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Why Resiliency

• Computer platforms with large and
inexpensive memories, which are also error-
prone

• Consider for instance mergesort: during the
merge step, errors may propagate due to
corrupted keys (having value larger than the
correct one).



Defining Resilience

• An algorithm is resilient to memory faults if,
despite the corruption of some memory
values before or during its execution, the
algorithm is nevertheless able to get a correct
output on the set of uncorrupted values.



Assumption Made

• faults may happen at any time:

• faults may happen at any place

• An algorithms can exploit O(1) reliable memory
words, whose content gets never corrupted.

• Moving variables around in memory is an atomic 
operation.

• Total errors that can happen is δ

• Actual number of error is α (α ≤ δ)



Trivial Method of Sorting 
(with redundancy)

• If each value were replicated k times, by 
majority techniques we could easily tolerate 
up to (k − 1)/2 faults. [δ = (k − 1)/2]

• The algorithm’s overhead in terms of both 
space and running time would also be Θ(k). 

• In order to be resilient to O(n1/2) faults, a 
sorting algorithm would require O(n3/2 log n) 
time and O(n3/2) space.



Defining Resiliency in Sorting

• Algorithm described do not wish to recover corrupted
data, but simply wants to correct on uncorrupted data,
without incurring much of any time or space overhead.

• Given a set of n keys that need to be sorted. The value
of at most δ keys can be arbitrarily corrupted (either
increased or decreased) during the sorting process. A
sorting algorithm is fault-tolerant if it correctly orders
the set of uncorrupted keys.

• if keys get corrupted at the very end of the algorithm 
execution, we cannot prevent them from occupying 
wrong positions in the output sequence.



Some Preliminary Definition

• Definition 1. Faithfully ordered
• A sequence is faithfully ordered if its uncorrupted keys are sorted.

• Definition 2. K-unordered
• A sequence is k-unordered if k is the minimum number of keys whose removal 

makes the remaining subsequence sorted.
Note: each faithfully ordered sequence is k-unordered for some k ≤ δ, where δ ≤ n

• Definition 3. strongly fault tolerant merging algorithm 
• A sorting or merging algorithm is strongly fault tolerant if it produces a faithfully 

ordered sequence, i.e., it correctly sorts all of the uncorrupted keys.

• Definition 4. is k-weakly fault tolerant merging algorithm 
• A sorting or merging algorithm is k-weakly fault tolerant if it produces a k-

unordered sequence, i.e., if it correctly sorts all but k keys. 
Note: a strongly fault tolerant algorithm is δ-weakly fault tolerant.



Naive fault-tolerant sorting

• A fault-tolerant algorithm that sorts all the correct keys
in O(δ · n log n) worst-case time can be easily obtained
from merge-sort.

• At each merge step, instead of taking the minimum
among two keys, we take the minimum among (2δ + 2)
keys, δ+1 per sequence; since there can be at most δ
errors, at least one correct key per sequence is
considered.

• In order to avoid problems in the recursion stack, we
use the standard iterative bottom-up implementation
of merge-sort, sorting all the sequences of length 2i
before any sequence of length 2i+1, for i = 1 up to log n



Naive-Merge-sort Analysis

• The running time is O(δ n log n) in the worst 
case, and it becomes O(δ n) when δ = Ω(nε), 
for some ε > 0.



Purifying k-unordered sequences

• Build Stack & list of Discarded Keys as Follows:
• Top of the stack and the index i that scans X in the O(1)-

size reliable memory
• At the i-th step, 

if X[i] ≥ top, 
push it onto stack

else 
add both the top and X[i] to list of discarded keys, 
pop the stack
compute the maximum of the topmost δ + 1 keys
move it to the top.



Analysis Purifying k-unordered 
sequences

• Invariant 1 (Stack Invariant). Throughout the algorithm, the key on the top is larger
than or equal to all the keys that have not been corrupted since they were pushed
onto the stack.

• Proof by induction
• top of the stack is fault-free, because it is stored in reliable memory.
• The base step, with the stack containing just one element, holds.
• Assuming: the invariant holds at the beginning of the i-th step.
• If X[i] ≥ top, X[i] is pushed onto stack and invariant remains satisfied by transitivity.
• If X[i] < top, the stack is popped and the invariant may be no longer satisfied if the

key below the discarded top got corrupted (namely, if its value was decreased).
• In this case, let m be the maximum of the topmost δ + 1 keys: m is new top.
• Now at least one of the δ+1 considered keys is correct:
• let x be any such correct key. At the time when x was at the top, the invariant was

true by inductive hypothesis, and therefore x is still larger than or equal to all the
uncorrupted keys below its position.

• Since m ≥ x, the new top satisfies the invariant with respect to the entire stack.



Analysis Purifying k-unordered 
sequences

• Lemma 1: (Remember)

• Algorithm Purify computes a faithfully ordered
subsequence S of a k-unordered sequence X of
length n in O(n+δ·(k+α)) worst-case time,
where α ≤ δ is the actual number of memory
faults introduced during the execution of
Purify.



O(α.δ)-Weakly Fault Tolerant merge
algorithm

• Let A and B be the sequences to be merged.

• Let i and j be the indices to arrays A and B,
respectively.

• In addition to comparing A[i] and B[j] and
advancing one of the two indices, the
algorithm updates two additional variables,
respectively called wait-A and wait-B

Note: Indices, wait variables and counter t are
all stored in O(1)-size reliable memory.



O(α.δ)-Weakly Fault Tolerant merge
algorithm

• If A[i] added to output sequence
– Wait-A = 0
– Wait-B ++

• If B[j] added to output sequence
– Wait-A ++
– Wait-B = 0

• If(Wait-A = 2δ+1) (wlog for B)
– Wait-A = 0
– Wait-B = 0
– For (k = i+1 till i+2δ+1) 

• If(A[i]<A[k]) t++

• If( t ≥ δ+1) (wlog for B)
– Output A[i] & i++ (i.e. A[i] is corrupted)

• If( t < δ+1) (wlog for B)
– Algorithm cannot decide whether A[i] is corrupted or not



O(α.δ)-Weakly Fault Tolerant merge
algorithm (Analysis)

• Lemma 2 (remember)

• Given two faithfully ordered sequences of total 
length n, algorithm WFT-Merge merges the 
sequences in O(n) time and returns an O(α· δ)-
unordered sequence, where α ≤ δ is the 
number of corrupted keys at the end of the 
algorithm execution.



(δ-weakly) Strongly fault-tolerant merge
Algorithm

• Let A and B be the sequences to be merged of
length n1 & n2 respectively.

• Without loss of generality: n2 ≤ n1
• Let i and j be the indices to arrays A and B,

respectively.
• Basic idea: Extract keys from shorter sequence B

and place it in correct position w.r.t longer
sequence A.

Note: Indices and counter t are all stored in O(1)-
size reliable memory.



(δ-weakly) Strongly fault-tolerant merge
Algorithm

• Extract Min from B[j:j+δ]
• Let b = B[h] be that minimum s.t. j ≤ h ≤ j+δ

• Shift right all keys and move b to B[j]

• Now Scan A from left to right starting from i.
– Add keys to output untill we find A[i] > b
(since A[i] can be corrupted returning b before A[i] is wrong)

Let t be count of keys < A[i] in the Window A[i+1:i+2δ+1]

• If (t ≥δ+1) A[i] is corrupted and we continue the scanning

• If (t < δ) divide window in 2 groups 
– Group1: keys < b

– Group2: keys ≥ b

And arrange s.t. group1 comes before b maintaining relative order

Output keys of W ≤ b, followed by b and start new step.



(δ-weakly) Strongly fault-tolerant merge
Algorithm

• Lemma 3 (Remember)

• Let A and B be two faithfully ordered sequences 
of length n1 and n2, respectively, with n2 ≤ n1. 
Algorithm SFT-Merge faithfully merges the 
sequences in O(n1+(n2+α)·δ) time, where α ≤ δ is 
the number of corrupted keys at the end of the 
algorithm execution.



Solving the Jigsaw by placing the 
Subroutine

• The input sequences, A and B, are first merged using the linear-time 
subroutine WFT-Merge. 

• The output sequence, C, may not be faithfully ordered, i.e., some 
correct elements may be in a wrong position. Such errors are 
recovered by the combined use of Purify and SFT-Merge. 

Note:
• The crux of merging algorithm is to use the slower strongly fault-

tolerant subroutine on two unbalanced sequences 
• The shorter(S) of which has length proportional to the actual 

number of corrupted. 


