
CSE638: Advanced Algorithms, Spring 2013 Date: February 21

Homework #1
( Due: March 12 )

Serial-BFS( G, s, d )

(Inputs are an unweighted directed graph G with vertex set G[V ], and a source vertex s ∈ G[V ]. For any vertex
u ∈ G[V ], Γ(u) denotes the set of vertices adjacent to u. The output will be returned in d, where for each u ∈ G[V ],
d[u] will be set to the sortest distance (i.e., number of edges on the sortest path) from s to u.)

1. for each u ∈ G[V ] do d[u]← +∞ {initialize all distances to +∞}
2. d[s]← 0 {the source vertex is at distannce 0}
3. Q← ∅ {start with an empty FIFO queue Q}
4. Q.enque( s ) {enqueue the source vertex}
5. while Q 6= ∅ do {iterate until the queue becomes empty}
6. u← Q.deque( ) {dequeue the first vertex u from the queue}
7. for each v ∈ Γ(u) do {consider each vertex adjacent to u}
8. if d[v] = +∞ then {if that adjacent vertex v has not yet been visited}
9. d[v]← d[u] + 1 {distance to v is 1 more than that to u}

10. Q.enque( v ) {enqueue v for future exploration}

Figure 1: Serial breadth-first search (BFS) on a graph.

Task 1. [ 200 Points ] Parallel BFS with Work Stealing.

(a) [ 10 Points ] Implement the serial BFS algorithm (Serial-BFS) given in Figure 1.

(b) [ 5 Points ] Consider the parallel BFS algorithm (Parallel-BFS) given in Figure 2. Explain
how the algorithm may give rise to race conditions, and why the output will still be correct.

(c) [ 15 Points ] Show that in any given iteration of the while loop in Parallel-BFS, the
same vertex may appear multiple times in Qin, but not more than once in any given queue of
Qin. Modify the algorithm so that exactly one of those multiple instances of the same vertex
is expanded in lines 4–7 of Parallel-BFS-Thread. You are allowed to use only O (1)
additional time per instance for this modification. Explain how and why your modification
works. Also prove that the same vertex cannot appear in Qin in two different iterations of
the while loop.

(d) [ 20 Points ] Let ql be the total number of entries in all input queues (i.e., Qin.q[i]’s) at the
start of the exploration of a particular BFS level l. Prove that w.h.p. in p, after the first
Θ
(
p
(
log p + log log

( ql
Min-Steal-Size

))
log

( ql
Min-Steal-Size

))
steal attempts in the entire system,

all steal attempts will fail.

(e) [ 10 Points ] Explain why cp log p is a good choice for Max-Steal-Attempts, where c > 1
is a constant.
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(f) [ 30 Points ] Observe that in any given BFS level each thread is either waiting to be
launched, or exploring vertices, or trying to steal, or waiting at the sync point. Now for
an input graph G of diameter D with n vertices, m edges and maximum degree ∆, use the
observation above to (upper) bound the parallel running time Tp of the entire algorithm.
Assume that Max-Steal-Attempts = Θ (p log p), and the algorithm has been modified to
avoid the exploration of duplicate vertices (following part (c)). Give a lower bound on the
size of the input graph which makes the algorithm work-optimal.

(g) [ 15 Points ] Modify the algorithm so that ∆ disappears from Tp while other terms remain
unchanged. Such modifications are useful for handling scale-free graphs1 more efficiently
which arise frequently in real-world scenarios (e.g., the web graph, social network graphs,
biological interaction networks, etc.).

(h) [ 5 Points ] Consider lines 10–13 of Parallel-BFS (Figure 2), and suggest modifications
to reduce the time a thread waits to be launched. How does that change the bounds you
proved in parts (f) and (g)?

(i) [ 35 Points ] Implement the algorithms from parts (f) and (g) without the modification for
avoiding duplicate exploration. Run on a machine with at least 8 cores (same for parts (j)
and (k)), and empirically find and report the best value for Min-Steal-Size and also for
Max-Steal-Attempts. Optimize your code as much as possible.

(j) [ 35 Points ] Create a table that compares the running times of your serial implementation
from part (a) and the parallel implementations from part (i) using all cores. For each input
file (in Appendix 1) create a separate row in the table showing the running times of all three
algorithms as well as the speedup factors of the two parallel implementations w.r.t. (a).

(k) [ 20 Points ] Generate a strong scalability plot (see slides 15–18 of lecture 5) for each of
the two parallel implementations from part (i) using the wikipedia graph (see Appendix 1)
as input.

Task 2. [ Optional, No Point ] Lockfree Parallel BFS.

(a) [ No Point ] Observe that in lines 9–17 of Parallel-BFS-Thread (Figure 3) the thief
uses a lock to make its own queue unavailable to other thieves while it is trying to steal, and
uses another lock to restrict access to its victim’s queue segment while a steal is in progress.
Can you eliminate all locks from this algorithm without making it incorrect? You are not
allowed to use any atomic instructions either. Prove the correctness of your algorithm, and
also that it terminates.

(b) [ No Point ] Implement and optimize your algorithm from part (a), and repeat parts (j)
and (k) of Task 1 with this implementation.

1graphs in which vertex degrees follow the power law degree distribution
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Parallel-BFS( G, s, d )

(Inputs are an unweighted directed graph G with vertex set G[V ], and a source vertex s ∈ G[V ]. For any vertex
u ∈ G[V ], Γ(u) denotes the set of vertices adjacent to u. The output will be returned in d, where for each u ∈ G[V ],
d[u] will be set to the shortest distance (i.e., number of edges on the shortest path) from s to u.)

1. parallel for each u ∈ G[V ] do d[u]← +∞ {initialize all distances to +∞}
2. d[s]← 0 {the source vertex is at distance 0}
3. p← #processing cores

4. Qin ← collection of p empty FIFO queues Qin.q[1], Qin.q[2], . . . , Qin.q[p]
{
Qin will hold vertices

in the current BFS level}
5. Qout ← collection of p empty FIFO queues Qout.q[1], Qout.q[2], . . . , Qout.q[p] {vertices in the next BFS

level generated from Qin will be stored in Qout
}

6. S ← collection of p segment pointers (global) {for 1 ≤ i ≤ p, S[i] will point to the queue segment

currently being explored by thread i}
7. Qin.q[1].enque( s ) {start with BFS level 0 by enqueueing the source vertex}
8. while Qin 6= ∅ do

{
iterate until Qin (i.e., the current BFS level) is empty

}
9. parallel for i = 1 to p do S[i]← entire Qin.q[i] as a single segment

{
thread i will start with Qin.q[i]

}
10. for i = 1 to p− 1 do

{
from vertices in Qin generate vertices

11. spawn Parallel-BFS-Thread( i, G, Qout.q[i], d ) in the next BFS level by launching p− 1

12. Parallel-BFS-Thread( p, G, Qout.q[p], d ) threads concurrent to the current thread}
13. sync

{
wait until all vertices in Qin have been processed

}
14. Qin ⇔ Qout

{
swap the roles of Qin and Qout

}
15. Qout ← ∅

{
empty the queues in Qout

}
Figure 2: Parallel breadth-first search (BFS) on a graph.
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Parallel-BFS-Thread( i, G, Qo, d )

(Inputs are the id i ∈ [1, p] of the current thread, and an unweighted directed graph G with vertex set G[V ]. For any
vertex u ∈ G[V ], Γ(u) denotes the set of vertices adjacent to u. For each such vertex v the correct BFS level will be
stored in d[v]. All vertices in the next level of BFS discovered by the current thread will be put in the output queue
Qo which is a single queue used exclusively by the current thread. We assume that S[1 : p] is a globally accessible
queue segment identifiers, where S[i] keeps track of the input queue segment currently being explored by thread i.)

1. while ( True ) do

2. while ( S[i] 6= ∅ ) do {while the input segment is not empty}
3. u← S[i].extract( ) {extract the next vertex from the segment}
4. for each v ∈ Γ(u) do {consider each vertex adjacent to u}
5. if d[v]← +∞ then {if that adjacent vertex v has not yet been visited}
6. d[v]← d[u] + 1 {distance to v is 1 more than that to u}
7. Qo.enque( v ) {enqueue v in the output queue for future exploration}
8. t← 0 {count number of steal attempts}
9. Lock( i ) {lock self until done with stealing}

10. while ( S[i] = ∅ ) and ( t < Max-Steal-Attempts ) do {try to steal ≤ Max-Steal-Attempts times}
11. r ← Rand( 1, p ) {pick a random victim}
12. if Try-Lock( r ) then {if able to secure exclusive access to the victim}
13. if ( |S[r]| > Min-Steal-Size ) then {if victim’s current queue segment is not too small}
14. S[i]← second half of S[r] {steal second half of work from victim’s segment}
15. Unlock( r ) {give up exclusive access}
16. t← t + 1 {done with one more steal attempt}
17. Unlock( i ) {make self available to thieves}
18. if ( S[i] = ∅ ) then break {terminate thread if all steal attempts fail}

Figure 3: Parallel breadth-first search (BFS) on a graph.
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APPENDIX 1: Input/Output Format

Your code must read from standard input and write to standard output.

– Input Format: The first line will contain three integers giving the number of vertices (n),
number of edges (m), and the number of source vertices (r), respectively. Each of the next m
lines will contain two integers u and v (1 ≤ u, v ≤ n) denoting a directed edge from vertex u
to vertex v. The edges will be sorted in nondecreasing order of the first vertex. Each of the
next r lines will contain one integer s (1 ≤ s ≤ n) giving the index of a source vertex.

– Output Format: The output will consist of r lines – one for each source vertex. Line i
(1 ≤ i ≤ r) will contain two indegers di and ci, where di is the maximum BFS level of a
vertex from the i-th source vertex given in the input file, and ci is the checksum value as
computed by the following function.

// Computes a very simple checksum by adding all d values.

// When some d[ i ] = infinity, replaces that infinity with nVertices

// during checksum calculation, i.e., assumes that d[ i ] = nVertices.

unsigned long long computeChecksum( void )

{

cilk::reducer_opadd< unsigned long long > chksum;

cilk_for ( int i = 0; i < nVertices; i++ )

chksum += d[ i ];

return chksum.get_value( );

}

– Sample Input/Output: /work/01905/rezaul/CSE638/HW1/samples on Lonestar.

– Test Input/Output (Table 1): /work/01905/rezaul/CSE638/HW1/turn-in on Lonestar.

Graph Description n m

cage15 DNA electrophoresis, 15 monomers in polymer 5.2M 99.2M

cage14 DNA electrophoresis, 14 monomers in polymer 15.1M 27.1M

freescale Large circuit, Freescale Semiconductor 3.4M 18.9M

Wikipedia Gleich/wikipedia-20070206 3.6M 45M

kkt-power Optimal power flow, nonlinear optimization (KKT) 2M 8.1M

RMAT100M RMAT Graph generated using Graph-500 RMAT generator 10M 100M

RMAT1B RMAT Graph generated using Graph-500 RMAT generator 10M 1B

Table 1: Input graphs with #vertices (n) and #edges (m). Note that 1M = 106 and 1B = 109.
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APPENDIX 2: What to Turn in

One compressed archive file (e.g., zip, tar.gz) containing the following items.

– Source code, makefiles and job scripts.

– A PDF document containing all answers and plots.

– Output generated for the input files in /work/01905/rezaul/CSE638/HW1/turn-in/ on Lon-
estar. If the name of the input file is xxxxx-in.txt, please name the output files as
xxxxx-1a-out.txt, xxxxx-1f-out.txt, xxxxx-1g-out.txt and xxxxx-2b-out.txt for tasks
1(a), 1(f), 1(g) and 2(b), respectively.

APPENDIX 3: Things to Remember

– Please never run anything that takes more than a minute or uses multiple cores
on TACC login nodes. TACC policy strictly prohibits such usage. They reserve the right
to suspend your account if you do so. All runs must be submitted as jobs to compute nodes
(even when you use Cilkview or PAPI).

– Please store all data in your work folder ($WORK), and not in your home folder ($HOME).

– When measuring running times please exclude the time needed for reading the input and
writing the output. Measure only the time needed by the algorithm.

6


