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A Binary Counter

0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 1 1 11 0 1
0 0 0 0 0 0 1 0 2 32 1 1
0 0 0 0 0 0 1 1 1 43 0 1
0 0 0 0 0 1 0 0 3 74 2 1
0 0 0 0 0 1 0 1 1 85 0 1
0 0 0 0 0 1 1 0 2 106 1 1
0 0 0 0 0 1 1 1 1 117 0 1
0 0 0 0 1 0 0 0 4 158 3 1
0 0 0 0 1 0 0 1 1 169 0 1
0 0 0 0 1 0 1 0 2 1810 1 1
0 0 0 0 1 0 1 1 1 1911 0 1
0 0 0 0 1 1 0 0 3 2212 2 1
0 0 0 0 1 1 0 1 1 2313 0 1
0 0 0 0 1 1 1 0 2 2514 1 1
0 0 0 0 1 1 1 1 1 2615 0 1
0 0 0 1 0 0 0 0 5 3116 4 1
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Consider a �-bit counter initialized to 0 ( i.e., all bits are 0’s ).

Suppose we increment the counter 
 times.

and cost of an increment = #bits flipped

Question: What is the worst-case total cost of 
 increments?

Worst-case cost of a single increment:

#bit sets ( 0 → 1 ),      �� � 1
#bit resets ( 1 → 0 ),  �� � � � ��
#bit flips                             � �� � �� � �

Worst-case cost of � increments:

#bit flips                             � 
�
This turns out to be a loose upper bound!

A Binary Counter



A better upper bound can be obtained as follows.

Each increment sets ( 0 → 1 ) at most one bit, i.e., �� � 1
So, total number of bits set by 
 increments, �� � ��
 � 

Since at most 
 bits are set, there cannot be more than 
 bit resets 

( 1 → 0 ), i.e., �� � �� � 
	
So, total number of bit flips � �� � �� � 
 � 
 � 2

Thus worst-case cost of a sequence of 
 increments, � 
 � 2

Hence, in the worst case, average cost of an increment � � �

� � 2
This worst-case average cost is called the amortized cost of an 

increment in a sequence of 
 increments.

Aggregate Analysis



− often obtains a tighter worst-case upper bound on the cost of a 

sequence of operations on a data structure by reasoning about 

the interactions among those operations

− the actual cost of any given operation may be very high, but that 

operations may change the state of the data structure in such a 

way that similar high-cost operations cannot appear for a while

− tries to show that there must be enough low-cost operations in 

the sequence to average out the impact of high-cost operations

− unlike average case analysis proves a worst-case upper bound on 

the total cost of the sequence of operations

− unlike expected case analysis no probabilities are involved

Amortized Analysis



Accounting Method ( Banker’s View )

Consider a �-bit counter initialized to 0 ( i.e., all bits are 0’s ).

Worst-case cost of a single increment:

#bit sets ( 0 → 1 ),      �� � 1
#bit resets ( 1 → 0 ),  �� � � � ��
#bit flips                             � �� � �� � �

Thus each increment is paying for the bit it sets ( fair ).

But also paying for resetting bits set by prior increments ( unfair )!

A fairer cost accounting for each increment:

(1) Pay for the bit it sets.

(2) Pay in advance for resetting this bit ( by some other increment ) 

in the future. Store this advanced payment as a credit associated 

with that bit position.

(3) When resetting a bit use the credit stored in that bit position.



Accounting Method ( Banker’s View )

0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 1 1 21 2 1
0 0 0 0 0 0 1 0 2 42 2 3
0 0 0 0 0 0 1 1 1 63 2 4
0 0 0 0 0 1 0 0 3 84 2 7
0 0 0 0 0 1 0 1 1 105 2 8
0 0 0 0 0 1 1 0 2 			126 2 10
0 0 0 0 0 1 1 1 1 	147 2 11
0 0 0 0 1 0 0 0 4 		168 2 15
0 0 0 0 1 0 0 1 1 		189 2 16
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Accounting Method ( Banker’s View )

0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 1 1 21 2 1
0 0 0 0 0 0 1 0 2 42 2 3
0 0 0 0 0 0 1 1 1 63 2 4
0 0 0 0 0 1 0 0 3 84 2 7
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Total credits remaining after 
 increments, Δ� � ∑ �̂���!� � ∑ ����!�
We must make sure that for all 
,  Δ� " 0

⇒ ∑ �̂���!� " ∑ ����!�
This will ensure that the total amortized cost is always an upper 

bound on the total actual cost.



Potential Method ( Physicist’s View )

Banker’s View: Store prepaid work as credit with specific objects      

in the data structure.

Physicist’s View: Represent total remaining credit in the data 

structure as a single potential function.

Suppose: state of the initial data structure � $�
state of the data structure after the %-th operation � $�
potential associated with $� is � Φ $�

Then amortized cost of the %-th operation,

�̂� � actual cost � potential change due to that operation

� �� �Φ $� �Φ'$�(�)



Potential Method ( Physicist’s View )

Then amortized cost of the %-th operation,

�̂� � actual cost � potential change due to that operation

� �� �Φ $� �Φ'$�(�)

			� �̂�
�

�!�
�� �� �Φ $� �Φ'$�(�)

�

�!�
����

�

�!�
�Φ $� �Φ'$�)

Since we do not know 
 in advance, if we make sure that for all 
, 

Φ'$�) " Φ'$�), we ensure that always ∑ �̂���!� " ∑ ����!� .

In other words, in that case, the total amortized cost will always be 

an upper bound on the total actual cost.

One way of achieving that is to find a Φ such that Φ $� � 0 and 

for all 
, Φ'$�) " 0.



Potential Method ( Physicist’s View )

0 0 0 0 0 0 0 1 1 21 2 1( overcharged )1
0 0 0 0 0 0 1 0 2 42 2 31
0 0 0 0 0 0 1 1 1 63 2 4( overcharged )2
0 0 0 0 0 1 0 0 3 84 2 7( undercharged )1
0 0 0 0 0 1 0 1 1 105 2 8( overcharged )2
0 0 0 0 0 1 1 0 2 			126 2 102
0 0 0 0 0 1 1 1 1 	147 2 11( overcharged )3
0 0 0 0 1 0 0 0 4 		168 2 15( undercharged )1

�
�

�

�

�

�

�
�

�

0 0 0 0 0 0 0 00

counter 

value counter

actual 

cost ( �� )

amortized

cost ( �̂� )
��� ��̂�Φ $�

0

For the binary counter, 

Φ $� � number of set bits ( i.e., 1 bits ) after the %-th operation


