution of a Decrease-Key/Delete/Delete-Min function reaches level i − 1.
If the execution continues and reaches level i then Ui is applied on Bi, and thus
emptied. If the execution terminates at level i − 1 but leaves Bi−1 empty, the next
time an execution reaches level i−1 will continue to level i and empty Ui. Therefore,
it suffices to consider only executions that terminate at level i − 1 and leave Bi−1

nonempty. Let E be such an execution. We will show that E increases the number of
updates in Ui by at least 2i−2 which implies that executions can terminate at level
i− 1 at most four times without emptying Bi−1 before Ui overflows (since |Ui| ≤ 2i)
and is thus emptied by Fix-U.

For j ∈ [0, r − 1], let uj and u′j denote the number of updates in Uj immedi-
ately before the start of E and immediately after the termination of E , respectively,
and let δuj = u′j − uj. For j ∈ [0, i − 1], we denote by u′′j the number of updates
in Uj immediately before E reaches level j (i.e., E has already pushed all updates
and overflowing elements from level j − 1 to level j if j > 0). Let b′j (j ∈ [0, r − 1])
be the number of elements in Bj immediately after E terminates. We will prove the
following.

( i > 1 ) ∧
(

b′i−1 6= 0
)

⇒
(

δui ≥ 2i−2
)

(3.3.1)

31



Now in order to establish equation 3.3.1 we consider the following two cases.

Case 1
(

u′′i−1 < 2i−1
)

: Let E ′ be the last execution before E that reached level i− 1

(and possibly continued to higher levels). Execution E has reached level i−1 because
all Bj , j ∈ [0, i − 2] have become empty which were left full by E ′. Hence, at least
∑i−2

j=0 2j = 2i−1−1 elements have been deleted from the structure since E ′ completed

execution, i.e., u′′i−1 includes at least 2i−1 − 1 ≥ 2i−2 Delete operations all of which
will be moved to Ui and thus δui ≥ 2i−2.

Case 2
(

u′′i−1 ≥ 2i−1
)

: Since an update buffer cannot contain more Sink operations

than Delete operations (see Observation 3.3.1(b)), u′′i−1 includes at least 2i−1

2 = 2i−2

Delete/Decrease-Key operations and thus δui ≥ 2i−2.
Hence, equation 3.3.1 and consequently the lemma follow. �

The following lemma gives the cache complexity of the operations supported by a
slim buffer heap:

Lemma 3.3.3. A slim buffer heap with a slim cache of size λ (i.e., SBH(λ)) sup-
ports Delete, Delete-Min and Decrease-Key operations in O

(

1
λ

+ 1
B

log2
N
λ

)

amor-
tized cache-misses each, where N is the number of elements in the structure.

Proof. For 0 ≤ i ≤ r − 1, let ui be the number of operations in Ui and let di be the
number of Decrease-Key operations among them. By ∆ we denote the number of
Decrease-Key, Delete and Delete-Min operations performed on the data structure
since its last construction/reconstruction. If H is the current state of SBH(λ), we
define the potential of H as follows:

Φ(H) =

r−1
∑

i=0

(

1

B
· (r − i) +

2

λ
·

1

2max (i−t,0)

)

· (ui + di) +

(

r

B
+

1

λ

)

·∆,

where t = log (λ + 1)− 1.
As in the original I/O analysis of Buffer Heap operations in [32], the key

observation is that operations in update buffers always move downward and at each
level they participate in a constant number of scans. The first term under the sum-
mation in Φ(H) captures this flow of data. The main reason for adding the second
term is to ensure that after every Θ (λ) new operations enough potential is accumu-
lated to account for the extra cache-miss in accessing data outside the slim cache.
Also Φ(H) has been designed so that the potential gain due to a new Decrease-Key
operation is more than that for a new Delete operation. This uneven distribution
of potential is based on the observation that after a Decrease-Key operation has
been applied successfully on some Bi it turns into a Delete operation and possibly
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generates an additional Sink operation in Ui+1 (see Observation 3.3.1 and its impli-
cations). The last term in Φ(H) gathers potentials for the next reconstruction of the
data structure.

We compute the amortized cost of each buffer heap operation below.

Reconstruction. Let us first consider the amortized cost of reconstruction (i.e., the
Reconstruct function). At the time of reconstruction ∆ =

⌊

Ne

2

⌋

+ 1, where Ne is
the number of elements in the structure immediately after the last reconstruction.

Thus
⌈

Ne

2

⌉

− 1 ≤
∑r−1

i=0 |Bi| ≤
⌊

3Ne

2

⌋

+ 1 implying ∆ = Θ
(

∑r−1
i=0 |Bi|

)

. If during

the reconstruction operation no buffer outside the slim cache is accessed then no
cache-miss occurs. Therefore, we will only consider the case in which some element
buffer above level t is accessed. In that case ∆ = Ω (λ).

Accessing the first data outside the slim cache incurs O (1) cache-misses. The
actual cache complexity of Apply-Updates when called with a parameter i in step

1(i)(a) of Reconstruct is O
(

|Ui|+|Bi|
B

)

= O
(

∆
B

)

, since the merge operations in

step 1 of Apply-Updates can be performed in O
(

|Ui|
B

)

cache-misses (implied by

Lemma 3.3.2); steps 2(i), 3(i), 3(ii) and 3(iii) involve a constant number of scans

of Bi and Ui incurring O
(

|Ui|+|Bi|
B

)

cache-misses; and step 3(iv) can be performed

in O
(

|Bi|
B

)

cache-misses using a linear I/O selection algorithm [104]. The buffer Bi

can be merged with B′ in step 1(i)(b) of Reconstruct in O
(

|Bi|+|B
′|

B

)

= O
(

∆
B

)

cache-misses. Therefore, the actual cache complexity of step 1(i) of Reconstruct

is O
(

1 + r
B
·∆

)

. The actual cost of the Redistribute function in step 1(ii) of
Reconstruct isO

(

r
B
·∆

)

since the while loop in step 2 of Redistribute iterates
O (r) times and in each iteration scans each element of B′ at most a constant number
of times if a linear I/O selection algorithm is used. Thus the actual cache complexity
of reconstruction is O

(

1 + r
B
·∆

)

.
Since all update buffers are emptied during reconstruction and ∆ = Ω (λ),

the potential drop is Ω
((

1
λ

+ r
B

)

·∆
)

= Ω
(

1 + r
B
·∆

)

. Thus the amortized cost of
reconstruction is O

(

1 + r
B
·∆

)

− Ω
(

1 + r
B
·∆

)

≤ 0.

Decrease-Key/Delete. The increase in potential due to the insertion of a Decrease-

Key operation into U0 is 5
λ

+ 3
B
· r, and due to the insertion of a Delete operation

is 3
λ

+ 2
B
· r. If no element buffer of level higher than t is accessed in step 2 of the

Decrease-Key/Delete function then no cache-miss occurs (except in the Re-

construct function in step 4 whose amortized cost has already been shown to be
≤ 0). So we only need to consider the case when a Bi with i > t is accessed.

Let j be the largest value of i for which the while loop in step 1 of Fix-U was
executed. The actual cost of Apply-Updates when called with a parameter i in

step 1(i) of Fix-U isO
(

|Ui|+|Bi|
B

)

= O
(

2i

B

)

. The buffer Bi can be merged with B′ in
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step 1(ii) of Fix-U in O
(

|Bi|+|B
′|

B

)

= O
(

2i

B

)

cache-misses. Therefore, Fix-U incurs

at most
∑j

i=0O
(

2i

B

)

= O
(

2j

B

)

cache-misses in total. Also |B′| = O
(

2j
)

when Fix-

U returns. Hence, the actual number of cache-misses incurred by Redistribute

in step 3 of Decrease-Key/Delete for redistributing the elements in B′ is at

most O
(

2j

B

)

+
∑j

i=0O
(

2i

B

)

= O
(

2j

B

)

assuming a linear I/O selection algorithm

is used. Therefore, including the O (1) cache-misses incurred for accessing the first
data outside the slim cache, the actual cost of steps 1–3 of a Decrease-Key/Delete

operation is O
(

1 + 2j

B

)

.

Since Uj was full before Apply-Updates was called in step 1(i) of Fix-U,
the drop of potential due to the movement of these |Uj | ≥ 2j updates to Uj+1 is

Ω
(

2j ·
(

2
λ
· 1

2j+1−t + 1
B

))

= Ω
(

1 + 2j

B

)

. Therefore, this potential drop can compen-

sate for the actual cost of executing steps 1–3 of Decrease-Key/Delete.
Thus the amortized cost of a Decrease-Key/Delete operation is O

(

1
λ

+ r
B

)

=
O

(

1
λ

+ 1
B

log2 N
)

. But since accessing the first t levels incurs no cache-misses, the

amortized cost is O
(

1
λ

+ 1
B
{log2 N − t}

)

= O
(

1
λ

+ 1
B

log2
N
λ

)

.

Delete-Min . The Delete-Min function calls the Find-Min function followed by a
possible call to the Delete function. We have already shown that the amortized cost
of a Delete operation is O

(

1
λ

+ 1
B

log2
N
λ

)

. We will show below that the amortized
cost of finding the minumum is ≤ 0.

Let j be the largest value of i for which Apply-Updates(i) was called by
Find-Min. If |Uj | ≥ 2j immediately before Apply-Updates(j) was called (i.e.,
called inside Fix-U in step 3(i) of Find-Min), then the analysis is similar to that
for Decrease-Key/Delete operation. Hence, here we will only consider the case when
|Uj | < 2j , i.e., Apply-Updates(j) was called in step 1(ii) of Find-Min.

As before, we will assume that j > t. In this case, using an analysis similar
to that for Decrease-Key/Delete, one can show that the actual cache complexity of

Find-Min is O
(

1 + 2j

B

)

.

Let bj be the number of elements in Bj before Apply-Updates(j) was called.
Then in order to compute the potential drop we need to consider the following two
cases.

(i) bj > 0: Observe that in this case the last Redistribute function call that dis-
tributed elements from level j or higher must have left B0, B1, . . . , Bj−1 completely

full, and hence at least
∑j−1

i=02i = 2j − 1 elements have been deleted from the struc-
ture since last time Bj was accessed. Therefore, immediately before the current call
to Apply-Updates(j), Uj must have included at least 2j − 1 Delete operations, all
of which were moved to Uj+1. Hence, the potential drop due to the movement of

these operations is Ω
(

(2j − 1) ·
(

2
λ
· 1

2j+1−t + 1
B

))

= Ω
(

1 + 2j

B

)

.
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(ii) bj = 0: This can only happen when j = r − 1. Observe that level j was created
due to an overflow in Bj−1 and the overflowing elements from Bj−1 was pushed into
Uj as Sink operations. Therefore, at least 2j−1 elements have been deleted from the
structure since this level was created, and as in case (i) this implies a potential drop

of Ω
(

1 + 2j

B

)

.

The amortized cost of Find-Min is thus O
(

1 + 2j

B

)

− Ω
(

1 + 2j

B

)

≤ 0.

Therefore, a Delete-Min operation incurs O
(

1
λ

+ 1
B

log2
N
λ

)

amortized cache-
misses. �

The following corollary follows by replacing λ with Θ (M) = Ω (B) in Lemma
3.3.3.

Corollary 3.3.1. A buffer heap supports Delete, Delete-Min and Decrease-Key op-
erations in O

(

1
B

log2
N
M

)

amortized cache-misses each using O(N) space, where N
is the current number of elements in the structure.

Time Complexity

The internal memory time complexities of slim buffer heap operations turn out to
be independent of M , B and the slim cache size λ, and are given by the following
lemma.

Lemma 3.3.4. A slim buffer heap supports Delete, Delete-Min and Decrease-Key
operations in O (log N) amortized time each, where N is the number of elements in
the structure.

Proof. The proof uses the following potential function:

Φ′(H) =

r−1
∑

i=0

(r − i) · (ui + di) + r ·∆,

where H is the current state of the data structure, and ui, di and ∆ are as
defined in the proof of Lemma 3.3.3.

The rest of the proof is similar to that of Lemma 3.3.3 but is simpler, and
hence is omitted. �

Additional Priority Queue Operations

It is straight-forward to augment a slim buffer heap with the following priority queue
operations without changing its performance bounds.
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Change-Key( x, kx ). This operation changes the key value of element x to kx,
and is implemented by performing a Delete( x ) operation immediately followed
by a Decrease-Key( x, kx ) operation. If kx ≤ k′x, where k′x is the old key of x,
then the Delete operation acts simply like the Delete operation generated by the
Decrease-Key operation immediately after its application, and thus works correctly.
If kx > k′x, then the Delete operation first deletes x, after which the Decrease-
Key operation reinserts it with the new key value. Since the Delete operation has a
smaller timestamp than the Decrease-Key it cannot delete the new key value inserted
by the Decrease-Key, and hence works correctly.

Relative-Increase( x, δx ). This operation increases the key value of x by δx if
it exists in the priority queue. It is implemented in the same way as the Change-
Key operation above, but the Decrease-Key operation does not know the key value
kx initially and instead knows δx. However, as soon as the Delete( x ) operation
preceding the Decrease-Key finds the element x, kx is updated to k′x + δx, where k′x
is the old key value of x discovered by the Delete. The Decrease-Key operation is
then applied as usual.

3.4 Buffer Heap Applications

In this section we discuss three major applications of buffer heap. In Sections 3.4.1
and 3.4.2 we consider cache-oblivious SSSP algorithms for weighted undirected and
directed graphs, respectively. These algorithms use regular buffer heaps, that is
they do not impose any restriction on the size of the slim cache (i.e., assume slim
cache size, λ = Θ (M) = Ω (B)). In Section 3.4.3 we discuss a cache-aware APSP
algorithm for weighted undirected graphs. This algorithm uses a data structure built
on slim buffer heaps.

3.4.1 Cache-oblivious Undirected SSSP

The cache-aware undirected SSSP algorithm by Kumar & Schwabe [83] (see [77] for a
description and proof of correctness) can be made cache-oblivious by replacing both
the primary and the auxiliary cache-aware priority queues used in that algorithm
with buffer heaps. The primary priority queue is used to perform the standard
operations for shortest path computation, and the auxiliary priority queue is used to
correct for spurious updates performed on the primary priority queue. The auxiliary
priority queue treats edges, instead of vertices, as its elements, and whenever a vertex
with final distance d[u] is settled, for each (u, v) ∈ E, a Decrease-Key((u, v), d[u] +
w(u, v)) operation is performed on the auxiliary priority queue. The resulting cache-
oblivious algorithm, i.e., Kumar & Schwabe’s algorithm with buffer heaps, is given
in Function 3.4.1 (Undirected-SSSP).
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Function 3.4.1. Undirected-SSSP( G, w, s, d )

{Kumar & Schwabe’s algorithm [83] with buffer heap}

[Given an undirected graph G with vertex set V (each vertex is identified with a unique integer
in [1, |V |), edge set E, a weight function w : E → ℜ and a source vertex s ∈ V , this function
cache-obliviously computes the shortest distance from s to each vertex v ∈ V and stores it in d[v].]

1. perform the following initializations:

(i) Q← ∅, Q′ ← ∅ {Q and Q′ are both regular buffer heaps; Q contains items of

the form (x, kx) and Q′ contains items of the form ((x, y), kx,y)}

(ii) for each v ∈ V do d[v]← +∞

(iii) Decrease-Key(Q)( s, 0 ) {insert vertex s with key (i.e., distance) 0 into Q}

2. while Q 6= ∅ do

(i) (u, k)← Find-Min(Q)( ), ((u′, v′), k′)← Find-Min(Q′)( )

(ii) if k ≤ k′ then {a new shortest distance ( k ) has been found }

(a) Delete(Q)( u ), d[u]← k {k is the shortest distance from s to u}

(b) for each (u, v) ∈ E do

Decrease-Key(Q)( v, d[u] + w(u, v) ) {relax edge (u, v)}
Decrease-Key(Q′)( (u, v), d[u] + w(u, v) ) {guard for spurious update on u}

else {k > k′: shortest distance to u′ has already been computed}

(a) Delete(Q)( u′ ), Delete(Q′)( (u′, v′) ) {remove spurious vertex u′}

Undirected-SSSP Ends

Cache Complexity. The algorithm incurs O
(

m
B

log2
n
M

)

cache-misses for theO (m)
priority queue operations it performs. In addition to that it incurs O

(

n + m
B

)

cache-
misses for accessing O (n) adjacency lists. The cache complexity of the algorithm is
thus O

(

n + m
B

log2
n
M

)

.

3.4.2 Cache-oblivious Directed SSSP

In this section we describe a cache-oblivious implementation of Dijkstra’s directed
SSSP algorithm [43] with a regular buffer heap used as a priority queue. Additionally,
we use a cache-oblivious Buffered Repository Tree1 (BRT) described in [11], in order
to prevent any vertex whose shortest distance from the source vertex has already
been determined, from being reinserted into the priority queue. A BRT maintains
O (m) elements with keys in the range [1 . . . n] under the operations Insert( v, u ) and
Extract( u ). An Insert( v, u ) operation inserts a new element v with key u into the
BRT, while an Extract( u ) operation reports and deletes from the data structure

1Buffered Repository Trees have been used for breadth-first search and depth-first search in the
cache-aware setting in [25] and in the cache-oblivious setting in [11]
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all elements v with key u. The Insert and Extract operations are supported in
O

(

1
B

log2 n
)

and O (log2 n) amortized cache-misses, respectively (or in O
(

1
B

log2
n
B

)

and O
(

log2
n
B

)

amortized cache-misses, respectively, assuming a tall cache).
The resulting cache-oblivious implementation of Dijkstra’s algorithm is given

in Function 3.4.2 (Directed-SSSP).

Function 3.4.2. Directed-SSSP( G, w, s, d )

[Given a directed graph G with vertex set V (each vertex is identified with a unique integer in
[1, |V |]), edge set E, a weight function w : E → ℜ and a source vertex s ∈ V , this function
cache-obliviously computes the shortest distance from s to each vertex v ∈ V and stores it in d[v].]

1. for each v ∈ V do

Lv ← { u | (u, v) ∈ E } {Lv is the set of vertices from which v has an incoming edge}

L′v ← { 〈u, w(v, u)〉 | (v, u) ∈ E } {L′v is the set of vertices to which v has an outgoing edge}

sort the items in both Lv and L′v by vertex number

2. perform the following initializations:

(i) Q← ∅, D ← ∅ {Q is a regular buffer heap that contains items of the form (x, kx) and

D is a BRT capable of containing key values in the range [1 . . . |V |]}

(ii) for each v ∈ V do d[v]← +∞

(iii) Decrease-Key(Q)( s, 0 ) {insert vertex s with key (i.e., distance) 0 into Q}

3. while Q 6= ∅ do

(i) (u, k)← Delete-Min(Q)( ), d[u]← k {k is the shortest distance from s to u}

(ii) L′′u ← Extract(D)( u ) {set of settled vertices to which u has an outgoing edge}

sort L′′u by vertex number

(iii) scan L′u and L′′u simultaneously and for each v ∈ L′u such that v /∈ L′′u do

Decrease-Key(Q)( v, k + w(u, v) ) {relax edge (u, v) to the yet-to-settle vertex v}

(iv) for each v ∈ Lu do

Insert(D)( u, v ) {mark neighbor u of v as settled}

Directed-SSSP Ends

Correctness. A standard implementation of Dijkstra’s directed SSSP algorithm is
through the use of a priority-queue Q with Decrease-Key. Priority-queue Q stores
all vertices that are not yet settled (i.e., vertices whose shortest path length from the
source vertex has not yet been finalized), and in each iteration of the algorithm, a
vertex u is extracted from Q with a Delete-Min operation. The vertex u is provably
settled at this point, and for each edge (u, v) such that v is not settled, i.e., such
that v is on Q, a suitable Decrease-Key operation is performed on v in Q.

Our implementation of Dijkstra’s algorithm (Directed-SSSP) differs from
the standard implementation in two ways, both with an eye to improving cache-
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efficiency. Firstly, we use a regular buffer heap instead of a standard priority queue.
Secondly, instead of accessing a vertex directly in order to determine whether it is
settled or not, we use a BRT D to perform these operations cache-efficiently and
thus avoid a potential cache-miss during each such operation.

Since we have already proved the correctness of buffer heap (see Lemma
3.3.1), if we simply replace Q with a regular buffer heap in the standard implemen-
tation of Dijkstra’s algorithm the implementation will still be correct. For i ∈ [1, n],
let u′i denote the i-th vertex extracted from the priority queue in this implementa-
tion, and let V ′i be the set of vertices on which Decrease-Key operations are per-
formed immediately after this extraction. Let ui and Vi have similar definitions for
Directed-SSSP. Therefore, assuming the correctness of BRT operations (see [11]),
correctness of Directed-SSSP will follow if we can prove the following claim.

Claim 3.4.1. For i ∈ [1, n], ui = u′i and Vi = V ′i .

Proof. Let Si = { uj | 1 ≤ j ≤ i } for i ∈ [0, n]. Then clearly V ′i =
{

v | (u′i, v) ∈
E ∧ v /∈ Si−1

}

.
Since u1 = u′1 = s and D is initially empty, the claim trivially holds for i = 1.

Now suppose it holds up to some value j ∈ [0, n− 1] of i. We will show that it holds
for i = j + 1.

Since the claim holds for all i ≤ j, immediately before the extraction of
the (j + 1)-th vertex from the priority queue, the state of the priority queue in both
implementations, i.e., the standard implementation with buffer heap and Directed-

SSSP, are exactly the same. Hence, uj+1 = u′j+1.
Let Uj+1 be the set of vertices extracted from D in iteration j + 1 of the

while loop in Directed-SSSP. Since the claim was true up to iteration j, for
each v ∈ Sj with (uj+1, v) ∈ E, an element uj+1 with key value v was inserted
into D in step 3(iv) at some point during the first j iterations. Hence, Uj+1 ⊇
{ v | (uj+1, v) ∈ E ∧ v ∈ Sj }. Again since D was initially empty and only set-
tled vertices insert items into it, Uj+1 = { v | (uj+1, v) ∈ E ∧ v ∈ Sj }. Therefore,
Vj+1 = { v | (uj+1, v) ∈ E } \ Uj+1 = V ′j+1.

Hence, the claim holds for all i ∈ [1, n]. �

Therefore, Directed-SSSP is a correct implementation of Dijkstra’s algo-
rithm.

Cache Complexity. The following lemma gives the cache-complexity of Directed-

SSSP.

Lemma 3.4.1. Single source shortest paths in a directed graph can be computed
cache-obliviously in O

(

(n + m
B

) · log2
m
B

)

cache-misses using a buffer heap under the
tall cache assumption.
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Proof. In step 1, all sets Lv and L′v can be generated with their items in appropri-
ately sorted order after a constant number of sorting and scanning phases incurring
O

(

n + m
B

log2
m
B

)

cache-misses.
In step 3, the algorithm performs n Delete-Min and m Decrease-Key opera-

tions on Q, and n Extract and m Insert operations on D incurring O
(

m+n
B

log2
n
M

)

and O
(

n log2
n
B

+ m
B

log2
n
B

)

cache-misses, respectively. All lists in step 3(ii) can
be sorted in O

(

m
B

log2
n
B

)

cache-misses in total, and the total cache-misses incurred
by all scans in steps 3(iii) and 3(iv) is O

(

n + m
B

)

.
Therefore, overall cache complexity of Directed-SSSP isO

(

(n + m
B

) · log2
m
B

)

.
�

Directed SSSP with Cache-oblivious Tournament Tree. In Appendix A we
present the cache-oblivious tournament tree (COTT) which supports the same set
of operations (Delete, Delete-Min and Decrease-Key) as the buffer heap. Although
COTT has weaker bounds than buffer heap, it is a simpler data structure, and can
be used instead of buffer heap in the directed SSSP algorithm to achieve the same
level of cache-efficiency as with buffer heap.

3.4.3 Cache-aware Undirected APSP

In this section we introduce a compound priority queue data structure based on slim
buffer heap, called the Multi-Buffer-Heap (MBH), and use this structure for cache-
efficient computation of APSP on an undirected graph with general non-negative
edge-weights.

A multi-buffer-heap is constructed as follows. Let λ < B and let L = B
λ
.

We pack the slim caches of Θ(L) slim buffer heaps SBH(λ) into a single cache
block. We call this block the multi-slim-cache and the resulting structure a multi-
buffer-heap. By the analysis in section 3.3.3 this structure supports Delete, Delete-
Min and Decrease-Key operations on each of its component slim buffer heaps in
O

(

L
B

+ 1
B

log2
NL
B

)

amortized cache-misses each.
For computing APSP we take the approach described in [13]. It solves APSP

by working on all n underlying SSSP problems simultaneously, and each individual
SSSP problem is solved using Kumar & Schwabe’s algorithm for weighted undirected
graphs [83]. For 1 ≤ i ≤ n, this approach requires a priority queue pair (Qi, Q

′
i),

where the i-th pair belongs to the i-th SSSP problem. These n priority queue
pairs are implemented using Θ(n

L
) multi-buffer-heaps. The algorithm proceeds in n

rounds. In each round it loads the multi-slim-cache of each MBH, and for each MBH
extracts a settled vertex with minimum distance from each of the Θ(L) priority queue
pairs it stores. It sorts the extracted vertices by vertex indices. It then scans this
sorted vertex list and the sorted sequences of adjacency lists in parallel to retrieve
the adjacency lists of the settled vertices of this round. Another sorting phase moves
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all adjacency lists to be applied to the same MBH together. Then all necessary
Decrease-Key operations are performed by cycling through the multi-buffer-heaps
once again. At the end of the algorithm the extracted vertices along with their
computed distance values are sorted to produce the final distance matrix.

Cache Complexity. In each round the multi-slim-caches of all multi-buffer-heaps
are loaded into the cache in O

(

n
L

)

cache-misses. Accessing all required adjacency
lists over O (n) rounds incurs O (n · sort(m)) cache-misses, and a total of O

(

mn ·
(

1
λ

+ 1
B

log2
n
λ

))

cache-misses are incurred by all O (mn) priority queue operations
performed by this algorithm. The final distance matrix can be sorted inO (n · sort(n))
cache-misses. Thus the total cache complexity of this algorithm is O

(

n ·
(

n
L

+ m
λ

+

m
B

log2
n
λ

+ sort(m)
)

)

. Using L =
√

nB
m
≥ 1, we obtain the following:

Lemma 3.4.2. Using multi-buffer-heaps, APSP on undirected graphs with non-
negative real edge weights can be solved in O

(

n ·
(√

mn
B

+ sort(m)
))

cache-misses

and O
(

n2
)

space when m ≤ nB
(log n)2 .

In conjunction with the cache-efficient APSP algorithm for sufficiently dense
graphs implied by the SSSP results in [83, 32] we obtain the following corollary.

Corollary 3.4.1. APSP on an undirected graph with non-negative real edge weights
can be solved in O

(

n ·
(√

mn
B

+ m
B

log n
B

))

cache-misses and O
(

n2
)

space. The num-

ber of cache-misses is reduced to O
(

mn
B

log n
B

)

when m ≥ nB

(log n
B )

2 .

3.5 Conclusion

In this chapter we presented the buffer heap, the first cache-oblivious priority queue
that supports Decrease-Key operations and used it to obtain the first cache-oblivious
SSSP algorithms for weighted undirected and directed graphs, and an improved
cache-aware APSP algorithm for weighted undirected graphs. All our cache-oblivious
results match the cache complexity of their best cache-aware counterparts. However,
open questions still remain. For example:

1. The only known lower bound on the cache complexity of cache-oblivious pri-

ority queue operations is Ω
(

1
B

log M
B

N
M

)

amortized which is trivially derived

from the sorting lower bound. The buffer heap improves the upper bound
from trivial O (log N) to O

(

1
B

log N
M

)

amortized. But there is still a gap be-
tween this new upper bound and known lower bound. An open problem is to
eliminate this gap.

2. The known cache-miss lower bound for the SSSP problem is Ω
(

m
n
· sort(n)

)

[92]. Though our SSSP algorithms improve significantly over known upper
bounds, they are not known to be optimal.
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- The n term in the cache complexity of our cache-oblivious undirected
SSSP algorithm results from unstructured accesses to adjacency lists.
Though some progress has been made in reducing this overhead for bounded-
weight graphs [7, 89], nothing is known for graphs with general edge-
weights.

- The n log n term in the cache complexity of our cache-oblivious directed
SSSP algorithm results from the overhead of remembering visited vertices.
Perhaps a completely new technique for handling this problem will be able
to reduce this overhead significantly.

3. The n
√

mn
B

term in the cache complexity of the weighted undirected APSP
algorithm described in Section 3.4.3 arises from unstructured accesses to ad-
jacency lists. Though we show in Chapter 5 that we can get rid of this term
completely for unweighted undirected graphs, achieving the same for weighted
graphs still remains an open question.

42



Bibliography

[1] 9th DIMACS implementation challenge - shortest paths. url:
http://www.dis.uniroma1.it/~challenge9/.

[2] Fujitsu MAP3147NC/NP MAP3735NC/NP MAP3367NC/NP disk drives
product/maintenance manual.

[3] A. Aggarwal and J. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM.

[4] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[5] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation pf
diameter and shortest paths (without matrix multiplication). SIAM Journal
on Computing, 28:1167–1181, 1999.

[6] T. Akutsu. Dynamic programming algorithms for RNA secondary structure
prediction with pseudoknots. Discrete Applied Mathematics, 104:45–62, 2000.

[7] L. Allulli, P. Lichodzijewski, and N. Zeh. A faster cache-oblivious shortest-path
algorithms for undirected graphs with bounded edge lengths. In Proceedings of
the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 910–
919, New Orleans, Louisiana, 2007.

[8] S. Altschul and B. Erickson. Optimal sequence alignment using affine gap
costs. Bulletin of Mathematical Biology, 48:603–616, 1986.

[9] ARC/INFO. Understanding GIS – the ARC/INFO method. ARC/INFO, 1993.
Rev. 6 for workstations.

[10] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms (ex-
tended abstract). In Proceedings of the 4th International Workshop on Algo-
rithms and Data Structures, LNCS 955, pages 334–345. Springer-Verlag, 1995.

197



[11] L. Arge, M. Bender, E. Demaine, B. Holland-Minkley, and J. Munro. Cache-
oblivious priority queue and graph algorithm applications. In Proceedings of
the 24th ACM Symposium on Theory of Computing.

[12] L. Arge, G. Brodal, and L. Toma. On external-memory MST, SSSP, and multi-
way planar graph separation. In Proceedings of the 7th Scandinavian Workshop
on Algorithm Theory, LNCS 1851, pages 433–447. Springer-Verlag, 2000.

[13] L. Arge, U. Meyer, and L. Toma. External-memory algorithms for diame-
ter and all-pairs shortest-paths on sparse graphs. In Proceedings of the 31st
International Colloquium on Automata, Languages, and Programming, pages
146–157, Turku, Finland, 2004.

[14] P. Ashar and M. Cheong. Efficient breadth-first manipulation of binary deci-
sion diagrams. In Proceedings of the IEEE International Conference on Com-
puter Aided Design, pages 622–627, San Jose, California, 1994.

[15] D. Bader and K. Madduri. GTgraph: A suite of synthetic graph generators.
url: http://www-static.cc.gatech.edu/~kamesh/GTgraph/.

[16] V. Bafna and N. Edwards. On de novo interpretation of tandem mass spectra
for peptide identification. In Proceedings of the 7th Annual International Con-
ference on Research in Computational Molecular Biology, pages 9–18, Berlin,
Germany, 2003.

[17] R. Bellman. Dynamic Programming. The Princeton University Press, Prince-
ton, New Jersey, 1957.

[18] G. Blelloch and P. Gibbons. Effectively sharing a cache among threads. In
Proceedings of the 16th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 235–244, Barcelona, Spain, 2004.

[19] R. Blumofe, M. Frigo, C. Joerg, C. Leiserson, and K. Randall. An analysis of
DAG-consistent distributed shared-memory algorithms. In Proceedings of the
8th ACM Symposium on Parallel Algorithms and Architectures, pages 297–308,
1996.

[20] R. Brent. The parallel evaluation of general arithmetic expressions. Journal
of the ACM, 21:201–206, 1974.

[21] G. Brodal. Cache-oblivious algorithms and data structures. In Proceedings of
the 9th Scandinavian Workshop on Algorithm Theory, LNCS 3111, pages 3–13,
Humlebæk, Denmark, 2004. Springer-Verlag.

198



[22] G. Brodal and R. Fagerberg. Funnel heap – a cache oblivious priority queue.
In Proceedings of the 13th Annual International Symposium on Algorithms and
Computation, LNCS 2518, Vancouver, BC, Canada. Springer-Verlag.

[23] G. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In Pro-
ceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
307–315, San Diego, California, 2003.

[24] G. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-oblivious data struc-
tures and algorithms for undirected breadth-first search and shortest paths.
In Proceedings of the 3rd Scandinavian Workshop on Algorithm Theory, pages
480–492, Humlebæk, Denmark, July 2004.

[25] A. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. Westbrook.
On external memory graph traversal. In Proceedings of the 11th ACM-SIAM
Symposium on Discrete Algorithms, pages 859–860, 2000.

[26] A. Buchsbaum and J. Westbrook. Maintaining hierarchical graph views. In
Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, pages
566–575, 2000.

[27] J. Cannone, S. Subramanian, M. Schnare, J. Collett, L. D’Souza, Y. Du,
B. Feng, N. Lin, L. Madabusi, K. Muller, N. Pande, Z. Shang, N. Yu,
and R. Gutell. The comparative RNA web (CRW) site: An online
database of comparative sequence and structure information for ribosomal,
intron, and other RNAs. BioMed Central Bioinformatics, 3:2, 2002. url:
http://www.rna.icmb.utexas.edu/.

[28] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for
graph mining. In Proceedings of the 4th SIAM International Conference on
Data Mining, Orlando, Florida, 2004.

[29] S. Chatterjee, A. Lebeck, P. Patnala, and M. Thotethodi. Recursive array
layouts and fast parallel matrix multiplication. In Proceedings of the 11th
ACM Symposium on Parallel Algorithms and Architectures, pages 222–231,
1999.

[30] C. Cherng and R. Ladner. Cache efficient simple dynamic programming. In
Proceedings of the International Conference on the Analysis of Algorithms,
pages 49–58, Barcelona, Spain, 2005.

[31] Y. Chiang, M. Goodrich, E. Grove, R. Tamassia, D. Vengroff, and J. Vitter.
External-memory graph algorithms. In Proceedings of the 6th ACM-SIAM
Symposium on Discrete Algorithms, pages 139–149, 1995.

199



[32] R. Chowdhury and V. Ramachandran. Cache-oblivious shortest paths in
graphs using buffer heap. In Proceedings of the 16th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 245–254, Barcelona, Spain,
June 2004.

[33] R. Chowdhury and V. Ramachandran. External-memory exact and approxi-
mate all-pairs shortest paths in undirected graphs. In Proceedings of the 16th
ACM-SIAM Symposium on Discrete Algorithms, pages 735–744, Vancouver,
BC, Canada, 2005. More details can be found in the technical report with the
same title, TR-04-38, CS Dept., UT Austin, August 2004.

[34] R. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming.
In Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms,
pages 591–600, Miami, Florida, 2006.

[35] R. Chowdhury and V. Ramachandran. The cache-oblivious gaussian elim-
ination paradigm: Theoretical framework, parallelization and experimental
evaluation. In Proceedings of the 19th ACM Symposium on Parallelism in
Algorithms and Architectures, pages 71–80, San Diego, California, 2007.

[36] T. Cormen. Virtual Memory for Data Parallel Computing. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 1992.

[37] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, second edition, 2001.

[38] R. Cromp. An intelligent information fusion system for handling the archiving
and querying of terabyte–sized spatial databases. In S. Tate, editor, Report on
the Workshop on Data and Image Compression Needs and Uses in the Scientific
Community, pages 75–84. CESDIS Technical Report Series, 1993.

[39] P. D’Alberto and A. Nicolau. R-Kleene: a high-performance divide-and-
conquer algorithm for the all-pair shortest path for densely connected networks.
Algorithmica, 47(2):203–213, 2007.

[40] R. Dementiev. STXXL homepage, documentation and tutorial. url:
http://stxxl.sourceforge.net/.

[41] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard template library
for XXL data sets. In Proceedings of the 13th Annual European Symposium on
Algorithms, LNCS 1004, pages 640–651. Springer-Verlag, 2005.

[42] T. DeSantis, I. Dubosarskiy, S. Murray, and G. Andersen. Comprehen-
sive aligned sequence construction for automated design of effective probes

200



(cascade-p) using 16S rDNA. Bioinformatics, 19:1461–1468, 2003. url:
http://greengenes.llnl.gov/16S/.

[43] E. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269–271, 1959.

[44] D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest paths. SIAM
Journal on Computing, 29:1740–1759, 2000.

[45] S. Dreyfus and A. Law. The Art and Theory of Dynamic Programming. Aca-
demic Press Inc., 1977.

[46] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.
Cambridge University Press, 1998.

[47] P. Erdös and A. Rényi. On the evolution of random graphs. Mat. Kuttató.
Int. Közl., 5:17–60, 1960.

[48] R. Floyd. Algorithm 97 (SHORTEST PATH). Communications of the ACM,
5(6):345, 1962.

[49] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles
& Practice. Addison-Wesley, 1999.

[50] M. Fredman, R. Sedgewick, D. Sleator, and R. Tarjan. The pairing heap: A
new form of self-adjusting heap. Algorithmica, 1:111–129, 1986.

[51] M. Fredman and R. Tarjan. Fibonacci heaps and their use in improved network
optimization algorithms. Journal of the ACM, 34:596–615, 1987.

[52] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, pages 285–297, 1999.

[53] M. Frigo, C. Leiserson, and K. Randall. The implementation of the Cilk-5
multithreaded language. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 212–223, Montreal,
Canada, 1998.

[54] M. Frigo and V. Strumpen. Cache-oblivious stencil computations. In Pro-
ceedings of the 19th ACM International Conference on Supercomputing, pages
361–366, Cambridge, Massachusetts, 2005.

[55] M. Frigo and V. Strumpen. The cache complexity of multithreaded cache obliv-
ious algorithms. In Proceedings of the 18th ACM Symposium on Parallelism
in Algorithms and Architectures, pages 271–280, Cambridge, Massachusetts,
2006.

201



[56] Z. Galil and R. Giancarlo. Speeding up dynamic programming with applica-
tions to molecular biology. Theoretical Computer Science, 64:107–118, 1989.

[57] Z. Galil and K. Park. Parallel algorithms for dynamic programming recur-
rences with more than o (1) dependency. Journal of Parallel and Distributed
Computing, 21:213–222, 1994.

[58] R. Giegerich, C. Meyer, and P. Steffen. A discipline of dynamic programming
over sequence data. Science of Computer Programming, 51(3):215–263, 2004.

[59] G. Golub and C. Van Loan. Matrix Computations. The John Hopkins Univer-
sity Press, third edition, 1996.

[60] K. Goto. GotoBLAS, 2005. url: http://www.tacc.utexas.edu/resources/software.

[61] O. Gotoh. An improved algorithm for matching biological sequences. Journal
of Molecular Biology, 162:705–708, 1982.

[62] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics: A Founda-
tion for Computer Science. Addison-Wesley, second edition, 1994.

[63] J. Grice, R. Hughey, and D. Speck. Reduced space sequence alignment. Com-
puter Applications in the Biosciences, 13(1):45–53, 1997.

[64] R. Grossi and G. Italiano. Efficient cross-trees for external memory. In J. Abello
and J. Vitter, editors, External Memory Algorithms and Visualization, pages
87–106. American Mathematical Society Press, Providence, RI, 1999.

[65] R. Grossi and G. Italiano. Revised version of “Efficient cross-trees for external
memory”. Technical Report TR-00-16, Dipartimento di Informatica, Università
de Pisa, Pisa, Italy, 2000.

[66] J. Gunnels, F. Gustavson, G. Henry, and R. van de Geijn. FLAME: For-
mal linear algebra methods environment. ACM Transactions on Mathematical
Software, 27(4):422–455, 2001.

[67] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University
Press, New York, 1997.

[68] L. Haas and W. Cody. Exploiting extensible DBMS in integrated geographic
information systems. In Proceedings of the 2nd International Symposium on
Advances in Spatial Databases, LNCS 525, pages 423–450. Springer-Verlag,
1991.

202



[69] P. Hayes, D. Joyce, and P. Pathak. Ubiquitous learning – an application
of mobile technology in education. In Proceedings of the World Conference
on Educational Multimedia, Hypermedia and Telecommunications, volume 1,
Lugano, Switzerland.

[70] D. Hirschberg. A linear space algorithm for computing maximal common sub-
sequences. Communications of the ACM, 18(6):341–343, 1975.

[71] D. Hirschberg and L. Larmore. The least weight subsequence problem. SIAM
Journal on Computing, 16(4):628–638, 1987.

[72] C. Hoare. Algorithm 63 (PARTITION) and algorithm 65 (FIND). Communi-
cations of the ACM, 4(7):321–322, 1961.

[73] C. Hoare. Quicksort. Computer Journal, 5(1):10–15, 1962.

[74] J. Hong and H. Kung. I/O complexity: the red-blue pebble game. In Pro-
ceedings of the 13th Annual ACM Symposium on Theory of Computing, pages
326–333, 1981.

[75] K. Iversion. A Programming Language. Wiley, 1962.

[76] P. Kanellakis, S. Ramaswamy, D. Vengroff, and J. Vitter. Indexing for data
models with constraints and classes. In Proceedings of the 12th ACM Sympo-
sium on Principles of Database Systems, pages 233–243, 1993.

[77] I. Katriel and U. Meyer. Elementary graph algorithms in external memory. In
U. Meyer, P. Sanders, and J. Sibeyn, editors, Algorithms for Memory Hierar-
chies, LNCS 2625. Springer-Verlag.

[78] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesely, 2005.

[79] B. Knudsen. Multiple parsimony alignment with “affalign”. Software package
multalign.tar.

[80] B. Knudsen. Optimal multiple parsimony alignment with affine gap cost using
a phylogenetic tree. In Proceedings of Workshop on Algorithms in Bioinfor-
matics, pages 433–446, 2003.

[81] D. Knuth. The Art of Computer Programming – Sorting and Searching, vol-
ume 3. Addison-Wesley, 1973.

[82] D. Knuth. Two notes on notation. American Mathematical Monthly, 99:403–
422, 1992.

203



[83] V. Kumar and E. Schwabe. Improved algorithms and data structures for solv-
ing graph problems in external memory. In Proceedings of the 8th IEEE Sym-
posium on Parallel and Distributed Processing, pages 169–177, 1996.

[84] A. LaMarca and L. R. The influence of caches on the performance of heaps.
Journal of Experimental Algorithmics, 1:4, 1996.

[85] D. Lan Roche. Experimental study of high performance priority queues,
2007. Undergraduate Honors Thesis, CS-TR-07-34, The University of Texas
at Austin, Department of Computer Sciences.

[86] R. Laurini and A. Thompson. Fundamentals of Spatial Information Systems.
Academic Press, 1992.

[87] H. Le. Algorithms for identification of patterns in biogeography and median
alignment of three sequences in bioinformatics, 2006. Undergraduate Hon-
ors Thesis, CS-TR-06-29, The University of Texas at Austin, Department of
Computer Sciences.

[88] K. Mehlhorn and U. Meyer. External-memory breadth-first search with sub-
linear I/O. In Proceedings of the 10th European Symposium on Algorithms,
LNCS 2461, pages 723–735. Springer-Verlag, 2002.

[89] U. Meyer and N. Zeh. I/O-efficient undirected shortest paths. In Proceedings
of the 11th European Symposium on Algorithms, LNCS 2832, pages 434–445.
Springer-Verlag, 2003.

[90] B. Moret and H. Shapiro. An empirical assessment of algorithms for construct-
ing a minimum spanning tree. In DIMACS Series on Discrete Mathematics
and Theoretical Computer Science. 1994.

[91] S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kauf-
mann Publishers, Inc., 1997.

[92] K. Munagala and A. Ranade. I/O-complexity of graph algorithms. In Pro-
ceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms, pages
687–694, 1999.

[93] E. Myers and W. Miller. Optimal alignments in linear space. Computer Ap-
plications in the Biosciences, 4(1):11–17, 1988.

[94] S. Pan, C. Cherng, K. Dick, and R. Ladner. Algorithms to take advantage
of hardware prefetching. In Proceedings of the 9th Workshop on Algorithm
Engineering and Experiments, pages 91–98, 2007.

204



[95] J. Park, M. Penner, and V. Prasanna. Optimizing graph algorithms for im-
proved cache performance. IEEE Transactions on Parallel and Distributed
Systems, 15(9):769–782, 2004.

[96] W. Pearson and D. Lipman. Improved tools for biological sequence comparison.
In Proceedings of the National Academy of Sciences of the USA, volume 85,
pages 2444–2448, 1988.

[97] S. Pettie. Towards a final analysis for pairing heaps. In Proceedings of the
46th Annual IEEE Symposium on Foundations of Computer Science, pages
174–183, 2005.

[98] S. Pettie and V. Ramachandran. Command line tools
generating various families of random graphs. url:
http://www.dis.uniroma1.it/~challenge9/code/Randgraph.tar.gz.

[99] S. Pettie and V. Ramachandran. Computing shortest paths with comparisons
and additions. In Proceedings of the 13th ACM-SIAM Symposium on Discrete
Algorithms, pages 713–722, San Francisco, CA, 2002.

[100] D. Powell. Software package align3str_checkp.tar.gz.

[101] D. Powell, L. Allison, and T. Dix. Fast, optimal alignment of three sequences
using linear gap cost. Journal of Theoretical Biology, 207(3):325–336, 2000.

[102] D. Powell, L. Allison, and T. Dix. Automated empirical optimization of soft-
ware and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001. url:
http://math-atlas.sourceforge.net.

[103] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, 1986.

[104] H. Prokop. Cache-oblivious algorithms. Master’s thesis, Department of Elec-
trical Engineering and Computer Science, MIT, June 1999.

[105] S. Ramaswamy and S. Subramanian. Path caching: A technique for optimal
external searching. In Proceedings of the 13th ACM Symposium on Principles
of Database Systems, pages 25–35, Vancouver, BC, Canada, 1994.

[106] E. Rivas and S. Eddy. A dynamic programming algorithm for RNA structure
prediction including pseudoknots. 285(5):2053–2068, 1999.

[107] W. Rytter. On efficient parallel computations for some dynamic programming
problems. Theoretical Computer Science, 59:297–307, 1988.

205



[108] H. Samet. The Design and Analyses of Spatial Data Structures. Addison-
Wesley, 1989.

[109] P. Sanders. Fast priority queues for cached memory. Journal of Experimental
Algorithmics, 5:1–25, 2000.

[110] P. Sanders. Memory hierarchies – models and lower bounds. In U. Meyer,
P. Sanders, and J. Sibeyn, editors, Algorithms for Memory Hierarchies, LNCS
2625. Springer-Verlag, 2003.

[111] P. Sanders and D. Schultes. United states road networks
(tiger/line). Data Source: U.S. Census Bureau, Washington, DC, url:
http://www.dis.uniroma1.it/~challenge9/data/tiger/.

[112] J. Seward and N. Nethercote. Valgrind (debugging and profiling tool for x86-
Linux programs). url: http://valgrind.kde.org/index.html.

[113] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

[114] M. Sniedovich. Dynamic Programming. The Marcel Dekker, Inc., New York,
NY, 1992.

[115] J. Stasko and J. Vitter. Pairing heaps: experiments and analysis. Communi-
cations of the ACM, 30:234–249, 1987.

[116] G. Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich,
third edition, 1988.

[117] G. Tan, S. Feng, and S. Ninghui. Cache oblivious algorithms for nonserial
polyadic programming. The Journal of Supercomputing, 39(2):227–249, 2007.

[118] G. Tan, S. Ninghui, and G. Gao. A parallel dynamic programming algorithm
on a multi-core architecture. In Proceedings of the 19th ACM Symposium
on Parallelism in Algorithms and Architectures, pages 135–144, San Diego,
California, 2007.

[119] J. Thomas, J. Touchman, R. Blakesley, G. Bouffard, S. Beckstrom-Sternberg,
E. Margulies, M. Blanchette, A. Siepel, P. Thomas, J. McDowell, B. Maskeri,
N. Hansen, M. Schwartz, R. Weber, W. Kent, D. Karolchik, T. Bruen, R. Be-
van, D. Cutler, S. Schwartz, L. Elnitski, J. Idol, A. Prasad, S. Lee-Lin,
V. Maduro, T. Summers, M. Portnoy, N. Dietrich, N. Akhter, K. Ayele, B. Ben-
jamin, K. Cariaga, C. Brinkley, S. Brooks, S. Granite, X. Guan, J. Gupta,
P. Haghihi, S. Ho, M. Huang, E. Karlins, P. Laric, R. Legaspi, M. Lim,
Q. Maduro, C. Masiello, S. Mastrian, J. McCloskey, R. Pearson, S. Stantripop,

206



E. Tiongson, J. Tran, C. Tsurgeon, J. Vogt, M. Walker, K. Wetherby, L. Wig-
gins, A. Young, L. Zhang, K. Osoegawa, B. Zhu, B. Zhao, C. Shu, P. De Jong,
C. Lawrence, A. Smit, A. Chakravarti, D. Haussler, P. Green, W. Miller, and
E. Green. Comparative analyses of multi-species sequences from targeted ge-
nomic regions. Nature, 424:788–793, 2003.

[120] S. Toledo. Locality of reference in LU decomposition with partial pivoting.
SIAM Journal on Matrix Analysis and Applications, 18(4):1065–1081, 1997.

[121] L. Toma and N. Zeh. I/O-efficient algorithms for sparse graphs. In U. Meyer,
P. Sanders, and J. Sibeyn, editors, Algorithms for Memory Hierarchies, LNCS
2625. Springer-Verlag, 2003.

[122] L. Tong. Implementation and experimental evaluation of the cache-oblivious
buffer heap, 2006. Undergraduate Honors Thesis, CS-TR-06-21, The University
of Texas at Austin, Department of Computer Sciences.

[123] J. Ullman and M. Yannakakis. The input/output complexity of transitive
closure. Annals of Mathematics and Artificial Intelligence, 3:331–360.

[124] L. Valiant. General context-free recognition in less than cubic time. Journal
of Compute and System Sciences, 10:308–315, 1975.

[125] D. Vengroff and J. Vitter. I/O–efficient scientific computation using TPIE. In
Proceedings of IEEE Symposium on Parallel and Distributed Computing, pages
74–77, 1995.

[126] V. Viswanathan, S. Huang, and H. Liu. Parallel dynamic programming. In
Proceedings of IEEE Conference on Parallel Processing, pages 497–500, 1990.

[127] J. Vitter. External memory algorithms and data structures: Dealing with
massive data. ACM Computing Surveys, 33(2):209–271, 2001.

[128] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12,
1962.

[129] M. Waterman. Introduction to Computational Biology. Chapman & Hall,
London, UK, 1995.

[130] J. Watson. The human genome project: Past, present and future. Science,
248:44–49, 1990.

[131] I. Wegner. BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT, beat-
ing, on an average, QUICKSORT (if n is not very small). Theoretical Computer
Science, 118(1):81–98, 1993.

207



[132] J. Williams. Algorithm 232 (HEAPSORT). Communications of the ACM,
7:347–348, 1964.

[133] M. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of
the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation, pages 30–44, 1991.

[134] D. Womble, D. Greenberg, S. Wheat, and R. Riesen. Beyond core: Making
parallel computer I/O practical. In Proceedings of the 1993 DAGS/PC Sym-
posium, pages 56–63, 1993.

[135] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson. An experimen-
tal comparison of cache-oblivious and cache-aware programs. In Proceedings
of the 19th ACM Symposium on Parallelism in Algorithms and Architectures,
pages 93–104, San Diego, California, 2007.

[136] U. Zwick. Exact and approximate distances in graphs – a survey. updated
version at http://www.cs.tau.ac.il/~zwick. In Proceedings of the 9th European
Symposium on Algorithms, LNCS 2161, pages 33–48. Springer-Verlag, 2001.

208


