
Resilient Priorirty Queue

Anirban Mitra

anmitra@cs.stonybrook.edu
Department of Computer Science

Stony Brook University

March 30, 2013

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 1 / 25

Memory Errors

One or more Memory bits is read differently from last written values

Causes can be hardware bit corruption, cosmic rays, corruption in
path between memory and CPU

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 2 / 25

Pointer Corruptions

Figure : Even a single memory corruption can be catastrophic. A simple linked
list with memory error, entire tail lost due to a single pointer corruption

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 3 / 25

ECC

Hardware ECC (Error Correcting Codes) chips can help

But is expensive in terms of processing time and money

Even ECC cannot correct every corruption

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 4 / 25

Its Not Rare

Figure : A field study by Google researchers

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 5 / 25

Resilient Algorithms

Make the algorithm and data structure capable of dealing with
memory errors

Design for damage control, minimize the disasters

Memory model assumes that at maximum δ corruptions throughout
the runtime

δ is an input to the model, known in advance

Also, assumes that it has some constant amount of relaible memory
P = O(1)

Relaible memory cannot get corrupt

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 6 / 25

Faithful Ordering

In resilient sorting, recovery from corruption is expensive

Hence goal is modified to all un-corrupted items are guaranteed to be
correctly sorted

Order of corrupted items is ignored

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 7 / 25

Resilient Merging

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 8 / 25

Structure of Resilient Priority Queue

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 9 / 25

Structure of Resilient Priority Queue

Intuitively, elements in Up buffer are moving to upper layers

Elements in Down buffer are moving to lower layers

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 10 / 25

Structure of Resilient Priority Queue

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 11 / 25

Invariant A

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 12 / 25

Invariant B

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 13 / 25

Invariant C - Down at least Half Filled

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 14 / 25

Invariant D - Up at most Half Filled

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 15 / 25

Insert

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 16 / 25

Insert

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 17 / 25

Insert

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 18 / 25

Push and Pull

Push and Pull primitives used fro Insert and DeleteMin

Push pushes elements to higher layers when Up at most half invariant
is broken

Similarly, Pull pulls elements from higher layer when Down at least
half invariant is broken

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 19 / 25

Algorithm for Push

1: function Push(Ui)
2: di = |Di |
3: M = Ui ∪ Di ∪ Ui+1

4: Di = M[0..(di − δ)]
5: Ui = []
6: if i = k then
7: Uk+1 = []
8: Dk+1 = M[(di − δ)..]
9: k = k+1

10: else
11: Ui+1 = M[(di − δ)..]

12: if Ui+1 > si+1/2 then
13: Push(Ui+1)

14: if Di < si/2 then
15: Pull(Di)

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 20 / 25

Algorithm for Pull

1: function Pull(Di)
2: di = |Di |
3: di+1 = |Di+1|
4: M = Ui ∪ Di ∪ Ui+1

5: Di = M[0..si]
6: Di+1 = [si ..(di+1 + di − δ)]
7: Ui+1 = [di+1 + di − δ..]
8: if Ui+1 > si+1/2 then
9: Push(Ui+1)

10: if Di+1 < si+1/2 then
11: Pull(Di+1)

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 21 / 25

Insert

For insertion we maintain a buffer I of size (δ + logn + 1) and simply
append the new element to buffer

When I is full we faithfully sort it and faithfully merge with U0

Call Push on U0 if at most invariant is broken

For DeleteMin return the minimum of the first δ + 1 elements of D0

and all of I

if D0 underflows, call Pull

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 22 / 25

Complexity

Insert and DeleteMin takes O(logn + δ) amortized time

Push and Pull on a buffer is called at most once each request

Intuitively, Ω(si) operations happen between any two call at any level
Li which gives the amortized bounds

Lower bound is proved to be the same

Uses O(n + δ) space

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 23 / 25

Relation with Cache Oblivious

This structure was inspired by cache oblivious priority queue by
Bender et al in 2002

There are several data structures which are adpated from their cache
oblivious versions

Even though resilient model does not have memory hierarchy

One reason could be that cache oblivious structure use chunks of
array to gain by locality and employs less pointers

So they become amenable to be adapted to resilient version because
then the small number of pointers can be stored in reliable memory

Note that there is a tree based cache oblivious priority queue too

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 24 / 25

References

L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I.
Munro. Cache-oblivious priority queue and graph algorithm
applications. In Proc. of the 34th Annual ACM Symposium on
Theory of Computing, pages 268-276, 2002.

I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal resilient
sortingand searching in the presence of memory faults. In Proceedings
of the 33rd International Colloquium on Automata, Languages and
Programming, volume 4051 of Lecture Notes in Computer Science,
pages 286-298. Springer, 2006

A. G. Jorgensen. Data Structures: Sequence Problems, Range
Queries and Fault Tolerance. PhD Dissertation, Aarhus University,
Department of Computer Science, Denmatk, pages 79-87, 2010.

Anirban Mitra (SBU) Resilient Priorirty Queue March 30, 2013 25 / 25

