
STREAMING

ALGORITHMS
Ajinkya Potdar

Hemanga Krishna Borah

Contents

• Intuition for Streaming Algorithms

• Introduction to Streaming Algorithms

• How to evaluate Streaming Algorithms

• Counter Based Algorithms
• Algorithm 1 : Majority Element• Algorithm 1 : Majority Element

• Algorithm 2 : Misra-Gries Algorithm

• Algorithm 3 : Lossy Count Algorithm

• Algorithm 4 : Space Saving Algorithm

• Sketch Algorithm
• Count Min Sketch

• Intuition and Example of Graph Algorithm (Semi
Streaming)

• References

Data, data, data!!!

• Facebook by the numbers: 1.06 billion monthly

active users

• Google+ by the numbers: 500m+ users, 235m of • Google+ by the numbers: 500m+ users, 235m of

them active and 135m using the stream

• Twitter : 140 million users and sees 340 million

tweets per day

Data vs Computation and Storage

• IBM Roadrunner - It has around 100
terabytes of RAM

• General computers – Few GB• General computers – Few GB

• Routers – few MB (depending on the
manufacturers)

Do you want to wait an hour and know the

exact result?

• Finding frequency is O(n) space consuming
and O(n) time consuming

• Finding MST is ~ O(m) space consuming
and ~O(m+n) time consumingand ~O(m+n) time consuming

• Majority Elements ~ O(n) space consuming
and O(n) time consuming.

What else you might want to know

• Get me the most frequent users of my
router

• Get me the estimate of the distinct users of
my networkmy network

• Get me the shortest approximate relation
between the two users A and B (social
networks)

• Get me an approximate MST of this graph

• …. and the queries continue

Challenges

� Storing and indexing such large amount of data is costly.

� Important to process the data as it happens.

Provide up to the minute analysis and statistics.� Provide up to the minute analysis and statistics.

� Algorithms take only a single pass over their input.

� Compute various functions using resources that are

sublinear in the size of input.

Solution to your problems – Streaming

algorithms
• Within sub-linear space complexity

• Very fast computation

Bad news - Every good thing comes with a price. Bad news - Every good thing comes with a price.

Only some approximation to the actual results.

Good news - there are algorithms which give you

very good bounds.

Introduction-Data Streams

� Many data generation processes produce huge numbers

of pieces of data, each of which is simple in isolation, but

which taken together lead to a complex whole.

� Examples� Examples

� Simple transactions of everyday life such as using
a credit card, a phone or browsing the web lead to
automated data storage.

� Sequence of queries posed to an Internet search engine.

� Data can arrive at enormous rates - hundreds of

gigabytes per day or higher.

Streaming Algorithms

• Input is presented as a sequence of items.

• Input can be examined in only a few passes (typically just

one).

• Use limited memory available to them (much less than the

input size) input size)

• limited processing time per item.

• These constraints may mean that an algorithm produces

an approximate answer based on a summary or "sketch"

of the data stream in memory.

Streaming model

Input stream a1,a2, … arrives sequentially, and describes an

underlying signal A, an one-dimensional function A: [1 .. N] ->

R2. Models differ on how ai’s describe A

• Time Series Model:

• Each ai equals A[i], and they appear in increasing order of i.

• Anaylysed for some time window period. Discarded beyond a

time duration. Also called sliding window model.

Streaming model…(contd)

• Cash Register Model:

• ai’s are increments to A[j] ‘s. Say, ai = (j,Ii), Ii ≥ 0.

• Ai[j] = Ai-1[j] + Ii, where Ai is the state of the signal after seeing

the i th element of the stream. (mutliple ai can update A[j]

over time.
Ajinkya

over time.

• Turnstile

• Here ai’s are updates to A[j]s instead of increments.

• ai = (j,Ui) to mean Ai[j] = Ai-1[j] + Ui, where Ai is the signal after
seeing the i th item in the stream.

• Ui may be negative here.

Ajinkya

Factors to evaluate Streaming Algorithms

• Data you can store at a time

• Computations you need to do for an input

• Number of passes you can do over the stream

• Time for query on the function A• Time for query on the function A

How to evaluate Streaming Algorithms -

Mathematically
• An additive definition

A streaming algorithm S is said to have (ε,δ) additive-

approximation to the function F if we have

Pr[|S(σ) – F(σ)| > ε] ≤ δPr[|S(σ) – F(σ)| > ε] ≤ δ

• A multiplicative definition

A streaming algorithm is said to have () multiplicative-

approximation to the function F if we have

Pr[| | - 1 | > ε] ≤ δ

Real world problems

Problems range from simple to very complex.

• Given a stream of transactions, finding the mean and standard
deviation of the bill totals.
• Requires only few sufficient statistics to be stored.

• Determining whether a search query has already appeared in
the stream of queries.
• Requires a large amount of information to be stored.

• Algorithms must
• Respond quickly to new information.

• Use very less amount of resources in comparison to total quantity of
data.

Frequent Items Problem

• Given a stream of items, the problem is simply to find those

items which occur most frequently.

• Formalized as finding all items whose frequency exceeds a

specified fraction of the total number of items.specified fraction of the total number of items.

• If space is the constraint, “difficult” problem, but we solve it by

approximation.

• Find all items with count ≥ φN, none with count < (φ−ε)N

� Error 0 < ε < 1, e.g. ε = 1/1000

� Related problem: estimate each frequency with error ±εN

Motivation

• The problem is important both in itself and as a subroutine
in more advanced computations.

• For example,
• It can help in routing decisions, for in-network caching etc (if items• It can help in routing decisions, for in-network caching etc (if items

represent packets on the Internet).

• Can help in finding popular terms if items represent queries made
to an Internet search engine.

• Mining frequent itemsets inherently builds on this problem as a
basic building block.

• Algorithms for the problem have been applied by large
corporations: AT&T and Google.

Variations

• Given a stream S of n items t1…tn, the exact ɸ-frequent

items comprise the set {i | fi>ɸn}, where fi is the frequency

of item i.

• Solving the exact frequent items problem requires Ω(n)• Solving the exact frequent items problem requires Ω(n)

space.

• Approximate version is defined based on tolerance for

error parameterized by ɛ.

ɛ-approximate Frequent Items Problem

• Given a stream S of n items, the ɛ-approximate frequent

items problem is to return a set of items F so that for all

items i ε F, fi>(ɸ-ɛ)n, and there is no i∉F such that fi>ɸn.

Frequency Estimation Problem

• Given a stream S of n items, the frequency estimation

problem is to process a stream so that, given any i, an fi
*

is returned satisfying fi≤ fi
* ≤ fi+ɛn.

Solutions

• Two main classes of algorithms:

• Counter-based Algorithms

• Sketch Algorithms• Sketch Algorithms

• Other Solutions:

• Quantiles : based on various notions of randomly sampling items
from the input, and of summarizing the distribution of items.

• Less effective and have attracted less interest.

Counter-based Algorithms

• Track a subset of items from the input and monitor their

counts.

• Decide for each new arrival whether to store or not.

• Decide what count to associate with it.

Majority Problem

• Problem posed by J. S. Moore in Journal of Algorithms, in

1981.

Majority Algorithm

� Start with a counter set to zero. For each item:
◦ If counter is zero, store the item, set counter to 1.

◦ Else, if item is same as item stored, increment counter.

◦ Else, decrement counter.

� If there is a majority item, it is the item stored.

� Proof outline:
◦ Each decrement pairs up two different items and cancels them

out.

◦ Since majority occurs > N/2 times, not all of its occurrences can
be canceled out.

The Frequent Algorithm

• First proposed by Misra and Gries in 1982.

• Finds all items in a sequence whose frequency exceeds a

1/k fraction of the total count.

• Stores k-1 (item, counter) pairs.

• A generalization of the Majority algorithm.

The Frequent Algorithm (contd.)

• For each new item:

• Increment the counter if the item is already stored.

• If <k items stored, then store new item with counter set to 1.

• Otherwise decrement all the counters.• Otherwise decrement all the counters.

• If any counter equals 0, then delete the corresponding item.

Example

6

+1

32

1

+1

+1
120

Example (contd.)

-1 32

5
-1

6

-1

+1

12

10

-1

1

Pseudo Code

Analysis

• Time cost involves:

• O(1) dictionary operations per update.

• Cost of decrementing counts.

• Can be performed in O(1) time.

• Also solves the frequency estimation problem if executed

with k=1/ɛ.

Lossy Counting Algorithm

• Proposed by Manku and Motwani in 2002.

• Uses space 1/ε log(εN).

Lossy Counting Algorithm

s

Stored in the memory

Support threshold

Error parameter

Lossy Counting

ε

…

Unbounded Data

Statistics of

items Output

Frequent items

Infrequent items

Lossy Counting Algorithm

1 2 …

Each point: a transaction

…

N: current length of stream

1 2 …

Less recent More recent

Bucket 1 Bucket 2 Bucket 3

…

Bucket bcurrent

bcurrent =

w

NWidth w =

ε

1

Lossy Counting Algorithm

1. D: Empty set
• Will contain (e, f, ∆)

element

Frequency of element since

this entry was inserted into D

Max. possible error in f

2. When data e arrives,
� If e exists in D,

� Increment f in (e, f, ∆)

If e does not exist in D,� If e does not exist in D,
� Add entry (e, 1, bcurrent-1)

3. Remove some entries in D whenever
N ≡ 0 mod w
(i.e., whenever it reaches the bucket boundary)
The rule of deletion is:

(e, f, ∆) is deleted if
f + ∆ <= bcurrent

4. [Output] Get a list of items where
f + εN >= sN

SpaceSaving Algorithm

� Introduced by Metwally et al. in 2005.

� Store k (item, count) pairs.

� Initialize by first k distinct items and their exact counts.� Initialize by first k distinct items and their exact counts.

� If new item is not already stored, replace the item with least

count and set the counter to 1 more than the least count.

� Items which are stored by the algorithm early in the stream

and are not removed have very accurate estimated counts.

Example

• Assuming m = 2, and A={X, Y, Z}, Stream s = {X, Y, Y, Z}.

• Step 1: (e=X)

Step 2: (e=Y)

Counter=1 ID = X,ε=0

ID = Y, ε=0

• Step 2: (e=Y)

• Step 3: (e=Y)

• Step 4: (e=Z)

counter =1 ID = X, ε=0

counter = 2 ID = Y, ε=0

counter = 1 ID = X, ε=0

counter = 2 ID = Y, ε=0 ID = Z, ε=1

Pseudo Code

Analysis
� The space required is O(k).

� The time cost involves cost of:
◦ the dictionary operation of finding if an item is stored.

◦ finding and maintaining the item with minimum count.◦ finding and maintaining the item with minimum count.

� Simple heap implementations can track the smallest

count item in O(log k) time per update.

� As in other counter based algorithms, it also solves

frequency estimation problem with k=1/ɛ.

Counter Algorithms Summary

• Counter algorithms very efficient for arrivals-only

case

• Use O(1/ε) space, guarantee εN accuracy

• Very fast in practice (many millions of updates

per second)per second)

• Similar algorithms, but a surprisingly clear

“winner”

• Over many data sets, parameter settings, SpaceSaving

algorithm gives appreciably better results

Sketch Algorithms

� Sketch refers to a class of algorithm that represents a large

data set with a compact summary, typically much smaller than

the full size of the input.

� Given an input of N items (x1;x2 : : :xN), each item x (where x is � Given an input of N items (x1;x2 : : :xN), each item x (where x is

drawn from some domain U) is mapped via hash functions into

a small sketch vector that records frequency information.

� Thus, the sketch does not store the items explicitly, but only

information about the frequency distribution. Sketches support

fundamental queries on their input such as point, range and

inner product queries to be quickly answered approximately.

Count Min Sketch

• The CM sketch consists of a two-dimensional t × k array

of counters, plus t independent hash functions, each

chosen uniformly at random from a 2-universal family.

• For each input element, we read a token, resulting in an

update of fj, we update certain counters in the array based update of fj, we update certain counters in the array based

on the hash values of j (the “count” portion of the sketch).

• When we wish to compute an estimate fj , we report the

minimum of these counters.

• The values of t and k are set, based on ε and δ, as shown

below

Count Min Sketch Structure

• Each entry in vector x is mapped to one bucket per row.

• Estimate x[j] by taking mink CM[k,hk(j)]
• Guarantees error less than ε||x||1 in size O(1/ε log 1/δ)

• Probability of more error is less than 1-δ

What is the trick?

• Since all the elements shall definitely hash to some value,

and the co-domain of the mapping is lesser that the

domain, there shall be collision.

• But, the resulted collisions shall stay within some bounds

based on the hash-function.based on the hash-function.

• We always return the minimum value for the elements

hashed values. This is because we want the estimate for

the least collisions.

• The intuition is that the collisions shall only result in a

bounded limitation on the quality of the results.

Simple intuition for Graph Algorithms

• Given n vertices {1,2, ...,n}, stream = <(u1, v1), (u2, v2), ...,

(um, vm)>, with each (ui, vi) ∈ [n]

• Graph streams are of the ”semi-streaming model” :: O(n)

space for computation.space for computation.

Connectedness Problem

Initialize : F ← φ, where F is a set of edges;

Process (u, v):

1 if F ∪ {(u, v)} ‘does not contain a cycle’ then

2 F ← {(u, v)} ∪ F ;∪

Output : if |F| (The number of edges) = n − 1 then

Yes

else

No

Union-Find data structure.

References

[1] B. Boyer and J. Moore. A fast majority vote algorithm.

Technical Report ICSCA-CMP-32, Institute for Computer

Science, University of Texas, Feb. 1981.

[2] A. Arasu and G. S. Manku. Approximate counts and

quantiles over sliding windows. In ACM PODS, 2004.quantiles over sliding windows. In ACM PODS, 2004.

[3] G. Manku and R. Motwani. Approximate frequency
counts over data streams. In International Conference on
Very Large Data Bases, pages 346–357, 2002.

[4] Amit Chakrabarti ,Dartmouth CollegeCS85: Data Stream
Algorithms Lecture Notes, Fall 2009

[5] PHD COURSE ON STREAMING ALGORITHMS

(http://cs.au.dk/~gerth/stream11/)

References contd…

[6] Data Stream Algorithms by S. Muthu Muthukrishnan

(http://www.cs.mcgill.ca/~denis/notes09.pdf)

[7] Finding Frequent Items in Data Streams by Moses

Charikar, Kevin Chen, and Martin Farach-Colton3

[8] Sketch Algorithms for Estimating Point Queries in NLP [8] Sketch Algorithms for Estimating Point Queries in NLP

by Amit Goyal and Hal Daume III

[9] Data Stream Algorithms, Lecture Notes, Fall 2009 by

