
CSE613: Parallel Programming, Spring 2012 Date: March 6

Homework #1
( Due: March 20 )

Task 1. [ 80 Points ] Pairwise Sequence Alignment with Affine Gap Costs. Sequence
alignment plays a central role in biological sequence comparison, and can reveal important rela-
tionships among organisms. Given two strings X = x1x2 . . . xm and Y = y1y2 . . . yn over a finite
alphabet Σ, an alignment of X and Y is a matching M of sets {1, 2, . . . ,m} and {1, 2, . . . , n} such
that if (i, j), (i′, j′) ∈ M and i < i′ hold then j < j′ must also hold. The i-th letter of X or Y is
said to be in a gap if it does not appear in any pair in M . Given a gap penalty g and a mismatch
cost s(a, b) for each pair a, b ∈ Σ, the basic (global) pairwise sequence alignment problem asks for a
matching Mopt for which (m + n− |Mopt|)× g +

∑
(a,b)∈Mopt

s(a, b) is minimized.

The formulation of the basic sequence alignment problem favors a large number of small gaps while
real biological processes favor the opposite. The alignment can be made more realistic by using an
affine gap penalty which has two parameters: a gap introduction cost gi and a gap extension cost
ge. A run of t gaps incurs a total cost of gi + ge × t. Such an alignment with minimum cost can be
found by solving the following dynamic programming recurrences (observe the similarity between
the recurrence for G and the LCS recurrence we saw in the class).

D(i, j) =


G(0, j) if i = 0 ∧ j > 0,

min

{
D(i− 1, j),

G(i− 1, j) + gi

}
+ ge if i > 0 ∧ j > 0.

I(i, j) =


G(i, 0) if i > 0 ∧ j = 0,

min

{
I(i, j − 1),

G(i, j − 1) + gi

}
+ ge if i > 0 ∧ j > 0.

G(i, j) =



0 if i = 0 ∧ j = 0,
gi + ge × j if i = 0 ∧ j > 0,
gi + ge × i if i > 0 ∧ j = 0,

min


D(i, j),
I(i, j),

G(i− 1, j − 1) + s(xi, yj)

 if i > 0 ∧ j > 0.

The optimal alignment cost is min {G(m,n), D(m,n), I(m,n)} and an optimal alignment can be
traced back from the smallest of G(m,n), D(m,n) and I(m,n).

For simplicity, in the rest of Task 1 we will assume that m = n = 2k for some integer k ≥ 0. We
will also assume that Σ = {A,C,G, T}, gi = 2, ge = 1, and s(xi, yj) = 1 if xi 6= yj and 0 otherwise.

(a) [ 5 Points ] Implement the serial algorithm that näıvely fills out the n × n cost arrays of
I, D and G in the forward pass in Θ

(
n2
)

time using Θ
(
n2
)

space. Remember to save the
backward pointers so that the traceback path can be extracted in the backward pass.

(b) [ 10 Points ] Parallelize the forward pass in part (a) using cilk for. Analyze the parallelism
in the resulting algorithm (include both forward pass and backward pass).
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(c) [ 15 Points ] Observe that in the serial divide-and-conquer algorithm for LCS discussed in
the class some of the recursive calls can be made in parallel (i.e., the processing of quadrants
Q12 and Q21 in the forward pass). Implement a divide-and-conquer parallel algorithm for
pairwise sequence alignment based on that idea. It is very important that you do not recurse
down to sequences of length 1, as that will make the overhead of recursion too high. Find
the base case size that gives you the smallest running time.

(d) [ 5 Points ] Analyze the parallelism and space complexity Sp (i.e., space usage on p processing
elements) of the algorithm in part (c).

(e) [ 20 Points ] Implement a divide-and-conquer parallel algorithm following the parallel LCS
algorithm we saw in the class. In the boundary generation agorithm divide the problem into
q2 subproblems, where q = 2l (l > 0) is a user-defined parameter. Optimize base case size.

(f) [ 5 Points ] Analyze the parallelism and space usage Sp of the algorithm in part (e) assuming
q = p′, where p′ is the largest power of 2 such that p′ ≤ p. Here p is the maximum number
of processing elements available on the machine.

(g) [ 10 Points ] Find the largest value of n (say, nmax) for which your implementation in part
(c) terminates in less than 30 minutes on a single core (i.e., using -cilk set worker count=1

as a parameter). Generate a Cilkview scalability plot (see slides 32–33 of lecture 3) for part
(c) and one for part (e) using sequences of length nmax. Compare the two plots and explain
the differences.

(h) [ 10 Points ] Find the largest value of n (say, n′
max) for which your implementation in part

(a) does not run out of RAM space and terminates in less than 30 minutes. Use PAPI1 to
find the number of L1 cache misses incurred by that implementation on sequences of length
n′
max. Now remove all spawn and sync keywords from your implementation in part (c), and

replace each cilk for keyword with for. Then find the number of L1 cache misses incurred
by the resulting serial implementation for n = n′

max. Explain your findings.

Task 2. [ 30 Points ] Pairwise Alignment for Highly Uneven Sequence Lengths. Consider
a scenario where m� n and m� p (see Task 1 for the definitions of m, n and p). More specifically,
assume m to be a small constant for this task. Suppose we are no longer concerned about space usage
or cache performance. We simply want to design an algorithm with high parallelism for computing
only the cost of the optimal alignment. We do not need to extract the optimal alignment (so no
need to store the backward pointers for extracting the traceback path).

(a) [ 5 Points ] Analyze the parallelism of your implementation in part (b) of Task 1 for the
current scenario.

(b) [ 20 Points ] Let us simplify the problem by removing the “affine gap penalty” assumption,
i.e., assuming gi = 0. Then solving only the following recurrence suffices:

1In order to load PAPI use “module load papi/3.6.0” on Ranger, and “module load papi/4.1.2.1” on Loanstar.
Check http://icl.cs.utk.edu/papi/ for users’ guide.
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G(i, j) =



0 if i = 0 ∧ j = 0,
ge × j if i = 0 ∧ j > 0,
ge × i if i > 0 ∧ j = 0,

min


G(i− 1, j) + ge,
G(i, j − 1) + ge,

G(i− 1, j − 1) + s(xi, yj)

 if i > 0 ∧ j > 0.

Design a parallel algorithm that fills out the cost matrix row by row. Analyze its parallelism.

(c) [ 5 Points ] Extend your algorithm in part (b) to solve the original version of the problem,
that is, with affine gap penalty (i.e., gi 6= 0) as specified in Task 1 with recurrences for D, I
and G. What is the parallelism of the extended algorithm?

Par-Randomized-Looping-Quicksort(A[q : r])

(Input is an array of distinct elements.)

1. n← r − q + 1

2. if n > 1 then

3. k ← 0

4. while max {r − k, k − q} > 3
4
n do

5. select a random element x from A[q : r]

6. k ← Par-Partition(A[q : r], x)

7. endwhile

8. parallel : Par-Randomized-Looping-Quicksort(A[q : k − 1])

Par-Randomized-Looping-Quicksort(A[k + 1 : r])

Figure 1: Parallel randomized quicksort that loops until it finds a suitable partition.

Task 3. [ 40 Points ] Randomized Parallel Quicksort with Looping. Consider the parallel
randomized quicksort algorithm given in Figure 1 which loops until it finds a pivot element with
rank between 1

4n and 3
4n. It uses the Θ (n) work and Θ

(
log2 n

)
depth parallel partition algorithm

discussed in the class.

(a) [ 5 Points ] Show that D < 8 lnn, where D is the recursion depth of the algorithm (ignoring
the recursion depth of Par-Partition).

(b) [ 5 Points ] Prove that the algorithm terminates in O
(
log3 n

)
expected time and performs

O (n log n) expected work.

(c) [ 25 Points ] Fix any element v of the original array A containing n elements, and track
its location in A during the entire running time of Par-Randomized-Looping-Quicksort.
Let Rv be the number of times v ends up in A[q : r] during a call to Par-Partition in step
6 of the algorithm. Prove that Rv ≥ 32 lnn with probability at most 1

n2 .

(d) [ 5 Points ] Prove that w.h.p. Par-Randomized-Looping-Quicksort terminates in
O
(
log3 n

)
time and performs O (n log n) work.
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APPENDIX 1: Input/Output Format for Task 1

Your code must read from standard input and write to standard output.

– Input Format: The first line of the input will contain a single integer giving the value of n
(guaranteed to be a power of 2). Each of the next two lines will contain a sequence (strings of
A, C, G, T) of length at least n. You must read only the first n symbols/characters of each
sequence.

– Output Format: The first line of the output will contain a single integer giving the optimal
alignment cost. The next two lines will contain the aligned sequences. Each output sequence
will contain the original n symbols from the input possibly separated by gaps. Use “minus”
(“-”) to represent gaps.

– Sample Input/Output: Please check the folder “/work/01905/rezaul/CSE613/HW1/samples”
on Lonestar.

APPENDIX 2: What to Turn in

Please email one compressed archive file (e.g., zip, tar.gz) containing the following items to cse613hw@
cs.stonybrook.edu.

– Source code, makefiles and job scripts for Task 1.

– A PDF document containing all answers and plots.

– Output generated for the input files under “/work/01905/rezaul/CSE613/HW1/samples/turn-
in/” on Lonestar. If the name of the input file is “xxxxx-in.txt”, please name the output files
as “xxxxx-1b-out.txt”, “xxxxx-1c-out.txt” and “xxxxx-1e-out.txt” for tasks 1(b), 1(c) and
1(e), respectively. No need to generate an output if it takes more than an hour or overflows
the RAM. In such cases simply state the cause of failure in the output file.

– Output files generated by Cilkview.

APPENDIX 3: Things to Remember

– PLEASE NEVER RUN ANYTHING THAT TAKES MORE THAN A MINUTE
OR USES MULTIPLE CORES ON TACC LOGIN NODES. TACC policy strictly
prohibits such usage. They reserve the right to suspend your account if you do so. All runs
must be submitted as jobs to compute nodes (even when you use Cilkview or PAPI).

– Please store all data in your work folder ($WORK), and not in your home folder ($HOME).

– When measuring running times please exclude the time needed for reading the input and
writing the output. Measure only the time needed by the algorithm. Do the same thing when
you run Cilkview or measure cache misses with PAPI.

– Please make sure that speedup values for trial runs (or measured speedups) are included in
the Cilkview plots you generate.
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