CSE613: Parallel Programming, Spring 2012 Date: April 21

Homework #3

( Due: May 5 )

Task 1. [ 30 Points | Shared-Memory Quicksort.

(a)

(b)

[ 5 Points | Implement the parallel prefix sums algorithm covered in the class (see slides 10—
14 of lecture 7) in Cilk++. Optimize your code as much as possible (e.g., memory allocation,
space usage, base case size, etc.).

[ 5 Points | Use your parallel prefix sums implementation from part (a) to implement the
parallel partitioning algorithm covered in the class (see slides 1-10 of lecture 9). Optimize
your code.

[ 10 Points ] Use your implementation of the parallel partitioning algorithm from part
(b) to implement the randomized looping quicksort algorithm (PAR-RANDOMIZED-LOOPING-
QUICKSORT) from Task 3 of HW1. Check if instead of recursing down to arrays of size 1,
stopping as soon as the array size becomes smaller than some base case size and using serial
insertion sort! to sort that small array reduces running time. If so, find and report the base
case size that gives you the best running time.

[ 5 Points | For each test case (see Appendix 2) report the running time of your quicksort
algorithm from part (¢) when run on a single core as well as on all cores. Also report the
speedup values.

[ 5 Points | Replace your parallel partitioning function with a serial partitioning function? in
your implementation of PAR-RANDOMIZED-LOOPING-QUICKSORT. Now compare this imple-
mentation with your original implementation (with parallel partitioning) in part (¢). Report
the running times of both algorithms when run on all cores. Explain your findings.

Task 2. [ 70 Points | Distributed Sample Sort with Shared-Memory Quicksort.

(a)

(b)

(©)

[ 15 Points | Consider the distributed sample sort algorithm given in Figure 1 where each
process uses a shared-memory parallel sorting algorithm for sorting local keys. Prove that in
step 5 each process sorts at most %—I—% keys in the worst case provided p,q > 1 and n > p?¢>.

[ 25 Points | Implement the algorithm given in Figure 1 using MPI and Cilk++. Appendix
1 tells you how to run MPI over Cilk++.

[ 10 Points | Analyze the computation and communication complexities of your implemen-
tation in part (b).

!see Chapter 2, Section 2.1 of “Introduction to Algorithms”, 3rd Ed., by Cormen et al.
2use the algorithm on p. 171 or the one on p. 185 of “Introduction to Algorithms”, 3rd Ed., by Cormen et al.



DISTRIBUTED-SHARED-MEMORY-SORT( A[l : n], ¢q )

(Input is an array A of n distinct numbers, and a parameter ¢ used for deciding the number of local pivot elements
to be selected by each process. The output is A in sorted order.)

1.

Initial Distribution: The master process distributes the n keys among all p processes (including itself) as
evenly as possible.

Pivot Selection: Each process sorts its own set of keys using the shared-memory quicksort algorithm from
part (c) of Task 1, and selects ¢ — 1 evenly spaced keys as local pivots from this sorted sequence. The local
pivots divide the sorted local keys into ¢ segments of equal (or almost equal) length. Each process sends its
local pivots to the master process which sorts these p(q — 1) keys using the shared-memory quicksort, and
selects p — 1 evenly spaced pivot elements from the sorted sequence. The master process broadcasts these
global pivot elements to all processes.

Local Bucketing: Each process inserts the global pivots into its local sorted sequence using binary search,
and thus divides its local keys into p buckets.

Distribute Local Buckets: For each i € [1, p], each process sends its i-th bucket to process i.

5. Local Sort: Each process sorts the keys it received in step 4 using the shared-memory quicksort algorithm

from part (¢) of Task 1.

Final Collection: The master process collects the sorted keys from all processes.

(d)

Figure 1: Distributed sample sort using shared-memory quicksort for local sorting.

[ 10 Points | Assuming ¢ = kp for integer k > 1, find and report the value of k that gives
you the best running time for your implementation in part (b). Use three compute nodes?
and one process per node for this optimization. Include a plot showing how the running time
changes as k varies.

[ 10 Points | For each test case (see Appendix 2) report the running time of your implemen-
tation from part (d) when run on three compute nodes but the number of processes per node
is varied (chosen from {1,2,6,12}). Report running times with and without including steps
1 (Initial Distribution) and 6 (Final Collection) in all cases. Explain your findings.

3as

the “development queue” on Lonestar does not allow the use of more than 3 compute nodes in parallel, and

the “normal queue” has a long scheduling delay




APPENDIX 1: Calling Cilk++ Functions from MPI Code

ncr.cilk ncr-mpi.cpp
#include <cilk.h>
int nCr( int n, int r ) #include <mpi.h>
{
if ( r > n ) return O; extern "C++" int nCr_CPP( int n, int r );
if ((r==0) ||l (r==n) ) return 1;
int main( int argc, char *argv[ ] )
int x, y; {
MPI_Init( &argc, &argv );
x = cilk_spawn nCr( n - 1, r - 1 );
y=nCr(n-1, r ); int rank;
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
cilk_sync;
printf( "C( %d, %4 ) = %d\n", 30, 15 + rank,
return ( x +y ); nCr_CPP( 30, 15 + rank ) );
}
MPI_Finalize( );
extern "C++" int nCr_CPP( int n, int r )
{ return O;
return cilk::run( nCr, n, r ); }
}

In ncr.cilk we have a Cilk++ function called nCr which we would like to call from within the
MPI code ncr-mpi.cpp. Since we do not have a cilk.main function in ncr-mpi.cpp, we do not
have a Cilk++ context, and so nCr cannot be called directly from within ncr-mpi.cpp. Instead we
create a function (named nCr_CPP) callable from C++ which starts a Cilk++ environment through
cilk::run and calls nCr.

You can compile and link the files as follows on Lonestar. The first command creates a shared
library named libncr.so from ncr.cilk, and the second one compiles ncr-mpi.cpp and links it
with libncr. so.

cilk++ -m64 -fPIC -shared -o libncr.so ncr.cilk
mpicxx ncr-mpi.cpp -L. -L$CILKHOME/1ib64 -W1l,-rpath=.
—-Incr -lcilk_main -lcilkrts -lcilkutil

The resulting MPI program (a.out) can be run as follows (from your job script).
ibrun tacc_affinity a.out

If you want to run your MPI program on ¢t compute nodes on Lonestar, and launch k € {1,2,3,4,6, 12}
parallel processes on each node, then include the following line in your job script with m = 12¢.

#$ -pe kway m

If k& parallel processes are launched on each node, then Cilk++ functions called from each process
will be able to launch at most 12/k concurrent threads. Recall that when multiple processes are



launched on the same node then the total memory is divided among the processes and no process
is able to access the memory allocated to other processes, but all threads running under a process
share the memory allocated to that process.

APPENDIX 2: Input/Output Format

— Input Format: The first line of the input file will contain the number of integers (n) in the
file. Each of the next n lines will contain one integer. All integers in the file will be distinct.

— Output Format: The output will consist of n lines. Line i € [1,n] will contain the i-th
integer in sorted (increasing) order.

— Test Input: Folder /work/01905/rezaul/CSE613/HW3/test on Lonestar.

APPENDIX 3: What to Turn in

Please email one compressed archive file (e.g., zip, tar.gz) containing the following items to cse613hw@
cs.stonybrook.edu.

— Source code, makefiles and job scripts for both tasks.

— A PDF document containing all answers.

APPENDIX 4: Things to Remember

— Please never run anything that takes more than a minute or uses multiple cores
on TACC login nodes. TACC policy strictly prohibits such usage. They reserve the right
to suspend your account if you do so. All runs must be submitted as jobs to compute nodes.

— Please store all data in your work folder (SWORK), and not in your home folder ($SHOME).

— When measuring running times please exclude the time needed for reading the input and
writing the output. Measure only the time needed by the algorithm.



