In-Class Midterm
(2:25 PM – 3:40 PM : 75 Minutes)

- This exam will account for either 10% or 20% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 20% of your grade, and the lower one 10%.

- There are four (4) questions, worth 80 points in total. Please answer all of them in the spaces provided.

- There are 14 pages including two (2) blank pages. Please use the blank pages if you need additional space for your answers.

- Page 14 contains some useful bounds. No additional cheatsheets are allowed.

- Assume that the span of a parallel for loop with \(n \) iterations is \(\Theta (\log n) + k \), where \(k \) is the maximum span of one iteration.

Good Luck!

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Leftmost One</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2. Prefix Sums</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3. Balancing Resource Usage</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4. Tighter Bound for the Greedy Scheduler</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

NAME: _________________________________
Question 1. [25 Points] Leftmost One. We have already looked at the following problem in the class under a different name.

Leftmost One

Output. Smallest $k \in [1, n]$ such that $A[k] = 1$.

1(a) [6 Points] Find the work and span of the following algorithm for solving the **Leftmost One** problem.

```
PAR-LEFTMOST-ONE(A)
1. n ← |A|
2. array B[1 : n] {B[i] will be set to 1 if A[i] is the leftmost 1}
3. parallel for i ← 1 to n do B[i] ← A[i] {initially assume that each 1 is the leftmost 1}
4. parallel for i ← 1 to n do
5. parallel for j ← 1 to i − 1 do {compare A[i] with all A[j], j < i}
6. if A[j] = 1 then B[i] ← 0 {if A[j] = 1 for some j < i, then A[i] is not the leftmost 1}
7. k ← 0
8. parallel for i ← 1 to n do {only for the leftmost A[i] = 1 we still have B[i] = 1}
9. if B[i] = 1 then k ← i {return index of the leftmost 1}
10. return k
```
1(b) [10 Points] Design an algorithm for solving the LEFTMOST ONE problem in \(\Theta(n) \) work and \(\Theta(\log n) \) depth (span) using the algorithm from part 1(a) as a subroutine. Provide pseudocode, and analysis of work and span.

[Hint: Split \(A \) into \(\sqrt{n} \) segments.]
1(c) [9 Points] Given an array of n numbers each of which is an integer between 1 and n (not necessarily distinct) design an algorithm for finding the minimum number (value only) in $\Theta(n)$ work and $\Theta(\log n)$ depth (span) using your algorithm from part 1(b) as a subroutine. Provide pseudocode, and analysis of work and span.
Use this page if you need additional space for your answers.
Question 2. [25 Points] Prefix Sums. Consider the following problem covered in the class.

Prefix Sums

Input. An array \(A[1:n] \) of \(n \) elements with a binary associative operation \(\oplus \).

2(a) [8 Points] The following algorithm solves Prefix Sums when called as \(\text{Par-Prefix-Sums}(A,1,n,\oplus,S) \). Write down the recurrence relations for work and span of the algorithm, and solve them.

\[
\text{Par-Prefix-Sums}(A,q,r,\oplus,S) \\
1. \text{if } q = r \text{ then } S[q] \leftarrow A[q] \\
2. \text{else} \\
3. \quad m \leftarrow \lfloor \frac{q+r}{2} \rfloor \quad \{ \text{split the array into two halves} \} \\
4. \quad \text{parallel : } \text{Par-Prefix-Sums}(A,q,m,\oplus,S) \quad \{ \text{find prefix sums for the left half} \} \\
\quad \text{Par-Prefix-Sums}(A,m+1,r,\oplus,S) \quad \{ \text{find prefix sums for the right half} \} \\
5. \quad \text{parallel for } i \leftarrow m+1 \text{ to } r \text{ do} \\
6. \quad S[i] \leftarrow S[i] \oplus S[m] \quad \{ \text{update right half with the sum of the left half} \}
\]
2(b) [10 Points] Design a work-optimal algorithm for Prefix Sums using Par-Prefix-Sums from part 2(a) as a subroutine. Provide pseudocode, and analysis of work and span.

[Hint: Contract array A.]
2(c) [7 Points] Design a work-optimal parallel algorithm to evaluate the following polynomial of degree \(n - 1 \), where \(a_0, a_1, \ldots, a_{n-1} \) are given constants.

\[
P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}
\]

Provide pseudocode, and analysis of work and span.

[Hint: Use your work-optimal parallel prefix algorithm from part 2(b).]

Use this page if you need additional space for your answers.
Question 3. [25 Points] Balancing Resource Usage. Suppose we have 2 processors (X and Y), n jobs and n resources. Job i ($1 \leq i \leq n$) is specified as a vector $(a_{i,1}, a_{i,2}, \ldots, a_{i,n})$, where,

$$a_{i,j} = \begin{cases} 1, & \text{if job } i \text{ uses resource } j, \\ 0, & \text{otherwise.} \end{cases}$$

Each job must be assigned to either processor X or processor Y, and these assignment are given by the vector (b_1, b_2, \ldots, b_n), where,

$$b_i = \begin{cases} +1, & \text{if job } i \text{ assigned to processor } X, \\ -1, & \text{otherwise.} \end{cases}$$

Our goal is to find a vector b that balances the workload between X and Y by minimizing the maximum imbalance in the usage of any resource, that is, by minimizing $\Delta = \max_{1 \leq i \leq n} |c_i|$, where,

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Observe that each $c_i = \sum_{j=1}^{n} a_{i,j} b_j$ is the sum of n terms, each of which is either 0, +1 or −1. Let

- $X_i = \text{number of terms with value } +1 \text{ in } c_i$,
- $Y_i = \text{number of terms with value } -1 \text{ in } c_i$,
- $k_i = \text{number of } 1\text{'s among } a_{i,1}, a_{i,2}, \ldots, a_{i,n}$, and
- $\beta = \sqrt{12n \ln n}$.

Then clearly, $X_i + Y_i = k_i$, $X_i - Y_i = c_i$, and $|c_i| \leq k_i$.

We will show that good load balancing (i.e., $\Delta < \beta$) can be achieved even if we choose the entries of b independently and uniformly at random, that is, with $Pr [b_i = +1] = Pr [b_i = -1] = \frac{1}{2}$.

3(a) [6 Points] Show that if $|c_i| \leq \beta$ then $\frac{k_i}{2} \left(1 - \frac{\beta}{k_i}\right) \leq X_i \leq \frac{k_i}{2} \left(1 + \frac{\beta}{k_i}\right)$.

10
3(b) [4 Points] Show that $E[X_i] = \frac{k_i}{2}$.

3(c) [10 Points] Clearly, $k_i \leq \beta \Rightarrow |c_i| \leq \beta$. Prove that even for $k_i > \beta$, $Pr[|c_i| \geq \beta] \leq \frac{2}{n^2}$.

11
3(d) [5 Points] Show that w.h.p. $\Delta \leq \beta$.
Question 4. [5 Points] Tighter Bound for the Greedy Scheduler. We proved in the class that on an ideal parallel computer with p processing elements, a greedy scheduler executes a multithreaded computation with work T_1 and span T_∞ in time $T_p \leq \frac{T_1}{p} + T_\infty$. We came up with this bound by showing that the number of complete steps (where all p processors have work to do) is at most $\frac{T_1}{p}$, and the number of incomplete steps (where some processors are idle, but at least one has work to do) is at most T_∞, and by observing that $T_p \leq \#\text{complete steps} + \#\text{incomplete steps}$.

4(a) [5 Points] Argue that the bound above can be improved to $T_p \leq \frac{T_1 - T_\infty}{p} + T_\infty$.
Some Useful Bounds

Master Theorem. Let $a \geq 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise,} \end{cases}$$

where, $\frac{n}{b}$ is interpreted to mean either $\lfloor \frac{n}{b} \rfloor$ or $\lceil \frac{n}{b} \rceil$. Then $T(n)$ has the following bounds:

Case 1: If $f(n) = O\left(n^{\log_b a - \epsilon}\right)$ for some constant $\epsilon > 0$, then $T(n) = \Theta\left(n^{\log_b a}\right)$.

Case 2: If $f(n) = \Theta\left(n^{\log_b a \log k n}\right)$ for some constant $k \geq 0$, then $T(n) = \Theta\left(n^{\log_b a \log k + 1} n\right)$.

Case 3: If $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$ for some constant $\epsilon > 0$, and $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta\left(f(n)\right)$.

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then for all $\delta > 0$, $\Pr[X \geq \delta] \leq \frac{E[X]}{\delta}$.

Chebyshev’s Inequality. Let X be a random variable with a finite mean $E[X]$ and a finite variance $Var[X]$. Then for any $\delta > 0$, $\Pr[|X - E[X]| \geq \delta] \leq \frac{Var[X]}{\delta^2}$.

Chernoff Bounds. Let X_1, \ldots, X_n be independent Poisson trials, that is, each X_i is a 0-1 random variable with $Pr[X_i = 1] = p_i$ for some p_i. Let $X = \sum_{i=1}^{n} X_i$ and $\mu = E[X]$. Then the following bounds hold.

1. For any $\delta > 0$, $Pr\left[X \geq (1 + \delta)\mu\right] \leq \left(\frac{e^\delta}{(1 + \delta)^{1 + \delta}}\right)^\mu$.
2. For $0 < \delta < 1$, $Pr\left[X \geq (1 + \delta)\mu\right] \leq e^{-\frac{\mu \delta^2}{2}}$.
3. For $0 < \gamma < \mu$, $Pr\left[X \geq \mu + \gamma\right] \leq e^{-\frac{\gamma^2}{2\mu}}$.
4. For $0 < \delta < 1$, $Pr\left[X \leq (1 - \delta)\mu\right] \leq \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^\mu$.
5. For $0 < \delta < 1$, $Pr\left[X \leq (1 - \delta)\mu\right] \leq e^{-\frac{\mu \delta^2}{2}}$.
6. For $0 < \gamma < \mu$, $Pr\left[X \leq \mu - \gamma\right] \leq e^{-\frac{\gamma^2}{2\mu}}$.