CSE 613: Parallel Programming

Department of Computer Science
SUNY Stony Brook
Spring 2012

“For over a decade prophets have voiced the contention that the
organization of a single computer has reached its limits and that truly
significant advances can be made only by interconnection of a multiplicity of
computers.”

— Gene Amdahl, 1967

Course Information

Lecture Time: TuTh 2:20 pm - 3:40 pm
Location: Computer Science 2129, West Campus

Instructor: Rezaul A. Chowdhury
Office Hours: TuTh 12:00 pm - 1:30 pm, 1421 Computer Science
Email: rezaul@cs.stonybrook.edu

TA: No idea!
TA Office Hours: Same as above
TA Email: Same as above

Class Webpage:
http://www.cs.sunysb.edu/~rezaul/CSE613-512.html

Prerequisites

Required: Background in algorithms analysis
(e.g., CSE 373 or CSE 548)

Required: Background in programming languages (C / C++)

Helpful but Not Required: Background in computer architecture

Please Note: This is not a course on
— Programming languages
— Computer architecture

Main Emphasis: Parallel algorithms

Topics to be Covered

The following topics will be covered

— Analytical modeling of parallel programs
— Scheduling

— Programming using the message-passing paradigm
and for shared address-space platforms

— Parallel algorithms for dense matrix operations,
sorting, searching, graphs, computational
geometry, and dynamic programming

— Concurrent data structures

— Transactional memory, etc.

Grading Policy

Homeworks (three: lowest score 5%, others 10% each): 25%

Exams (two: higher one 20%, lower one 10%): 30%

— Midterm (in-class): March 27
— Final (in-class): May 15

Group project (one): 30%
— Proposal (in-class): Feb 28
— Progress report (in-class): April 10
— Final presentation (in-class): May 8- 10

Scribe note (one lecture): 10%

Class participation & attendance: 5%

Programming Environment

This course is supported by educational grants from

— Extreme Science and Engineering Discovery Environment
(XSEDE): https://www.xsede.org

— Amazon Web Services (AWS): http://aws.amazon.com

We will use XSEDE for homeworks/projects involving
— Shared-memory parallelism

— Distributed-memory parallelism

AWS will be used for those involving (mainly for CSE590)
— GPGPUs

— MapReduce

Programming Environment

On XSEDE we have access to

— Ranger: = 4,000 compute nodes with 16 cores/node

— Lonestar 4: = 2,000 compute nodes with 12 cores/node

World’s Most Powerful Supercomputers in June, 2008

DOE/NNSA/LANL
United States

DOE/NNSA/LLNL
United States

Argonne National Laboratory

United States

Texas Advanced Computing
Center/Univ. of Texas

United States

N A b
1er - BladeCenter

gl

~‘~I 8i 3.2 Ghz / Optero
Joltaire Infiniband / 2008
IBM
BlueGenel/l -

2007
IBM

Gene/P Solution /2007

Blue

IBM

Ranger - SunBlade x6420, Opte

2Ghz, Infiniband / 2008
Sun Microsystems

eServer Blue Gene

(www.top500.0orqg)

AS22/1.521 Cluster

nDC 1.8 GHz

Solution/

ron Quad

122400

212992

163840

62976

1026.00 1375.78

47820 596.38

450.30 557.06

326.00 503.81

234550

2329.60

1260.00

2000.00

Textbooks

Required
— A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel
Computing (2nd Edition), Addison Wesley, 2003.

Recommended

— M. Herlihy and N. Shavit. The Art of Multiprocessor Programming (1st
Edition), Morgan Kaufmann, 2008.

— F. Gebali. Algorithms and Parallel Computing (1st Edition), Wiley, 2011.

— T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms
(3rd Edition), MIT Press, 2009. (chapter 27 on Multithreaded Algorithms)

— P. Pacheco. Parallel Programming with MPI (1st Edition), Morgan
Kaufmann, 1996.

Why Parallelism?

Transistor count

2,600,000,000 -
1,000,000,000 -

100,000,000 -

10,000,000 -

1,000,000 -

100,000 -

10,000 -

2,300 -

Moore’s Law

16-Core SPARC T2
Sw-Core Core I7

Six-Core Xeon 7400 l ©10-Cara Xaon Wastman-EX

Cuak-Core Harsum 2@ r a-oo-a P(MER?

AMD K10 on'.‘ Ilaﬂum Tuewia
Powenso Jorm EX
ltanum 2 with 9\8 cache @
um 2 'w MDK\DC '\Cag::ﬁom Optcroﬂ 2@
2 Duwo
wnmze /BEF
/0 AMD K8
Ponthan 4 @ Baron ® Aom
AMD K7
@ A\D Ke-ul
curve shows transistor AMD K&
count doubling every Ll
0 years @AMD K5
@ Pertium
BO4EE /
//'
amac/o/
802050
. ® 80185
soss @ @B0es
noas\
GO0 g e88M
N l ez
20080 OMOS 852
“004@ /RCA 1802
r T T T |
1971 1980 1990 2000 2011

Date of introduction

Source: Wikipedia

10000.00

1000.00

100.00

10.00

1.00

B intel 386

intel 486

intel pentium
X intel pentium2

® intel pentium3
<= intel pentium4

@ intel itanium
=» Alpha 21064
Alpha21164
Alpha 21264
Sparc
Super Spar c
Spar c64
Mips
HP PA
== Power PC
» AMD K6
AMD K7
& AMD x86-64

Unicore Performance

Specint2000

| g ®

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 0102 03 04 05 06 07

Source: Chung-Ta King, Department of Computer Science, National Tsing Hua University

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Unicore Performance Has Hit a Wall!

Some Reasons

— Lack of additional ILP
(Instruction Level Hidden Parallelism)

— High power density
— Manufacturing issues
— Physical limits

— Memory speed

Unicore Performance: No Additional ILP

Exhausted all ideas to exploit hidden parallelism?
— Multiple simultaneous instructions
— Dynamic instruction scheduling
— Branch prediction
— Out-of-order instructions
— Speculative execution
— Pipelining

— Non-blocking caches, etc.

Unicore Performance: High Power Density
— Dynamic power, P o< V2 fC

— V =supply voltage
— f=clock frequency
— C=capacitance

— But Ve f
3
— Thus P, o< f
10.000 Sun’s Surface >
= Rocket Nozzle
£ 1,000 =
L
i Nuclear Reactor
D
§ 100 Pentium®
& 8086
§ 104004 8085 Hot Plate
8008
286 386
8080 486
1
70 ‘80 ‘90 ‘00 ‘10

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

| Performance
Power

1.00x

Design
Frequency

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

1.73x 1| Performance

Over-clocked Design
(+20%) Frequency

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

Over-clocked Design Dual-core
(+20%) Frequency Unc;eé‘r(:)l%ked

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: Manufacturing Issues

— Frequency, foe<1/s

— s =feature size (transistor dimension)

— Transistors / unit area o< 1 / s2
— Typically, die size <1/ s

— So, what happens if feature size goes down by a factor of x?

— Raw computing power goes up by a factor of x*!

— Typically most programs run faster by a factor of x3
without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Manufacturing Issues

As feature size decreases
— Manufacturing cost goes up

— Cost of a semiconductor fabrication plant doubles
every 4 years (Rock’s Law)

— Yield (% of usable chips produced) drops

Cost of semiconductor factories in millions of 1995 dollars

10,000
Hratlo scale)

P
: L
1,000 g /
: o
100 - {‘
z -
10._ ”./ 0

=

1

'G6 ‘T4 's2 'a0 '98

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for (i=0;i<10%; ++i)

zZlil=x[i]+yli];
— We will have to access 3x1012 data items in one second
— Speed of light is, c = 3x108m/s

— So each data item must be within ¢/ 3x102 = 0.1 mm
from the CPU on the average

— All data must be putinside a 0.2 mm x 0.2 mm square

— Each data item (= 8 bytes) can occupy only 1 A2 space!
(size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Memory Wall

Relative
Performance
10000
B CPU
1000
100
10
1
1980 1985 1990 1995 2000 2005

Source: Sun World Wide Analyst Conference Feb. 25, 2003

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

Moore’s Law Reinterpreted

10000000
3
1000000 -
* Transistors (Thousands) o by
“» S
S— = Frequency (MHz) .
a Power (W) ¢
10000 +— ® Cores
wrge s
4 .
1000 — -]
“ -
9 A
100 ! - = e 4 AAAAA
A,
m A9, .2 A A
b A, b2 A
10 < S o ® 9
. A 2 e A A A
. 3 A A)
1 i . ’
0 1 T 1 T L T T
1970 1975 1980 1985 1990 1995 2000 2005

Source: Report of the 2011 Workshop on Exascale Programming Challenges

2010

Cores / Processor (General Purpose)

Future: 100+

[» F
|

arrabee: 12-32

Nehalem: 8+

LWk

Core2 Quad (4)

Number of Core:

Core 2 Duo (2)

2006 2007 2008 2009 2010 2015

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Operations per second for serial code

No Free Lunch for Traditional Software

1

T

8
~

5
Ez
0
w
c—ug: Single Core
Ség 1272007 |
’§§§N 2 Cores
F%g' : | .
/
5§ gl /
wse s
- I r
5§§ / 4 Cores
& | / =
S>3 / s >
- ! } p g 4 8Cores|
g 3GHz 4 Cores E J0HzsCom — — ~
e 7 .-‘.’ --""—_
S N SR =
be=—"

Additional operations per second if code can take advantage of concurrency

Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)

Insatiable Demand for Performance

Genomics Research Financial Analysis Medical Imaging

Source: Patrick Gelsinger, Intel Developer Forum, 2008

Numerical Weather Prediction
Problem: (temperature, pressure, ..., humidity, wind velocity)
< f(longitude, latitude, height, time)

Approach (very coarse resolution):

— Consider only modeling fluid flow in the atmosphere

— Divide the entire global atmosphere into cubic cells of
size 1 mile x 1 mile x 1 mile each to a height of 10 miles
=~ 2 x 10° cells

— Simulate 7 days in 1 minute intervals
~ 10% time-steps to simulate

— 200 floating point operations (flop) / cell / time-step
~ 4 x 10'> floating point operations in total

— To predictin 1 hour = 1 Tflop/s (Tera flop / sec)

Some Useful Classifications
of Parallel Computers

Parallel Computer Memory Architecture
(Shared Memory)

— All processors access all memory
as global address space

— Changes in memory by one
processor are visible to all others

— Tow types:

— Uniform Memory Access
(UMA)

Bus Interconnect

— Non-Uniform Memory
NUMA

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Shared Memory)

Advantages

— User-friendly programming
perspective to memory

— Fast data sharing

Disadvantages

— Difficult and expensive

to scale

Bus Interconnect

user responsibility
NUMA

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Distributed Memory)

— Each processor has its own
local memory — no global
address space

— Changes in local memory by

one processor have no effect

Source: Blaise Barney, LLNL

on memory of other processors

— Communication network to connect inter-processor memory

Parallel Computer Memory Architecture
(Distributed Memory)

Advantages
— Easily scalable

— No cache-coherency
needed among processors

— Cost-effective

Source: Blaise Barney, LLNL
Disadvantages
— Communication is user responsibility

— Non-uniform memory access

— May be difficult to map shared-memory data structures

to this type of memory organization

Parallel Computer Memory Architecture
(_ Hybrid Distributed-Shared Memory)

— The share-memory component
can be a cache-coherent SMP or
a Graphics Processing Unit (GPU)

— The distributed-memory
component is the networking of
multiple SMP/GPU machines

— Most common architecture
for the largest and fastest
computers in the world today

Source: Blaise Barney, LLNL

Flynn's Taxonomy of Parallel Computers

Flynn’s classical taxonomy (1966):
Classification of multi-processor computer architectures along
two independent dimensions of instruction and data.

Single Data Multiple Data
(SD) (MD)
Single Instruction

(sl) SISD SIMD

Multlpl(el:,rlmls;ructlon MISD MIMD

Flynn's Taxonomy of Parallel Computers

SISD

— A serial (non-parallel) computer

— The oldest and the most common

type of computers

— Example: Uniprocessor unicore

machines

load A
load B
C=A+B

aw)

store C
A=B*2

store A

Source: Blaise Barney, LLNL

Flynn's Taxonomy of Parallel Computers

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)|
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 ~ P2 Pn
SIMD

— A type of parallel computer

aw 1)

=7

-+

I/

(XY

X[1 |

YI1 |

(x3 X2 |’ x1 x0 |]
+

v [v2] v1 [yo)

x2+y2 | x1+y1 x0+y0|]

X[1+Y[] [x3+y3

Source: Blaise Barney, LLNL

— All PU’s run the same instruction at any given clock cycle

— Synchronous (lockstep) execution

Each PU can act on a different data item

— Two types: processor arrays and vector pipelines

Example: GPUs (Graphics Processing Units)

Flynn's Taxonomy of Parallel Computers

MISD
— A type of parallel computer

— Very few ever existed

MIMD
— A type of parallel computer

— Synchronous /asynchronous

execution

— Examples: most modern
supercomputers, parallel
computing clusters,
multicore PCs

prev instruct prev instruct prev instruct
load A(1) load A(1) load A(1)
C(1)=A(1)" C(2)=A(1)"2 C(n)=A(1)"n
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
e P2 Pn
prev instruct prev instruct prev instruct
load A(1) call funcD do 10 i=1,N
load B(1) X=y*z alpha=w**3
C(1)=A(1)*B(1) sum=x*2 zeta=C(i)
store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct
P1 P2 Pn

awn

dwiy

Source: Blaise Barney, LLNL

Parallel Algorithms
Warm-up

“The way the processor industry is going, is to add more and more cores, but
nobody Rnows how to program those things. I mean, two, yeah; four, not
really; eight, forget it.”

— Steve Jobs, NY Times interview, June 10 2008

Parallel Algorithms Warm-up (1)

Consider the following loop:

fori=1tondo
Cli]<A[i]xB[i]

— Suppose you have an infinite number of processors/cores

— lIgnore all overheads due to scheduling, memory accesses,
communication, etc.

— Suppose each operation takes a constant amount of time
— How long will this loop take to complete execution?

— O(1)time

Parallel Algorithms Warm-up (2)

Now consider the following loop:

c<—0
fori=1tondo
c<—Cc+A[i]xB[i]

— How long will this loop take to complete execution?

— O(logn) time

Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort(A)
if |A|<1returnA
else p<« Alrand(|A])]
return QSort({xe A:x<p})

#{p}#
QSort({xe A:x>p})

— Assuming that A is split in the middle everytime, and the two
recursive calls can be made in parallel, how long will this

algorithm take?

— O(log? n) time!

