CSE 613: Parallel Programming

Department of Computer Science
SUNY Stony Brook
Spring 2012

“For over a decade prophets have voiced the contention that the
organization of a single computer has reached its limits and that truly
significant advances can be made only by interconnection of a multiplicity of
computers.”

— Gene Amdahl, 1967



Course Information

Lecture Time: TuTh 2:20 pm - 3:40 pm
Location: Computer Science 2129, West Campus

Instructor: Rezaul A. Chowdhury
Office Hours: TuTh 12:00 pm - 1:30 pm, 1421 Computer Science
Email: rezaul@cs.stonybrook.edu

TA: No idea!
TA Office Hours: Same as above
TA Email: Same as above

Class Webpage:
http://www.cs.sunysb.edu/~rezaul/CSE613-512.html



Prerequisites

Required: Background in algorithms analysis
(e.g., CSE 373 or CSE 548 )

Required: Background in programming languages ( C / C++)

Helpful but Not Required: Background in computer architecture

Please Note: This is not a course on
— Programming languages
— Computer architecture

Main Emphasis: Parallel algorithms



Topics to be Covered

The following topics will be covered

— Analytical modeling of parallel programs
— Scheduling

— Programming using the message-passing paradigm
and for shared address-space platforms

— Parallel algorithms for dense matrix operations,
sorting, searching, graphs, computational
geometry, and dynamic programming

— Concurrent data structures

— Transactional memory, etc.



Grading Policy

Homeworks ( three: lowest score 5%, others 10% each ): 25%

Exams ( two: higher one 20%, lower one 10% ): 30%

— Midterm ( in-class ): March 27
— Final (in-class ): May 15

Group project ( one ): 30%
— Proposal ( in-class ): Feb 28
— Progress report ( in-class ): April 10
— Final presentation ( in-class ): May 8- 10

Scribe note ( one lecture ): 10%

Class participation & attendance: 5%



Programming Environment

This course is supported by educational grants from

— Extreme Science and Engineering Discovery Environment
( XSEDE ): https://www.xsede.org

— Amazon Web Services ( AWS ): http://aws.amazon.com

We will use XSEDE for homeworks/projects involving
— Shared-memory parallelism

— Distributed-memory parallelism

AWS will be used for those involving ( mainly for CSE590 )
— GPGPUs

— MapReduce



Programming Environment

On XSEDE we have access to

— Ranger: = 4,000 compute nodes with 16 cores/node

— Lonestar 4: = 2,000 compute nodes with 12 cores/node
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Textbooks

Required
— A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel
Computing (2nd Edition), Addison Wesley, 2003.

Recommended

— M. Herlihy and N. Shavit. The Art of Multiprocessor Programming (1st
Edition), Morgan Kaufmann, 2008.

— F. Gebali. Algorithms and Parallel Computing (1st Edition), Wiley, 2011.

— T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms
(3rd Edition), MIT Press, 2009. (chapter 27 on Multithreaded Algorithms)

— P. Pacheco. Parallel Programming with MPI (1st Edition), Morgan
Kaufmann, 1996.



Why Parallelism?
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Unicore Performance Has Hit a Wall!

Some Reasons

— Lack of additional ILP
(Instruction Level Hidden Parallelism)

— High power density
— Manufacturing issues
— Physical limits

— Memory speed



Unicore Performance: No Additional ILP

Exhausted all ideas to exploit hidden parallelism?
— Multiple simultaneous instructions
— Dynamic instruction scheduling
— Branch prediction
— Out-of-order instructions
— Speculative execution
— Pipelining

— Non-blocking caches, etc.



Unicore Performance: High Power Density
— Dynamic power, P o< V2 fC

— V =supply voltage
— f=clock frequency
— C=capacitance
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Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 ( Simon Floyd )



Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?
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Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

1.73x 1| Performance

Over-clocked Design
(+20%) Frequency

Source: Andrew A. Chien, Vice President of Research, Intel Corporation



Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?
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Unicore Performance: Manufacturing Issues

— Frequency, foe<1/s

— s =feature size ( transistor dimension )

— Transistors / unit area o< 1 / s2
— Typically, die size <1/ s

— So, what happens if feature size goes down by a factor of x?

— Raw computing power goes up by a factor of x*!

— Typically most programs run faster by a factor of x3
without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Manufacturing Issues

As feature size decreases
— Manufacturing cost goes up

— Cost of a semiconductor fabrication plant doubles
every 4 years ( Rock’s Law )

— Yield ( % of usable chips produced ) drops

Cost of semiconductor factories in millions of 1995 dollars
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Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for (i=0;i<10%; ++i)

zZlil=x[i]+yli];
— We will have to access 3x1012 data items in one second
— Speed of light is, c = 3x108m/s

— So each data item must be within ¢/ 3x102 = 0.1 mm
from the CPU on the average

— All data must be putinside a 0.2 mm x 0.2 mm square

— Each data item ( = 8 bytes ) can occupy only 1 A2 space!
( size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Memory Wall
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Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems



Moore’s Law Reinterpreted
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Cores / Processor ( General Purpose )
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Operations per second for serial code

No Free Lunch for Traditional Software
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Insatiable Demand for Performance

Genomics Research Financial Analysis Medical Imaging

Source: Patrick Gelsinger, Intel Developer Forum, 2008



Numerical Weather Prediction
Problem: (temperature, pressure, ..., humidity, wind velocity )
< f( longitude, latitude, height, time )

Approach ( very coarse resolution ):

— Consider only modeling fluid flow in the atmosphere

— Divide the entire global atmosphere into cubic cells of
size 1 mile x 1 mile x 1 mile each to a height of 10 miles
=~ 2 x 10° cells

— Simulate 7 days in 1 minute intervals
~ 10% time-steps to simulate

— 200 floating point operations ( flop ) / cell / time-step
~ 4 x 10'> floating point operations in total

— To predictin 1 hour = 1 Tflop/s ( Tera flop / sec)



Some Useful Classifications
of Parallel Computers



Parallel Computer Memory Architecture
( Shared Memory )

— All processors access all memory
as global address space

— Changes in memory by one
processor are visible to all others

— Tow types:

— Uniform Memory Access
(UMA)

Bus Interconnect

— Non-Uniform Memory
NUMA

Source: Blaise Barney, LLNL



Parallel Computer Memory Architecture
( Shared Memory )

Advantages

— User-friendly programming
perspective to memory

— Fast data sharing

Disadvantages

— Difficult and expensive

to scale

Bus Interconnect

user responsibility
NUMA

Source: Blaise Barney, LLNL



Parallel Computer Memory Architecture
( Distributed Memory )

— Each processor has its own
local memory — no global
address space

— Changes in local memory by

one processor have no effect

Source: Blaise Barney, LLNL

on memory of other processors

— Communication network to connect inter-processor memory



Parallel Computer Memory Architecture
( Distributed Memory )

Advantages
— Easily scalable

— No cache-coherency
needed among processors

— Cost-effective

Source: Blaise Barney, LLNL
Disadvantages
— Communication is user responsibility

— Non-uniform memory access

— May be difficult to map shared-memory data structures

to this type of memory organization



Parallel Computer Memory Architecture
(_ Hybrid Distributed-Shared Memory )

— The share-memory component
can be a cache-coherent SMP or
a Graphics Processing Unit (GPU)

— The distributed-memory
component is the networking of
multiple SMP/GPU machines

— Most common architecture
for the largest and fastest
computers in the world today

Source: Blaise Barney, LLNL



Flynn's Taxonomy of Parallel Computers

Flynn’s classical taxonomy ( 1966 ):
Classification of multi-processor computer architectures along
two independent dimensions of instruction and data.

Single Data Multiple Data
(SD) (MD)
Single Instruction

(sl) SISD SIMD

Multlpl(el:,rlmls;ructlon MISD MIMD




Flynn's Taxonomy of Parallel Computers

SISD

— A serial ( non-parallel ) computer

— The oldest and the most common

type of computers

— Example: Uniprocessor unicore

machines

load A
load B
C=A+B

aw)

store C
A=B*2

store A

Source: Blaise Barney, LLNL



Flynn's Taxonomy of Parallel Computers

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)|
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 ~ P2 Pn
SIMD

— A type of parallel computer
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Source: Blaise Barney, LLNL

— All PU’s run the same instruction at any given clock cycle

— Synchronous ( lockstep ) execution

Each PU can act on a different data item

— Two types: processor arrays and vector pipelines

Example: GPUs ( Graphics Processing Units )



Flynn's Taxonomy of Parallel Computers

MISD
— A type of parallel computer

— Very few ever existed

MIMD
— A type of parallel computer

— Synchronous /asynchronous

execution

— Examples: most modern
supercomputers, parallel
computing clusters,
multicore PCs

prev instruct prev instruct prev instruct
load A(1) load A(1) load A(1)
C(1)=A(1)" C(2)=A(1)"2 C(n)=A(1)"n
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
e P2 Pn
prev instruct prev instruct prev instruct
load A(1) call funcD do 10 i=1,N
load B(1) X=y*z alpha=w**3
C(1)=A(1)*B(1) sum=x*2 zeta=C(i)
store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct
P1 P2 Pn

awn

dwiy

Source: Blaise Barney, LLNL



Parallel Algorithms
Warm-up

“The way the processor industry is going, is to add more and more cores, but
nobody Rnows how to program those things. I mean, two, yeah; four, not
really; eight, forget it.”

— Steve Jobs, NY Times interview, June 10 2008



Parallel Algorithms Warm-up (1)

Consider the following loop:

fori=1tondo
Cli]<A[i]xB[i]

— Suppose you have an infinite number of processors/cores

— lIgnore all overheads due to scheduling, memory accesses,
communication, etc.

— Suppose each operation takes a constant amount of time
— How long will this loop take to complete execution?

— O(1)time



Parallel Algorithms Warm-up (2)

Now consider the following loop:

c<—0
fori=1tondo
c<—Cc+A[i]xB[i]

— How long will this loop take to complete execution?

— O(logn) time



Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort( A)
if |A|<1returnA
else p<« Alrand( |A] )]
return QSort({xe A:x<p})

#{p}#
QSort({xe A:x>p})

— Assuming that A is split in the middle everytime, and the two
recursive calls can be made in parallel, how long will this

algorithm take?

— O(log? n) time!



