
CSE638, AMS641: Advanced Algorithms, Spring 2013 Date: May 9

In-Class Final Exam
( 2:35 PM – 3:50 PM : 75 Minutes )

• This exam will account for 25% of your overall grade.

• There are four (4) questions, worth 75 points in total. Please answer all of them in the spaces
provided.

• There are 18 pages including four (4) blank pages and two (2) pages of appendix. Please use
the blank pages if you need additional space for your answers.

• The exam is open slides. So you may consult the lecture slides (hard copies only) during the
exam. No additional cheatsheets are allowed.

• Please assume that the span of a parallel for loop is O (1 + t), where t is the maximum span
of an iteration.

Good Luck!

Question Pages Score Maximum

1. Schröder Numbers 2–3 10

2. Doubly Logarithmic-Depth Tree 5–8 30

3. ε-Approximate Median 10–12 15

4. Matrix Transposition 14–15 20

Total 75

Name:
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Question 1. [ 10 Points ] Schröder Numbers. For k ≥ 2, Schröder Number Sk is the number
of lattice paths in the Cartesian plane that go from (1, 1) to (k, k) without ever crossing the line
y = x, and from any given point (x, y) moving only to one of the following three points: (x, y+ 1),
(x+ 1, y) and (x+ 1, y + 1).

Figure 1: Schröder Numbers (Figure adapted from Wolfram Mathworld)

Starting from S2 the first 20 Schröder numbers are as follows: 2, 6, 22, 90, 394, 1806, 8558,
41586, 206098, 1037718, 5293446, 27297738, 142078746, 745387038, 3937603038, 20927156706,
111818026018, 600318853926, 3236724317174 and 17518619320890.
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1(a) [ 10 Points ] Schröder numbers can be computed from the following recurrence relation:

Sk =

{
1 if k < 2,
3
(
2− 3

k

)
Sk−1 −

(
1− 3

k

)
Sk−2 otherwise.

Describe a parallel algorithm that computes the first n Schröder numbers in O
(
n
p + log n

)
parallel time using Θ (n) space, where p is the number of processing elements.

Hint: The recurrence relation can be rewritten as follows:

[
S1 S0

]
=
[

1 1
]
, and for k ≥ 2,

[
Sk Sk−1

]
=
[
Sk−1 Sk−2

]  3
(
2− 3

k

)
1

−
(
1− 3

k

)
0

 .
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Use this page if you need additional space for your answers.
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Question 2. [ 30 Points ] Doubly Logarithmic-Depth Tree. Let n = 22
h

for some integer
h ≥ 0. Then a doubly logarithmic-depth tree (DLDT ) with n leaves has exactly h + 2 levels.

Assuming that the root node is at level 0, each node at level k ∈ [0, h − 1] has degree n
1

2k+1 , and
each node at level h has degree 2. The leaves are at level h+ 1. See Figure 2. Looks familiar1?

Figure 2: A doubly logarithmic-depth tree (DLDT )

Recall that we saw in the class how to compute the maximum of n numbers in Θ (n) work and
Θ (log n) span (e.g., use the parallel prefix sums algorithm given in the first 5–6 slides of lecture 8
with max as the binary associative operator ⊕). In this problem, we will use a DLDT to design a
parallel algorithm with a shorter span for finding the maximum in an array A[1 : n] of n numbers.

1If not, no worries. But later compare it with the structure of an n-Funnel (see slide 24 of lectures 18–19)
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2(a) [ 5 Points ] Given p = n2 processing elements design an algorithm to find the maximum
number in A[1 : n] in O (1) parallel time using O (n) space (without using a DLDT ).
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2(b) [ 5 Points ] Prove that a DLDT with n leaves has n
1− 1

2k internal nodes at level k ∈ [0, h].

2(c) [ 10 Points ] Suppose we build a DLDT with n leaves, where the i-th leaf from the left
contains the number A[i], 1 ≤ i ≤ n (see Figure 2). Now given p = n processing elements
design a parallel algorithm that terminates in Θ (log log n) parallel time, and for each internal
node in the DLDT computes the maximum number stored among the leaves of the subtree
rooted at that node. Thus the root of the DLDT will hold the maximum number in A[1 : n].

Hint: Use your results from parts 2(a) and 2(b).
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2(d) [ 10 Points ] Is your algorithm from part 2(c) work-optimal? If not, how do you make it
work-optimal?

Hint: Use a Θ (n) work and Θ (log n) span algorithm we saw in the class (e.g., the prefix
sums algorithm) to reduce the size of the input array first.
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Use this page if you need additional space for your answers.
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Question 3. [ 15 Points ] ε-Approximate Median. Let A[ 1 : n ] be an array of n distinct
numbers. For any number x, we define rank( x ) to be the number of items in A that are not larger
than x, i.e., rank( x ) = | { A[ i ] | 1 ≤ i ≤ n ∧ A[ i ] ≤ x} |.
For any ε ∈ (0, 12 ], an ε-approximate median of A is a number x with rank( x ) ∈

(
n
2 − εn,

n
2 + εn

)
.

Recall that deterministically finding the exact median of A requires time linear in n. In this problem
we will see that an ε-approximate median (w.h.p. in n) of A can be found in time logarithmic in n.

Approx-Median( A[ 1 : n ], ε )

(Inputs are an array A[ 1 : n ] of n distinct numbers, and a floating point parameter ε ∈ (0, 1
4
]. This routine

chooses a sample of size
⌈
14
ε2

logn
⌉

from A (with replacement), and returns the median of that sample.)

1. m←
⌈
14
ε2

logn
⌉

{size of the sample}
2. array B[ 1 : m ] {array to store the sample}
3. for i← 1 to m do {sample m items (with replacement) from A}
4. j ← Random( 1, n ) {choose an integer uniformly at random from [ 1, n ]}
5. B[ i ]← A[ j ] {choose A[ j ] as the next sample from A}
6. x← Median( B[ 1 : m ] ) {find the median of B[ 1 : m ] using a linear time selection algorithm}
7. return x

Figure 3: Find an ε-approximate median of A[ 1 : n ].
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3(a) [ 10 Points ] Consider the function Approx-Median given in Figure 3 which runs in
Θ
(
1
ε2

log n
)

worst-case time.

Let L =
{
A[ i ] | i ∈ [ 1, n ] ∧ rank( A[ i ] ) ≤ n

2
− εn

}
and H =

{
A[ i ] | i ∈ [ 1, n ] ∧ rank( A[ i ] ) ≥ n

2
+ εn

}
.

Suppose B[ 1 : m ] contains l elements from L, and h elements from H. Now assuming
ε ∈

(
0, 1

4

]
, prove that

Pr
[
l <

m

2

]
> 1− 1

n
7
6

and Pr
[
h <

m

2

]
> 1− 1

n
7
6

.

Hint: Pr
[
l ≥ m

2

]
≤ Pr [ l ≥ (1 + ε)µ ], where µ = m

(
1
2 − ε

)
.
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3(b) [ 5 Points ] Use your results from part 3(a) to argue that for ε ∈
(

0, 1
4

]
, Approx-Median

returns an ε-approximate median of A[ 1 : n ] w.h.p. in n.
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Use this page if you need additional space for your answers.
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Question 4. [ 20 Points ] Matrix Transposition. The transpose of a matrix X is another
matrix XT obtained by writing the rows of X as the columns of XT . An example is given below.

X =


a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

 ⇒ XT =


a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4


In this problem we will analyze the cache complexity of a couple of algorithms for transposing
square matrices.

4(a) [ 5 Points ] Analyze the cache complexity of Iter-Matrix-Transpose given in Figure 4.

Iter-Matrix-Transpose( X, Y, n )

(Input is an n× n square matrix X[ 1 : n, 1 : n ]. This function generates the transpose of X in Y .)

1. for i← 1 to n do

2. for j ← 1 to n do

3. Y [ i, j ]← X[ j, i ]

Figure 4: Iterative matrix transposition.
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4(b) [ 10 Points ] Complete the recursive divide-and-conquer algorithm (Rec-Matrix-Transpose)
for transposing a square matrix given in Figure 5. Analyze its cache complexity assuming a
tall cache (i.e., M = Ω

(
B2
)
, where M is the cache size and B is the cache block size).

Rec-Matrix-Transpose( X, Y, n )

(Input is an n × n square matrix X[ 1 : n, 1 : n ]. This function recursively generates the transpose of X
in Y . We assume n = 2k for some integer k ≥ 0. If n > 1, let X11, X12, X21 and X22 denote the top-left,
top-right, bottom-left and bottom-right quadrants of X, respectively. Similarly for Y .)

1. if n = 1 then Y ← X {base case: the transpose of a 1× 1 matrix is the matrix itself}
2. else {divide X and Y into quadrants, and generate the transpose of X recursively.}
3. Rec-Matrix-Transpose( , , ) {fill out}
4. Rec-Matrix-Transpose( , , ) {fill out}
5. Rec-Matrix-Transpose( , , ) {fill out}
6. Rec-Matrix-Transpose( , , ) {fill out}

Figure 5: Iterative matrix transposition.

4(c) [ 5 Points ] Is the cache complexity result of part 4(b) optimal? Why or why not?
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Use this page if you need additional space for your answers.
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Appendix: Prefix Sums

Input. A sequence of n elements x1, x2, . . . xn drawn from a set S with a binary associative
operation (e.g., addition, multiplication, maximum, matrix product, union, etc.), denoted by ⊕.

Output. A sequence of n partial sums s1, s2, . . . sn, where si = x1 ⊕ x2 ⊕ . . . xi for 1 ≤ i ≤ n.

Figure 6: A parallel prefix sums algorithm with Θ (n) work and Θ (log n) span (from lecture 8).
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Appendix: Useful Tail Bounds

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then
for all δ > 0, Pr [X ≥ δ] ≤ E[X]

δ .

Chebyshev’s Inequality. Let X be a random variable with a finite mean E[X] and a finite

variance V ar[X]. Then for any δ > 0, Pr [|X − E[X]| ≥ δ] ≤ V ar[X]
δ2

.

Chernoff Bounds. Let X1, . . . , Xn be independent Poisson trials, that is, each Xi is a 0-1 random

variable with Pr[Xi = 1] = pi for some pi. Let X =
n∑
i=1

Xi and µ = E[X]. Then the following

bounds hold.

(1) For any δ > 0, Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
.

(2) For 0 < δ < 1, Pr [X ≥ (1 + δ)µ] ≤ e−
µδ2

3 .

(3) For 0 < γ < µ, Pr [X ≥ µ+ γ] ≤ e−
γ2

3µ .

(4) For 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ
.

(5) For 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−
µδ2

2 .

(6) For 0 < γ < µ, Pr [X ≤ µ− γ] ≤ e−
γ2

2µ .
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