CSE 613: Parallel Programming

Lecture 13
(Graph Algorithms: Maximal Independent Set)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Spring 2012

Independent Sets
Let G = (V, E) be an undirected graph.

Independent Set: A subset I € V is said to be independent provided
for each v € I none of its neighbors in G belongs to I.

Maximal Independent Set: An independent set of G is maximal if it is
not properly contained in any other independent set in G.

Maximum Independent Set: O O Q O
A maximal independent set

of the largest size.

O O O O
Finding a maximum
independent set is NP-hard. R R R 0
But finding a maximal
independent set is trivial in . . .
the sequential setting. Maximal Independent Sets (red vertices) of the Cube Graph

Source: Wikipedia

Finding a Maximal Independent Set Sequentially

Input: Vis the set of vertices, and E is the set of edges. For eachv e V, we
denote by I'(v) the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

Serial-Greedy-MIS (V, E)
1. MIS « ¢

2. forv«1to |V]| do
3. ifMISNT(v)=¢ then MIS —MISU{v}

4. return MIS

This algorithm can be easily implemented to run in ®(n + m) time, where n
is the number of vertices and m is the number of edges in the input graph.

The output of this algorithm is called the Lexicographically First MIS (LFMIS).

Finding a Maximal Independent Set Sequentially

Input: Vis the set of vertices, and E is the set of edges. For eachv e V, we
denote by I'(v) the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

Serial-Greedy-MIS-2 (V, E)

1. MIS « ¢

2. while |V] >0 do

3. pick an arbitrary vertex ve V
4 MIS—MISU{v}
5. R—{v}iuTI(v)
6. V< V\R
7 E—~E\N{(v;,v;)|VvyeRorv,e R}
8. return MIS

Always choosing the vertex with the smallest id in the current graph will
produce exactly the same MIS as in Serial-Greedy-MIS.

Finding a Maximal Independent Set Sequentially

Input: Vis the set of vertices, and E is the set of edges. For each S C V, we
denote by I'(S) the set of neighboring vertices of S.

Output: A maximal independent set MIS of the input graph.

Serial-Greedy-MIS-3 (V, E)

1. MIS « ¢

2. while |V] >0 do

3. find an independentset Sc V
4 MIS—MISUS
5. R—SuTI(S)
6. V< V\R
7 E—EN{(v;,v;) I vye Rorv,e R}
8. return MIS

Parallelizing Serial-Greedy-MIS-3

— Number of iterations can be kept small Serial-Greedy-MIS-3 (V, E)
by finding in each iteration an S with 1. M5 <¢
. . . rpe 2. while |V| >0do
large S U I'(S). But this is difficult to do. 3. find an independent set S < V
. . . 4, MIS—MISU S
— Instead in each iteration we choose an 5. ReSUL(S)
S such that a large fraction of current 6. VeVAR
edges are incident on S U I'(S) 7o BeBAtwwm)ivieRorveR]
8. return MIS

— To select S we start with a random S'c V.

* By choosing lower degree vertices with higher probability we are
likely to have very few edges with both end-pointsin S".

* We check each edge with both end-pointsin S’, and drop the end-
point with lower degree from S’. Our intention is to keep I'(S’) as
large as we can.

e After removing all edges as above we are left with an independent
set. This is our S.

* We will prove that if we remove S U I'(S) from the current graph a
large fraction of current edges will also get removed.

Randomized Maximal Independent Set (MIS)

Input: n is the number of vertices, and for each vertexue [1,n], V[u] is set
to u. E is the set of edges sorted in non-decreasing order of the first vertex.
For every edge (u, v) both (u,v)and (v, u)areincludedin E.

Output: Forallue [1,n], MIS[u] is set to 1 if vertex u is in the MIS.

dl u] (i.e., degree of
vertex u) can now be
computed easily by
subtracting c[u—1]
fromc[u]

\

if both end-points of
an edge is marked,

unmark the one with
the lower degree

remove marked
vertices along with
their neighbors as
well as the

corresponding edges
_

Par-Randomized-MIS (n, V, E, MIS)
1. while |V| > 0do

parallel fori < 1 to |E| do

array d[1: [V I, c[1:IVI]={0} M[1:|VI]={0}

ifi=|E|lorE[i]J.u=E[i+1].u thenc[E[i].u

k

]«

cfu-1]

(ifd[u]l=0thenM[u] <« 1

7
8 L else M[u] < 1 (with probability 1 / (2d[u]))

—

2.
3.
4,
5. parallel for u < 1 to |V| do

\ ifu=1thendlu] <« c[u]elsedl[u]l <« c[u]-
9.

parallel for each (u, v) e E do

(ifM[u]l=1and M[v] =1 then
| ifdlu]l<dlv]thenMlu] <« 0Oelse M[v] <«

o

11.

J

12.
13.

14

parallel for u < 1 to |V| do
ifM[u]l=1thenMISfV[u]] « 1
(V,E) < Par-Compress (V,E, M)

for each u find the
edge with the
largest index i such
that E[i].u=u, and
store that iin c[u]

/

mark lower-degree

vertices with higher
probability

/

add all marked
vertices to MIS

/

Removing Marked Vertices and Their Neighbors

Input: Arrays V and E, and bit array M[1: | V|]. Each entry of E is of the form
(u,v), wherel<u,v<|V]. Ifforsomeu M[u]=1,thenuand allvsuch
that (u, v) € E must be removed from V along with all edges (u, v) from E.

Output: Updated V and E.

marked vertices
will be removed

\

find new indices
for surviving
vertices & edges

/

:090.\'/»

move surviving
edges to the
smaller array F

T~

1.
2

oA W

Par-Compress (V, E, M)

—

array S 1 IVI1={13 SUL1:IVIL SL1:1EIT1=13 Se[1:1EI]

. parallel for u <« 1 to |V| do

T

ifM[u]l=1thenS,Ju]« 0

parallel for i« 1 to |E| do

'u<—E[i].u, v« E[i].v

LifM[u]l]=1orM[v]=1thenS[u]<« 0,S[v]<« O,SH]i]<« O]/

10.

12.
13.
14.
15.
16.

S « Par-Prefix-Sum (S, +), St « Par-Prefix-Sum (Sg, +)

. parallel for i« 1to |E| do

array U[1:SYLIVITL FI1:SELIEIT]
parallel for u < 1 to |V| do
if Sful=1thenU[S [u]]« V[u]

ifSelil=1then FIS%[i1] <« E[i]

parallel for i« 1 to |F| do
U« F[ilu v« F[i].v

initialize

L —

neighbors of
marked vertices &
corresponding
edges must go

/

move surviving
vertices to the
smaller array U

/

update the end-
points of the
surviving edges to
new vertex
indices

—

[F[i].u<—5’v[u], FlilveS'lv]
return (U, F)

.

Removing Marked Vertices and Their Neighbors

Par-Compress (V, E, M)

1.

o U AW N

array SL1: VI T={1} 5[1:1VI],
Sel1:1ENT={1} Se[1:1El]
parallel for u < 1 to |V| do
ifM[u]l]=1thenS[u]l« 0
parallel for i« 1 to |E| do
u«—EilJu veeEilyv
ifM[u]l]=1orM[v]=1then
Sful« 0,S[v]«< 0,S[i]l«< O
SV « Par-Prefix-Sum (Sy, +),

St « Par-Prefix-Sum (Sg, +)

8 arrayU[1:Sy[IVIT), FI1:SE[IEI]]

9. parallel for u < 1 to |V| do

10.
1.
12.
13.
14.
15.
16.

ifSful=1thenU[S [u]l]l« V[u]
parallel for i« 1 to |E| do

if Selil=1then F[SE[i]] <« E[i]
parallel for i« 1 to |F| do

u«—FiluveFilv

FlilJue<S'J[ul,Flilve<S[vVv]
return (U, F)

The prefix sums in line 7 perform ©(|V| + |E|)
work and have ®(log?|V| + log? |E|) depth. The
rest of the algorithm also perform O(|V| + |E|)
work but in ®(log|V| + log |E|) depth. Hence,

Work: O(|V| + |E|)
Span: ©(log?|V| + log? |E|)

Randomized Maximal Independent Set (MIS)

Par-Randomized-MIS (n, V, E, MIS)

1.
2.

10.
1.

12.
13.
14.

while |V| > 0 do
arrayd[1: |V],c[1:1V]]={0},
ME1:1vVI]={0}
parallel fori < 1 to |E| do
ifi=|E|lorE[i]l.u#E[i+1].u then
c[E[i]u]«i
parallel for u < 1 to |V| do
ifu=1thend[u] « c[u]
elsedfu]«c[u]-c[u-1]
ifdlu]l=0thenM[u] « 1
else Mfu] < 1 (withprob1/ (2d[u]))
parallel for each (u, v) e E do
ifM[ul]=1and M[v] =1 then
ifdlul<d[v]thenMu]« 0
else M[v]« 0
parallel for u < 1 to |V| do
ifM[ul=1thenMIS[V[u]] <« 1
(V, E) « Par-Compress (V, E, M)

Let n = #vertices, and m = #edges initially.

Let us assume for the time being that at least a
constant fraction of the edges are removed in
each iteration of the while loop (we will prove
this shortly). Let this fractionbe f(< 1).

This implies that the while loop iterates
@(logl/(l_f) m) = @(logm) times. (how?)
Each iteration performs ®(|V| + |E|) work and
has ®(log?|V| + log? |E|) depth. Hence,

Work: T;(n,m) = © ((n +m) Lio(1 — f)i)

= 0O(n+m)
Span: T,(n,m) = ©((log®n + logzm)logm)
= O(log3n)
. . T,(nm) n+m
Parallelism: o) ® (10g3 n)

Analysis of Randomized MIS
Let, d(v) be the degree of vertex v, and I'(v) be its set of neighbors.

Good Vertex: A vertex v is good provided |L(v)| = @ , Where,

L(v) = {u | (u S F(v)) A (d(u) < d(v)) }

Bad Vertex: A vertex is bad if it is not good.

Good Edge: An edge (u, v) is good if at least one of u and v is good.

Bad Edge: An edge (u, v) is bad if both u and v are bad.

Analysis of Randomized MIS

Lemma 1: In some iteration of the while loop, let v be a good vertex
with d(v) > 0, and let M be the set of vertices that got marked (in
lines 7-8). Then

Pr{ilT(w)"M#0}>1—e Ve,
Proof: We have, Pr{lT (W) "M #0}=1—-Pr{IT'(v) "M =0}

=1— l_[PriugM}>1-— l_[Pr{u¢ M}

u €r(v) u €L(v)
1= [(t-3m)2 - [1 (t-35)
u €L(v) 2d (u) u €L(v) 2d (v)
., . 1 IL(v)] . . 1 d(v)/3
B 2d(v) - 2d(v)
_dw)/3 1
>1—e 2dW) =1—¢" 6

Analysis of Randomized MIS

Lemma 2: In any iteration of the while loop, let M be the set of vertices

that got marked (in lines 7-8), and let S be the set of vertices that got
included in the MIS (in line 13). Then

Pr{vESlvEM}Z%.

Proof: We have, Prive S |ve M}

>1—Pr{3uelw)s.t. (dlu)=d@w))A(u€e M)}

=1- z Zdl(u)21_ z 2d1(v)

uer) uelrw)
d(u)=d((v) d(u)=d(v)

1 1 1
=1- 2 OB T O

uer(v)

Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let V be the set of good
vertices, and let S be the vertex set that got included in the MIS. Then

Pr{veSUT(S) |veV;}2-(1 —e 1°).
Proof: We have, Priv e SUT(S) |v e V; }
>Pr{velS)|veV,}=Pr{TW)NS#d|veV,)

=Pr{ilfw) NS+ |TW)NM =+ ¢p,veV;}
XPr{iT(w) NM=¢p|veV;}

>PriueS|luelfv)nM,veV;}
XPr{iT(w) NM=¢p|veV;}

1
_ _ »—1/6
> > (1 e)

Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let V be the set of good
vertices, and let S be the vertex set that got included in the MIS. Then

Pr{veSUT(S) |veV;}2-(1 —e 1°).

Corollary 1: In any iteration of the while loop, a good vertex gets

removed (in line 14) with probability at least % (1 —e=1/9).

Corollary 2: In any iteration of the while loop, a good edge gets

removed (in line 14) with probability at least % (1 —e=1/°).

Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let E and E; be the sets

of all edges and good edges, respectively. Then |E¢| = |E|/2.

Proof: For each edge (u,v) € E, direct (u,v) fromutovifd(u) <
d(v), and v to u otherwise.

For every vertex v in the resulting digraph let d; (v) and d,(v) denote
its in-degree and out-degree, respectively.

Let V; and /5 be the set of good and bad vertices, respectively.

d(v)
-

Then foreachv € Vg, d,(v) — d;(v) =

Let mggp, Mg, Mgp and mg; be the #edges directed from Vz to V3,
from Vg to V¢, from V. to V5, and from V; to V, respectively.

Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let E and E; be the sets

of all edges and good edges, respectively. Then |E;| = |E|/2.

Proof (continued): We have,
ZmBB + Mpg + MegR

= Y d@) <3) @) —di@) =3 Y ([@d®) - dp())

VEV R VEV R VEV g
= 3((mBG + mge) — (ngg + mGG)) = 3(mpg — Mgp)

< 3(mpg + mgp)

Thus ZmBB + Mpg + MegR < 3(mBG + mGB)
= Mpp < Mpg + Mgp = Mpp < Mpg + Mgp + Mg
= (mpg + Mgp + Mgg) + mpp < 2(mpg + Mg + Mgg)
= |E| < 2|Eq]|

Analysis of Randomized MIS

Lemma 5: In any iteration of the while loop, let E be the set of all

edges. Then the expected number of edges removed (in line 14)
during this iteration is at least i (1 —e=Y9)|E].

Proof: Follows from Lemma 4 and Corollary 2.

