
CSE613: Parallel Programming, Spring 2012 Date: May 11

Final Exam
( 11:15 AM – 1:45 PM : 150 Minutes )

• This exam will account for either 10% or 20% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 20% of your grade, and the lower one 10%.

• There are three (3) questions, worth 120 points in total. Please answer all of them in the
spaces provided.

• There are 14 pages including two (2) blank pages. Please use the blank pages if you need
additional space for your answers.

• Page 14 contains some useful bounds. No additional cheatsheets are allowed.

Good Luck!

Question Score Maximum

1. Maximal Independent Set ( MIS ) 40

2. Array-based Nonblocking Concurrent Queue 40

3. Distributed-Memory Algorithms 40

Total 120

Name:
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Question 1. [ 40 Points ] Maximal Independent Set ( MIS ). We are already familiar with
a randmozied parallel algorithm (Luby’s Algorithm) for solving the following problem.

Maximal Independent Set ( MIS )

Input. An undirected graph G = (V,E). Vertex indices are unique integers from 1 to |V |.

Output. A set MIS that includes all vertices in an MIS of G, and no other vertices.

In this question we will examine a simpler parallel randomized MIS algorithm as given below.

Par-Simple-Randomized-MIS( G = ( V, E ) )

1. array M [ 1 : |V | ], r[ 1 : |V | ]
2. MIS ← ∅
3. while |V | > 0 do

4. parallel for each u ∈ V do

5. M [u]← 1 {mark u}
6. r[u]← RANDOM [ 0, 1 ] {r[u] gets a random number between 0 and 1}
7. parallel for each ( u, v ) ∈ E do

8. if r[u] ≥ r[v] then M [u]← 0 {unmark u if it has a neighbor v with r[v] ≤ r[u]}
9. if r[v] ≥ r[u] then M [v]← 0 {unmark v if it has a neighbor u with r[u] ≤ r[v]}

10. parallel for each u ∈ V do

11. if M [u] = 1 then

12. MIS ←MIS ∪ {u} {u is in MIS provided r[u] < r[v] for each neighbor v of u}
13. V ← V \ {u} {remove vertices included in the MIS from V }
14. parallel for each ( u, v ) ∈ E do

15. if M [u] = 1 or M [v] = 1 then

16. E ← E \ {( u, v )} {remove edges from E with endpoint(s) included in the MIS}
17. return MIS

1(a) [ 3 Points ] Suppose in any specific iteration of the while loop in lines 3–16, a vertex u
is included in the MIS. Then r[u] < r[v] for each neighbor v of u in the current graph.
Additionally, for any given neighbor v of u, if we also have r[u] < r[x] for each neighbor x
(6= u) of v, we call this event (u→ v). Argue that Pr[(u→ v)] ≥ 1

d(u)+d(v) , where d(u) (resp.

d(v)) is the number of neighbors of u (resp. v).
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1(b) [ 5 Points ] Consider any specific iteration of the while loop in lines 3–16. Let X(u→v) be
a random variable indicating the number of edges connected to v removed in the event of
(u→ v), and let X =

∑
(u,v)∈E

[
X(u→v) +X(v→u)

]
, where E is the set of edges in the current

iteration. Prove that E[X] ≥ |E|.
[Hint: Use linearity of expectation: E[X] =

∑
(u,v)∈E

[
E[X(u→v)] + E[X(v→u)]

]
.]
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1(c) [ 5 Points ] Argue that we overcounted in part 1(b), and each edge was counted at most
twice. Hence, the expected number of edges removed in any iteration of the while loop is at
least |E|2 , where E is the set of edges in the current iteration.

1(d) [ 5 Points ] An iteration of the while loop is good if it removes at least a quarter of the
current set of edges. Show that an iteration is good with probability at least 1

3 .

[Hint: Show that, otherwise, it will contradict part 1(c).]

1(e) [ 5 Points ] Show that the algorithm will terminate after at most 3 log4/3m+ 1 iterations of
the while loop in expectation, where m is the number of edges in the original input graph.
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1(f) [ 10 Points ] Show that w.h.p. the algorithm will terminate after at most 24 lnm iterations
of the while loop.

[Hint: For each of the 24 lnm iterations create an indicator random variable Xi indicating
whether the iteration is “good” (see part 1(d)) or not, and then use an appropriate Chernoff
bound from the appendix to show that w.h.p. at least 4 lnm (> log4/3m) of those 24 lnm
iterations are good.]
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1(g) [ 7 Points ] Given an undirected graph G = (V,E), a matching M is a subset of E such that
no two edges in M share a common vertex. A matching is maximal if no edge can be added
without violating the constraint above. Explain how you will transform the given graph G
into another undirected graph G′ so that a maximal independent set in G′ can be transformed
into a maximal matching in G.

[Hint: G′ has |E| vertices, and each vertex of G′ corresponds to a distinct edge of G.]
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Use this page if you need additional space for your answers.
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Question 2. [ 40 Points ] Array-based Nonblocking Concurrent Queue. We saw a
nonblocking concurrent queue based on linked lists in the class. That queue used atomic compare-
and-store or CAS operations instead of locks. CAS( loc, x, y ) is an atomic operation which
checks if memory location loc contains x, and if so, it stores y at that location and returns true,
otherwise it fails and returns false.

In this question we will examine a nonblocking concurrent queue based on circular arrays. The
implementation is almost similar to the one we saw in the class.

1. array Q[ 0 : L− 1 ] of 〈 Val Type val 〉 {the circular queue of size L}
2. integer front, rear {front and rear pointers}
3. Initialization: front← 0, rear ← 0 {queue is empty if front = rear, and full if rear = front+ L}

parallel for i← 0 to L− 1 do Q[ i ]← 〈 null 〉 {empty locations contain null}

Enqueue( v ) {enqueue item v into Q}
1. done← false {flag signalling if enqueue is successful}
2. while ( done 6= true ) {keep trying until enqueue is successful}
3. r ← rear {read rear}
4. x← Q[r mod L] {read the rear of the list}
5. if r = rear then {if some other thread has not already changed rear}
6. if r 6= front+ L then {if queue is not full}
7. if x.val = null then {if the rear of the list is empty}
8. if CAS( Q[r mod L], x, 〈 v 〉 ) then {try to store the item}
9. CAS( rear, r, r + 1 ) {increment rear if someone else has not already done so}

10. done← true {enqueue is done}
11. else {rear of the list is not empty (meaning some other Enqueue is between lines 8 and 9)}
12. CAS( rear, r, r + 1 ) {help that Enqueue increment rear}

Dequeue( ) {dequeue an item from Q}
1. done← false {flag signalling if dequeue is successful}
2. while ( done 6= true ) {keep trying until dequeue is successful}
3. f ← front {read front}
4. x← Q[f mod L] {read the front of the list}
5. if f = front then {if some other thread has not already changed front}
6. if f 6= rear then {if queue is not empty}
7. if x.val 6= null then {if the front of the list is nonempty}
8. if CAS( Q[f mod L], x, 〈 null 〉 ) then {try to remove an item}
9. CAS( front, f, f + 1 ) {increment front if someone else has not already done so}

10. done← true {dequeue is done}
11. else {front of the list is empty (meaning some other Dequeue is between lines 8 and 9)}
12. CAS( front, f, f + 1 ) {help that Dequeue increment front}
13. return x.val {return the dequeued item}
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2(a) [ 10 Points ] Show that the data structure may behave incorrectly at line 12 of both Enqueue
and Dequeue.

[Hint: For Dequeue the incorrect behavior occurs if the queue was empty at line 4, but
becomes nonempty again before line 6.]

2(b) [ 10 Points ] Explain how you will fix the code to avoid the incorrect behavior in part 2(a).
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2(c) [ 10 Points ] Suppose we want to use the corrected Enqueue and Dequeue functions from
part 2(b) for the following memory management task.

We have an application that frequently allocates and deallocates (in no predictable order)
memory locations to store and manipulate values of some compound data type (i.e., struc-
ture/record) data. We know that the application uses fewer than L such data nodes simulta-
neously. So in order to reduce the overhead of memory allocation/deallocation we pre-allocate
an array of size L− 1, say, node[ 1 : L− 1 ] each entry of which is of type data.

Initially, all locations of node are free, and we enqueue the index of each such free location
into the queue from part 2(b) by calling Enqueue( i ) for each i ∈ [1, L− 1].

Whenever a thread needs a new node it executes i← Dequeue( ) to grab the index i of a free
node, and whenever it no longer needs a node node[ i ] it frees it by calling Enqueue( i ).

We modify Dequeue so that it initializes the new node node[ x.val ] between lines 7 and 8
by executing node[ x.val ]← Φ, where Φ is the initial value.

Explain why even after Dequeue successfully executes the initialization statement as above,
the calling thread may find that the index returned by Dequeue does not point to an
initialized node.

2(d) [ 10 Points ] Explain how you will fix the initialization problem in part 2(c). You will lose 5
points if you perform the initialization elsewhere (except between lines 7 and 8 of Dequeue).
Performing the initialization completely outside of Enqueue and Dequeue is not an option.

[Hint: One approach is to attach a counter to each location of Q in order to keep track of the
number of times that location has been modified (i.e., undergone enqueue/dequeue). This
will of course limit the number of times you can modify a queue location, but suppose that
is not a problem for our application. ]
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Use this page if you need additional space for your answers.
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Question 3. [ 40 Points ] Distributed-Memory Algorithms. This question asks you to
analyze two distributed-memory message-passing algorithms.

Odd-Even-Transposition-Sort( A[ 1 : n ], p )

(Input is an array A of n distinct numbers to be sorted using p processes (numbered from 1 to p). The output is A
in sorted order.)

1. the master process distributes the n keys among all p processes (including itself) as evenly as possible

2. each process sorts its local keys using quicksort

3. for k ← 1 to p do

4. if k = odd then

5. parallel for i← 1 to p−1
2

do

6. process 2i sends its sorted sequence to process 2i− 1

7. process 2i− 1 merges the two sorted sequences,

keeps the smaller half, and

sends the larger half to process 2i

8. else

9. parallel for i← 1 to p
2
− 1 do

10. process 2i sends its sorted sequence to process 2i+ 1

11. process 2i+ 1 merges the two sorted sequences,

keeps the larger half, and

sends the smaller half to process 2i

12. the master process collects the sorted keys from all processes

3(a) [ 15 Points ] Analyze the computation time (tcomp) and communication time (tcomm) of
Odd-Even-Transposition-Sort. Use the communication bounds given in the appendix.

12



Matrix-Vector-Multiplication( A[ 1 : n, 1 : n ], x[ 1 : n ], p )

(Input is an n×n matrix A, and a vector x of length n. The number of processes p is a perfect square, and
√
p divides

n. We assume that the processes are arranged in a
√
p×√p grid, and Pr,c denotes the process on row r and column

c of this grid. Also input matrix A is divided into
√
p×√p submatrices of size n√

p
× n√

p
each, and Ar,c denotes the

submatrix on row r and column c of this submatrix grid. We assume that process Pr,c already holds submatrix Ar,c.
The output is a vector y[ 1 : n ] such that y[ i ] =

∑n
j=1 A[ i, j ] · x[ j ] for 1 ≤ i ≤ n.)

1. input vector x is divided into
√
p segments of length n√

p
each, and xc denotes its c-th segment

2. the master process scatters x so that process P1,c gets xc

3. parallel for c← 1 to
√
p do

4. process P1,c broadcasts xc to processes Pr,c, 1 ≤ r ≤ √p
5. parallel for r ← 1 to

√
p do

6. parallel for c← 1 to
√
p do

7. process Pr,c computes yc[ i ] =
∑c

(
n√
p

)
j=(c−1) n√

p
+1 A[ i, j ] · x[ j ] for i ∈

[
(r − 1) n√

p
+ 1, r

(
n√
p

) ]
8. parallel for r ← 1 to

√
p do

9. Pr,1 applies reduction on process row r to compute y[ i ] =
∑√p
c=1 yc[ i ] for i ∈

[
(r − 1) n√

p
+ 1, r

(
n√
p

) ]
10. the master process gathers all y[ i ] values from all processes Pr,1

3(b) [ 25 Points ] Analyze the computation time (tcomp) and communication time (tcomm) of
Matrix-Vector-Multiplication. Use the communication bounds given in the appendix.
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Some Useful Bounds

Chernoff Bounds. Let X1, . . . , Xn be independent Poisson trials, that is, each Xi is a 0-1 random

variable with Pr[Xi = 1] = pi for some pi. Let X =
n∑
i=1

Xi and µ = E[X]. Then the following

bounds hold.

(1) For any δ > 0, Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
.

(2) For 0 < δ < 1, Pr [X ≥ (1 + δ)µ] ≤ e−
µδ2

3 .

(3) For 0 < γ < µ, Pr [X ≥ µ+ γ] ≤ e−
γ2

3µ .

(4) For 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ
.

(5) For 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−
µδ2

2 .

(6) For 0 < γ < µ, Pr [X ≤ µ− γ] ≤ e−
γ2

2µ .

Bounds on Some Communication Times. In the bounds given below, p is the number of
processes involved, m is the size of the message to send to (or to receive from) each process, ts is
the startup time, and tw is the per-word transfer time.

(1) one-to-one transfer: ts + twm

(2) one-to-all broadcast, all-to-one reduction: (ts + twm) log p

(3) scatter, gather: ts log p+ twm(p− 1)
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