
CSE 638: Advanced Algorithms

Supplemental Material

(Amortized Analysis)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2013

A Binary Counter

0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 1 1 11 0 1
0 0 0 0 0 0 1 0 2 32 1 1
0 0 0 0 0 0 1 1 1 43 0 1
0 0 0 0 0 1 0 0 3 74 2 1
0 0 0 0 0 1 0 1 1 85 0 1
0 0 0 0 0 1 1 0 2 106 1 1
0 0 0 0 0 1 1 1 1 117 0 1
0 0 0 0 1 0 0 0 4 158 3 1
0 0 0 0 1 0 0 1 1 169 0 1
0 0 0 0 1 0 1 0 2 1810 1 1
0 0 0 0 1 0 1 1 1 1911 0 1
0 0 0 0 1 1 0 0 3 2212 2 1
0 0 0 0 1 1 0 1 1 2313 0 1
0 0 0 0 1 1 1 0 2 2514 1 1
0 0 0 0 1 1 1 1 1 2615 0 1
0 0 0 1 0 0 0 0 5 3116 4 1

counter

value counter

#bit

flips

#bit resets

(1→ 0)

#bit sets

(0 → 1)

total

#bit flips

Consider a �-bit counter initialized to 0 (i.e., all bits are 0’s).

Suppose we increment the counter
 times.

and cost of an increment = #bits flipped

Question: What is the worst-case total cost of
 increments?

Worst-case cost of a single increment:

#bit sets (0 → 1), �� � 1
#bit resets (1 → 0), �� � � � ��
#bit flips � �� � �� � �

Worst-case cost of � increments:

#bit flips �
�
This turns out to be a loose upper bound!

A Binary Counter

A better upper bound can be obtained as follows.

Each increment sets (0 → 1) at most one bit, i.e., �� � 1
So, total number of bits set by
 increments, �� � ��
 �

Since at most
 bits are set, there cannot be more than
 bit resets

(1 → 0), i.e., �� � �� �
	
So, total number of bit flips � �� � �� �
 �
 � 2

Thus worst-case cost of a sequence of
 increments, �
 � 2

Hence, in the worst case, average cost of an increment � � �

� � 2
This worst-case average cost is called the amortized cost of an

increment in a sequence of
 increments.

Aggregate Analysis

− often obtains a tighter worst-case upper bound on the cost of a

sequence of operations on a data structure by reasoning about

the interactions among those operations

− the actual cost of any given operation may be very high, but that

operations may change the state of the data structure in such a

way that similar high-cost operations cannot appear for a while

− tries to show that there must be enough low-cost operations in

the sequence to average out the impact of high-cost operations

− unlike average case analysis proves a worst-case upper bound on

the total cost of the sequence of operations

− unlike expected case analysis no probabilities are involved

Amortized Analysis

Accounting Method (Banker’s View)

Consider a �-bit counter initialized to 0 (i.e., all bits are 0’s).

Worst-case cost of a single increment:

#bit sets (0 → 1), �� � 1
#bit resets (1 → 0), �� � � � ��
#bit flips � �� � �� � �

Thus each increment is paying for the bit it sets (fair).

But also paying for resetting bits set by prior increments (unfair)!

A fairer cost accounting for each increment:

(1) Pay for the bit it sets.

(2) Pay in advance for resetting this bit (by some other increment)

in the future. Store this advanced payment as a credit associated

with that bit position.

(3) When resetting a bit use the credit stored in that bit position.

Accounting Method (Banker’s View)

0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 1 1 21 2 1
0 0 0 0 0 0 1 0 2 42 2 3
0 0 0 0 0 0 1 1 1 63 2 4
0 0 0 0 0 1 0 0 3 84 2 7
0 0 0 0 0 1 0 1 1 105 2 8
0 0 0 0 0 1 1 0 2 			126 2 10
0 0 0 0 0 1 1 1 1 	147 2 11
0 0 0 0 1 0 0 0 4 		168 2 15
0 0 0 0 1 0 0 1 1 		189 2 16

counter

value counter

actual

cost (��)

amortized

cost (�̂�)
��� ��̂�

(overcharged)

(overcharged)

(undercharged)

(overcharged)

(overcharged)

(undercharged)

(overcharged)

�

�
�

�

�

�

�

�

�
�

Accounting Method (Banker’s View)

0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 1 1 21 2 1
0 0 0 0 0 0 1 0 2 42 2 3
0 0 0 0 0 0 1 1 1 63 2 4
0 0 0 0 0 1 0 0 3 84 2 7

counter

value counter

actual

cost (��)

amortized

cost (�̂�)
��� ��̂�

(overcharged)

(overcharged)

(undercharged)

�

�
�

�

�

Total credits remaining after
 increments, Δ� � ∑ �̂���!� � ∑ ����!�
We must make sure that for all
, Δ� " 0

⇒ ∑ �̂���!� " ∑ ����!�
This will ensure that the total amortized cost is always an upper

bound on the total actual cost.

Potential Method (Physicist’s View)

Banker’s View: Store prepaid work as credit with specific objects

in the data structure.

Physicist’s View: Represent total remaining credit in the data

structure as a single potential function.

Suppose: state of the initial data structure � $�
state of the data structure after the %-th operation � $�
potential associated with $� is � Φ $�

Then amortized cost of the %-th operation,

�̂� � actual cost � potential change due to that operation

� �� �Φ $� �Φ'$�(�)

Potential Method (Physicist’s View)

Then amortized cost of the %-th operation,

�̂� � actual cost � potential change due to that operation

� �� �Φ $� �Φ'$�(�)

			� �̂�
�

�!�
�� �� �Φ $� �Φ'$�(�)

�

�!�
����

�

�!�
�Φ $� �Φ'$�)

Since we do not know
 in advance, if we make sure that for all
,

Φ'$�) " Φ'$�), we ensure that always ∑ �̂���!� " ∑ ����!� .

In other words, in that case, the total amortized cost will always be

an upper bound on the total actual cost.

One way of achieving that is to find a Φ such that Φ $� � 0 and

for all
, Φ'$�) " 0.

Potential Method (Physicist’s View)

0 0 0 0 0 0 0 1 1 21 2 1(overcharged)1
0 0 0 0 0 0 1 0 2 42 2 31
0 0 0 0 0 0 1 1 1 63 2 4(overcharged)2
0 0 0 0 0 1 0 0 3 84 2 7(undercharged)1
0 0 0 0 0 1 0 1 1 105 2 8(overcharged)2
0 0 0 0 0 1 1 0 2 			126 2 102
0 0 0 0 0 1 1 1 1 	147 2 11(overcharged)3
0 0 0 0 1 0 0 0 4 		168 2 15(undercharged)1

�
�

�

�

�

�

�
�

�

0 0 0 0 0 0 0 00

counter

value counter

actual

cost (��)

amortized

cost (�̂�)
��� ��̂�Φ $�

0

For the binary counter,

Φ $� � number of set bits (i.e., 1 bits) after the %-th operation

