CSE 613: Parallel Programming

Lecture 7
(Basic Parallel Algorithmic Techniques)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2012
Some Basic Techniques

1. Divide-and-Conquer
 - Recursive
 - Non-recursive
 - Contraction

2. Pointer Techniques
 - Pointer Jumping
 - Graph Contraction

3. Randomization
 - Sampling
 - Symmetry Breaking
Divide-and-Conquer

1. **Divide:** divide the original problem into smaller subproblems that are easier are to solve

2. **Conquer:** solve the smaller subproblems (perhaps recursively)

3. **Merge:** combine the solutions to the smaller subproblems to obtain a solution for the original problem
Divide-and-Conquer

- The divide-and-conquer paradigm improves program modularity, and often leads to simple and efficient algorithms.
- Since the subproblems created in the divide step are often independent, they can be solved in parallel.
- If the subproblems are solved recursively, each recursive divide step generates even more independent subproblems to be solved in parallel.
- In order to obtain a highly parallel algorithm it is often necessary to parallelize the divide and merge steps, too.
Recursive D&C: Parallel Merge Sort

`Merge-Sort` (A, p, r) { sort the elements in A[p ... r] }

1. if p < r then
2. q ← ⌊(p + r) / 2 ⌋
3. `Merge-Sort` (A, p, q)
4. `Merge-Sort` (A, q + 1, r)
5. `Merge` (A, p, q, r)

`Par-Merge-Sort` (A, p, r) { sort the elements in A[p ... r] }

1. if p < r then
2. q ← ⌊(p + r) / 2 ⌋
3. spawn `Merge-Sort` (A, p, q)
4. `Merge-Sort` (A, q + 1, r)
5. sync
6. `Merge` (A, p, q, r)
Recursive D&C: Parallel Merge Sort

Par-Merge-Sort (A, p, r) { sort the elements in A[p ... r] }

1. if p < r then
2. q ← ⌊ (p + r) / 2 ⌋
3. spawn Merge-Sort (A, p, q)
4. Merge-Sort (A, q + 1, r)
5. sync
6. Merge (A, p, q, r)

Work: \(T_1(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 2T_1\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases} \)

\[= \Theta(n \log n) \]

Span: \(T_\infty(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_\infty\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases} \)

\[= \Theta(n) \]

Parallelism: \(\frac{T_1(n)}{T_\infty(n)} = \Theta(\log n) \)

Too small! Must parallelize the Merge routine.
Non-Recursive D&C: Parallel Sample Sort

Task: Sort an array $A[1, ..., n]$ of n distinct keys using $p \leq n$ processors.

Steps (without oversampling):

1. **Pivot Selection:** Select (uniformly at random) and sort $m = p - 1$ pivot elements $e_1, e_2, ..., e_m$. These elements define $m + 1 = p$ buckets: $(-\infty, e_1), (e_1, e_2), ..., (e_{m-1}, e_m), (e_m, +\infty)$.

2. **Local Sort:** Divide A into p segments of equal size, assign each segment to a different processor, and sort locally.

3. **Local Bucketing:** If $m \leq \frac{n}{p}$, each processor inserts the pivot elements into its local sorted sequence using binary search, otherwise inserts its local elements into the sorted pivot elements. Thus the keys are divided among $m + 1 = p$ buckets.

4. **Merge Local Buckets:** Processor i ($1 \leq i \leq p$) merges the contents of bucket i from all processors through a local sort.

5. **Final Result:** Each processor copies its bucket to a global output array so that bucket i ($1 \leq i \leq p - 1$) precedes bucket $i + 1$ in the output.
Non-Recursive D&C: Parallel Sample Sort

Steps (without oversampling):

1. **Pivot Selection**: $O(m \log(m)) = O(p \log p)$ [worst case]

2. **Local Sort**: $O\left(\frac{n}{p} \log \frac{n}{p}\right)$ [worst case]

3. **Local Bucketing**:

 $$O\left(\min\left(m \log \frac{n}{p}, \frac{n}{p} \log m\right)\right) = O\left(\frac{n}{p} \log \frac{n}{p}\right)$$ [worst case]

4. **Merge Local Buckets**: $O\left(\frac{n}{m} \log \frac{n}{m}\right) = O\left(\frac{n}{p} \log \frac{n}{p}\right)$ [expected]

 (not quite correct as the largest bucket can have\[Theta\left(\frac{n}{m} \log m\right)\] keys with significant probability)

5. **Final Result**: $O\left(\frac{n}{m}\right) = O\left(\frac{n}{p}\right)$ [expected]

Overall: $O\left(\frac{n}{p} \log \frac{n}{p} + p \log p\right)$ [expected]
Contraction

1. **Reduce:** reduce the original problem to a smaller problem

2. **Conquer:** solve the smaller problem (often recursively)

3. **Expand:** use the solution to the smaller problem to obtain a solution for the original larger problem
Contraction: Prefix Sums

Input: A sequence of n elements $\{x_1, x_2, \ldots, x_n\}$ drawn from a set S with a binary associative operation, denoted by \oplus.

Output: A sequence of n partial sums $\{s_1, s_2, \ldots, s_n\}$, where

$$s_i = x_1 \oplus x_2 \oplus \ldots \oplus x_i$$

for $1 \leq i \leq n$.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

$\oplus =$ binary addition

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
<th>s_7</th>
<th>s_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td>19</td>
<td>25</td>
<td>27</td>
<td>31</td>
</tr>
</tbody>
</table>
Contraction: Prefix Sums

\[\text{Prefix-Sum} \left(\langle x_1, x_2, \ldots, x_n \rangle, \oplus \right) \quad \{ \ n = 2^k \text{ for some } k \geq 0. \}
\]

Return prefix sums \(\langle s_1, s_2, \ldots, s_n \rangle \)

1. if \(n = 1 \) then
2. \(s_1 \leftarrow x_1 \)
3. else
4. parallel for \(i \leftarrow 1 \) to \(n/2 \) do
5. \(y_i \leftarrow x_{2i-1} \oplus x_{2i} \)
6. \(\langle z_1, z_2, \ldots, z_{n/2} \rangle \leftarrow \text{Prefix-Sum} \left(\langle y_1, y_2, \ldots, y_{n/2} \rangle, \oplus \right) \)
7. parallel for \(i \leftarrow 1 \) to \(n \) do
8. if \(i = 1 \) then \(s_1 \leftarrow x_1 \)
9. else if \(i = \text{even} \) then \(s_i \leftarrow z_{i/2} \)
10. else \(s_i \leftarrow z_{(i-1)/2} \oplus x_i \)
11. return \(\langle s_1, s_2, \ldots, s_n \rangle \)
Contraction: Prefix Sums

Diagram showing the prefix sums with arrows connecting the variables x_1 to x_8 and s_1 to s_8. The diagram includes additional variables $z_1, z'_1, z_2, z'_2, z_3, z''_1, y_1, y'_1, y''_1, y_2, y'_2, y_3, y'_3, y_4$.
Contraction: Prefix Sums
Contraction: Prefix Sums

Prefix-Sum (\(\langle x_1, x_2, \ldots, x_n \rangle, \oplus \) \(\{ n = 2^k \text{ for some } k \geq 0. \quad \text{Return prefix sums} \) \(\langle s_1, s_2, \ldots, s_n \rangle \))

1. if \(n = 1 \) then
2. \(s_1 \leftarrow x_1 \)
3. else
4. parallel for \(i \leftarrow 1 \text{ to } n/2 \) do
5. \(y_i \leftarrow x_{2i-1} \oplus x_{2i} \)
6. \(\langle z_1, z_2, \ldots, z_{n/2} \rangle \leftarrow \text{Prefix-Sum} (\langle y_1, y_2, \ldots, y_{n/2} \rangle, \oplus) \)
7. parallel for \(i \leftarrow 1 \text{ to } n \) do
8. if \(i = 1 \) then \(s_1 \leftarrow x_1 \)
9. else if \(i = \text{even} \) then \(s_i \leftarrow z_{i/2} \)
10. else \(s_i \leftarrow z_{(i-1)/2} \oplus x_i \)
11. return \(\langle s_1, s_2, \ldots, s_n \rangle \)

Observe that we have assumed here that a parallel for loop can be executed in \(\Theta(1) \) time. But recall that \textit{cilk_for} is implemented using divide-and-conquer, and so in practice, it will take \(\Theta(\log n) \) time. In that case, we will have \(T_\infty(n) = \Theta(\log^2 n) \), and parallelism = \(\Theta \left(\frac{n}{\log^2 n} \right) \).
Pointer Techniques: Pointer Jumping

The *pointer jumping* (or *path doubling*) technique allows fast processing of data stored in the form of a set of rooted directed trees.

For every node v in the set pointer jumping involves replacing $v \rightarrow next$ with $v \rightarrow next \rightarrow next$ at every step.

Some Applications

- Finding the roots of a forest of directed trees
- Parallel prefix on rooted directed trees
- List ranking
Pointer Jumping: Roots of a Forest of Directed Trees

Find-Roots \((n, P, S) \)

Input: A forest of rooted directed trees, each with a self-loop at its root, such that each edge is specified by \((v, P(v))\) for \(1 \leq v \leq n\).

Output: For each \(v\), the root \(S(v)\) of the tree containing \(v\).

1. parallel for \(v \leftarrow 1\) to \(n\) do
2. \(S(v) \leftarrow P(v)\)
3. flag \(\leftarrow true\)
4. while flag = true do
5. flag \(\leftarrow false\)
6. parallel for \(v \leftarrow 1\) to \(n\) do
7. \(S(v) \leftarrow S(S(v))\)
8. if \(S(v) \neq S(S(v))\) then flag \(\leftarrow true\)
Let \(h \) be the maximum height of any tree in the forest.

Observe that the distance between \(v \) and \(S(v) \) doubles after each iteration until \(S(S(v)) \) is the root of the tree containing \(v \).

Hence, the number of iterations is \(\log h \). Thus (assuming that each parallel for loop takes \(\Theta(1) \) time to execute),

Work: \(T_1(n) = O(n \log h) \) and **Span:** \(T_\infty(n) = \Theta(\log h) \)

Parallelism: \(\frac{T_1(n)}{T_\infty(n)} = O(n) \)
Pointer Techniques: Graph Contraction

1. **Contract:** the graph is reduced in size while maintaining some of its original properties (depending on the problem)

2. **Conquer:** solve the problem on the contracted graph (often recursively)

3. **Expand:** use the solution to the contracted graph to obtain a solution for the original graph

Some Applications

- Finding connected components of a graph
- Minimum spanning trees
Graph Contraction: Connected Components (CC)

1. Direct the edges to form a forest of rooted directed trees
2. Use pointer jumping to contract each such tree to a single vertex
3. Recursively find the CCs of the contracted graph
4. Expand those CCs to label the vertices of the original graph with CC numbers
Randomization: Symmetry Breaking

A technique to break symmetry in a structure, e.g., a graph which can locally look the same to all vertices.

Some Applications

- Prefix sums in a linked list (list ranking)
- Selecting a large independent set from a graph
- Graph contraction
1. Flip a coin for each list node
2. If a node u points to a node v, and u got a head while v got a tail, combine u and v
3. Recursively solve the problem on the contracted list
4. Project this solution back to the original list
Symmetry Breaking: List Ranking

In every iteration a node gets removed with probability $\frac{1}{4}$

(as a node gets head with probability $\frac{1}{2}$ and the next node gets tail
with probability $\frac{1}{2}$).

Hence, a quarter of the nodes get removed in each iteration
(expected number).

Thus the expected number of iterations is $\Theta(\log n)$.

In fact, it can be shown that with high probability,

$$T_1(n) = O(n) \text{ and } T_\infty(n) = O(\log n)$$