CSE 613: Parallel Programming

Lecture 11
(Graph Algorithms: Connected Components)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Spring 2012

Graph Connectivity

AQ(/EA ®

Connected Components: A connected component C of an undirected

graph G is a maximal subgraph of G such that every vertex in Cis
reachable from every other vertex in C following a path in G.

Problem: Given an undirected graph identify all its connected

components.

Suppose n is the number of vertices in the graph, and
m is the number of edges.

Graph Connectivity

AQ(/EA ®

Problem: Identify All connected components of an undirected graph.

Suppose n is the number of vertices in the graph, and
m is the number of edges.

Serial Algorithms: Easy to solve in ®(m + n) time using

— Depth First Search (DFS)
— Breadth First Search (BFS)

Parallel Algorithms:
— DFS: Inherently sequential
— BFS: Depth equal to the diameter of the graph
— Graph Contraction: Can achieve polylogarithmic depth

Randomized Parallel Connected Components

1(1 (2) 3)3 4 5 6
2
8 9 12 13
7(7) { 8) {9) 10) 10 11 (11 {12) 13 14

Randomized Parallel Connected Components

1(1 (2) 3)3 4 5 6
2
8 9 12 13
7(7) {8) {9) 10) 10 11 (11 {12) 13 14

Randomized Parallel Connected Components

1(1 2 3)3 4 5 6
2
8 9 12 13
7(7) 8 {9} 10) 10 11 (11 {12) 13 14

Randomized Parallel Connected Components

8(1 2 3)2 4 13 14
2
8 8 4 13
7 @ 8 \s_aj 10) 10 11 (11 @ 13 14

Randomized Parallel Connected Components

4 2 (D)4 13 14
Vs =)

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

Randomized Parallel Connected Components

Randomized Parallel Connected Components

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

Randomized Parallel Connected Components

= S
O \) 10 10 14

Randomized Parallel Connected Components

= S
O \) 10 10 14

Randomized Parallel Connected Components

= S
O \) 10 10 14

Randomized Parallel Connected Components

= S
O \) 10 10 14

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

= o e
o e e
' @Q—@ Ok (@9) ¢

Randomized Parallel Connected Components

4 2 (D)4 13 14
Nis =)

=0 o e
IR o S O NN L
77 @4 14

Randomized Parallel Connected Components

Randomized Parallel Connected Components (CC)
Input: n is the number of vertices in the graph numbered from 1 ton, E is
the set of edges, and L[1 : n] are vertex labels with L[v] = v initially for all v.

Output: An array M| 1: n] where for all v, M[v] is the unique id of the

connected component containing v. unbiased coin toss
at each vertex

Par-Randomized-CC (n, E, L)
. if |E| =0 then returnL

—

find the rank of each

inter-group edge 2. array C[1:n],M[1:n1,S[1:|E|] group: hook child

among all such edges to a parent (race!)
3. parallel forv« 1ton do[C[v] < RANDOM{ Head, Tail } /
4. parallel for each (u, v) e E do prepare to remove
5. if Cfu]=Tailand C[v] = Head then|L[u] < v intra-group edges
6. parallel fori« 1to |E| do //

copythe inter-group . Ifl_[E[I]U]il_[E[I]V] then S[I] « 1 else S[I] «0

edges to F 8. |S « Par-Prefix-Sum (S, +)

\ 9. array F[1:S[IE|]]
10. parallel for i« 1 to |E| do Map results back
find CCin the \Nf L[E[i].u]=L[E[i].v]then to the orlglnal
graph

contracted graph F{S[i]1]< (L[E[i]ul, L[E[i].v])

— | —

12. \M < Par-Randomized-CC (n, F, L)

13. parallel for each (u, v) e E do /
14. ifv=L[u] thenM[u] < M[v]
15. return M

Randomized Parallel Connected Components (CC)

Par-Randomized-CC (n, E, L)

1.
2.

N oo v

12.

13.
14.

15.

if |1E| =0 then return L
array C[1:n],M[1:n], S[1: |E|]

. parallel for v« 1 to ndo

C[v] « RANDOM{ Head, Tail }
parallel for each (u, v) e E do
ifClu]=Tailand C[v] =Head thenL[u] « v
parallel for i« 1 to |E| do
ifLLIE[i]u]l=L[E[i].v]thenS[i] <1
else S[i]« 0

S « Par-Prefix-Sum (S, +)

.array F[1:S[|E| 1]
10.
1.

parallel fori < 1 to |E| do
if LLIE[i].ul=#L[E[i].v] then
FUS[i]]l« (LLE[i].u], LLE[i].v])
M « Par-Randomized-CC (n, F, L)
parallel for each (u, v) e E do
ifv=Llu]thenMu] < M[v]

return M

Suppose n is the number of vertices and m is
the number of edges in the original graph.

Each contraction is expected to reduce

#vertices by a factor of at least i. [why?]

So, the expected number of contraction steps,
D = O(logn). [show: the bound holds w.h.p.]

For each contraction step span is ©®(log?n),
and work is ®(n + m). [why?]

Work: T, (n,m) = @(D (n + m))
= O((n + m) logn) (w.h.p.)

Span: T, (n,m) = ©(Dlog*n)
= O(log®n) (w.h.p.)

T,(nm) ®(n+m)

Parallelism: =
Too (n,M) log®n

Deterministic Parallel Connected Components (CC)

Approach

— Form a set of disjoint subtrees
— Use pointer-jumping to reduce each subtree to a single vertex

— Recursively apply the same trick on the contracted graph

Forming Disjoint Subtrees

— Hook each vertex to a neighbor with larger label (if exists)

— Ensures that no cycles are formed

Deterministic Parallel Connected Components (CC)
Forming Disjoint Subtrees

— Hook each vertex to a neighbor with larger label (if exists)

— Ensures that no cycles are formed

4 3 7 $
6 2
— But the number of contraction steps can be as large as n — 1!

® ®

O@E/@ L) @@\z{i@ ﬁ)a\? oo » ? oo

® ® ® ®

Deterministic Parallel Connected Components (CC)

Observation:
Let G = (V, E) be an undirected graph with n vertices in which

each vertex has at least one neighbor. Then

either [{u|(u,v) EEA (u<v)} >

NS NS

or {ul(u,v) € EA(u>v)} =

Implication:
Between the two directions for hooking (i.e., smaller to larger
label, and larger to smaller label) always choose the one that
hooks the greater number of vertices.

Then in each contraction step the number of vertices will be

1
reduced by a factor of at least >

Deterministic Parallel Connected Components (CC)

Input: n is the number of vertices in the graph numbered from 1 ton, E is
the set of edges, and L[1 : n] are vertex labels with L[v] = v initially for all v.
Output: Updated array L[1: n] where for all v, L[v] is the unique id of the
connected component containing v.

count hooks from
smaller to larger
indices, and the
number of roots

R

use pointer
jumping to label
each vertex with
the id of its root

\

Par-Deterministic-CC (n, E, L)
1. if |E| =0 then return L

/

/l mark roots

mark hooks from

8. ifk>n’/2andu<vthenl[u]« v

9. elseifk<n’/2andu>vthenl[v] <« u
\ -

10.| Find-Roots (n, L, L)

11./parallel fori<« 1to |E| doS[i]« (L[E[i]lu]=L[E[i]lv])?1 :O\

12} S « Par-Prefix-Sum (S, +)
13} array F[1:S[|E|]]

14) parallel fori < 1 to |E| do
15 ifLLE[i]Jul=L[E[i].v]thenF[S[i]]« (L[E[i]Jul, LLIE[i].v])

2. array R[1:n],C[1:n],S[1: |E|]
smaller to larger
3. parallel forv« 1tondo(C[v] « 0,[R[v] «—(v=L[v])?1: O] ians
4. parallel for each (u, v) e E do —
& ifu<v therl Clu] « 1}— choose hook
6. |k < Par-Sum (C, +), n"< Par-Sum (R, +) direction to
7. parallel for each (u, v) e E do maximize #hooks
/

similar to Par-
Randomized-CC,
except that
relabeling is not
needed after the
recursive call

—

16] L <« Par-Deterministic-CC (n, F, L)

17.\@turn L

Deterministic Parallel Connected Components (CC)

© @ N oo

10.
11.

12.

13.
14.

15.

16.
17.

Par-Deterministic-CC (n, E, L)
1.
2.
3.

if |1E| =0 then return L
array R[1:n],C[1:n],S[1: |E]]
parallel for v« 1 to n do
C[v]«< O,R[Vv]«< (v=L[v])?1:0
parallel for each (u, v) e E do
ifu<vthenClu] « 1
k < Par-Sum (C, +), n"«< Par-Sum (R, +)
parallel for each (u, v) e E do
ifk=2n"/ 2andu<vthenl[u] < Vv
elseifk<n’/2andu>vthenl[v]« u
Find-Roots (n, L, L)
parallel for i« 1 to |E| do
S[i]«< (L[E[i]u]l=#L[E[i].v])?21:0
S « Par-Prefix-Sum (S, +)
array F[1:S[|1E|]]
parallel for i« 1 to |E| do
ifLLIE[i]ul=#L[E[i].v] then
FIS[i]]« (LLE[i]Jul, LL[E[i].v])
L « Par-Deterministic-CC (n, F, L)

return L

Each contraction step reduces the number of

: 1
vertices by a factor of at least p

So, number of contraction steps, D = O(logn).
For contraction step k = 0 span is O(log?n),

and work is O (;—klog;—k + m). [why?]

Work: T;(n,m) = O (ZOSKD (;—klog;—k + m))
= O(nlogn + Dm)
= O((n +m) logn)

Span: T, (n,m) = O(Dlog?n)
= O(log3n)

