CSE 590: Special Topics Course
(Supercomputing)

Lecture 2
(Analytical Modeling of Parallel Programs)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2012

Parallel Execution Time & Overhead

Execution Time =w;

=

PO [E— ‘é_

Pl €

o O

P2 [—] w O
4 —_ - U —
P3 | c 20
5 E o E
P4 | s g & S
-— o]
Ps w2

(8]

P6 | . 5 5

S— [)

P7 A _“é

(@]

—

)

£

M Essential/Excess Computation =] Interprocessor Communication

L] Idling

Serial running time =T

Parallel running time on p processing elements,

Tp = teng = Lot
where, t. . = starting time of the processing element
that starts first
t,.; = termination time of the processing element

that finishes last

Parallel Execution Time & Overhead

Execution Time %o

£

PO [E—] ‘g_

Pl €

@ O

P2 [—] w O
2 59
P3 | o= S
5 E o E
P4 I g &S 3
-
Ps w2

O C

P6 . S

. -

> O

P7 2] 3

o

—

)

£

M Essential/Excess Computation =] Interprocessor Communication

1 1dting
Sources of overhead (w.r.t. serial execution)

— Interprocess interaction
— Interact and communicate data (e.g., intermediate results)
— Idling
— Due to load imbalance, synchronization, presence of serial
computation, etc.

— Excess computation

— Fastest serial algorithm may be difficult/impossible to parallelize

— Reuse of intermediate results may be difficult (e.g., FFT)

Parallel Execution Time & Overhead

Execution Time %o

§=

Po [— ‘é_

PI = £

©

P2 [—] w O
- — - U —
P3 | o= S
5 E o E
P4 L. g &S 3
-— -]
PS5 = 588

O c

P6 | . 50

— o ey

> [}

P7 v 5

©

o

- b=

- » c

B Essential/Excess Computation] Interprocessor Communication -

L] Idling

Overhead function or total parallel overhead,
To=pT,-T,

where, p = number of processing elements
T = time spent doing useful work
(often execution time of the fastest serial algorithm)

Speedup

T

Speedup, Sp= —
p

where, T =time to solve on a single processing element
(often the runtime of the fastest serial algorithm)

T, = time to solve in parallel on p identical processing

Theoretically, S, <p (why?)

Perfect or linear or ideal speedup if S, =p

Speedup

Consider adding n numbers
using n identical processing
elements.

Serial runtime, T = ©(n)

Parallel runtime, T,,= ®(logn)

Speedup, Sn=Tl = @(-

n logn

Speedup not ideal. (why?)

)

13 14 IS

POO0OOAOROOO®® 00O

(a) Initial data distribution and the first communication step

.l 513
0 ~12

oXoRoRoReRoRcRoRe ke e ko ke Ko Xe ke,

(b) Second communication step

}:' ‘.II X

oRoReRoRoRoRoRe R Ro e Ro R R R RC)

(c) Third communication step

“Introduction to Parallel Computing”, 2" Edition

15

oYoRoRcRoRoRcRoRoRoRcRo R Re R Re,

(d) Fourth communication step

Source: Grama et al.,

O0O0000OPOOOOOOOOO

(¢) Accumulation of the sum at processing element O after the final communicatior

Superlinear Speedup

Theoretically, S, <p

But in practice superlinear speedup is sometimes observed,
thatis, S, >p (why?)

Reasons for superlinear speedup
— Cache effects

— Exploratory decomposition

Superlinear Speedup
(Cache Effects)

Let cache access latency = 2 ns , TN e
DRAM access latency=100ns 7 il T
cache | cache |
Suppose we want solve a problem
instance that executes k FLOPs. ll—Ll %
CPU CPU
With 1 Core: Suppose cache hit rate is 80%. core core

If the computation performs 1 FLOP/memory access, then each
FLOP will take 2 x 0.8 + 100 x 0.2 = 21.6 ns to execute.

With 2 Cores: Cache hit rate will improve. (why?)
Suppose cache hit rate is now 90%.
Then each FLOP will take 2 x 0.9+ 100 x 0.1 = 11.8 ns to execute.

Since now each core will execute only k / 2 FLOPs,

kx21.6

= ~ |
Speedup, 5, (i /DX1LE 3.66 > 2!

L]

Superlinear Speedup
(Due to Exploratory Decomposition)

Consider searching an array of 2n unordered elements for a specific

element x.

Suppose x is located at array location k > n and k is odd.

Serlal runtlme’ T - k Al1] A[2]1AIB1 Alkl L A[2n]
X
Parallel running time with n sequential search
processing elements, T,,=1
T
Speedup, Sp=—=k>n ALl ARIAB] L A Al2n]
Ty, X
\ Y A Y J \ J \)
Speedup is superlinear! L Plugl oo P,

parallel search

Efficiency

S
Efficiency, E,= _P
p

Efficiency is a measure of the fraction of time for which a processing
element is usefully employed.

In an ideal parallel system, $,, = pand E, = 1.

Consider again the example of adding n numbers using n identical

processing elements.

T
Speedup, S,,=— = @(-)

n logn

Efficiency, E, = %" =0 (1)

logn

Cost or Work

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is the execution time T of the fastest known
sequential algorithm for solving the problem.

On a Parallel Computer: is given by pT,,.

A parallel algorithm is cost-optimal or work-optimal provided
pr = O(T)

S
For a work-optimal parallel algorithm: E), = ?p = p% = 0(1)
p

Our algorithm for adding n numbers using n identical processing
elements is clearly not cost optimal.

Adding n Numbers Work-Optimality

We reduce the number of processing o

elements which in turn increases the REDIEE N

. . 0 4 8 12 z) Z.?; E\I\ E::
granularity of the subproblem assigned @ o o ©
to each processing element. @ (b)
Suppose we use p processing elements. = = Zy
PP PP 5 oXoReRe oXoReRe
First each processing element locally © @
Source: Grama et al.,
n n “Introduction to Parallel Computing”, 2" Edition
adds its = numbers in time ® (;)

Then p processing elements adds these p partial sums in time ®(log p).

_ n _S_p_ T Om)
ThusT, =0 (p + logp), and E), = b~ pT, Omtplogp)

So the algorithm is work-optimal, i.e., E,, = ©(1), provided
n = Q(plogp)

Scaling of Parallel Algorithms

(Amdahl’s Law)

1-T

fT

serial section

q 1 processing
4 element

fT/p

T,

p processing
elements

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, T, = (1 —)T + f%

Speedup, S, =

T D < 1

< <
Tp — f+(1-f)p 1-f

Scaling of Parallel Algorithms
(Amdahl’s Law)

Suppose only a fraction f of a computation can be parallelized.
T < D < 1
Ty f+(1-f)p 1-f

Speedup, S, =

Amdahl’s Law
20.00

L —1
L
18.00 //
/ Parallel Portion
16.00 7 i
/ —75%
14.00 90%
/ ——95%
12.00 2
o
2 /
@ 10.00 7
& / T |
8.00 //
6.00 /’
4.00 V/ —
—1
/
2.00 ———
-
0.00 h
— o~ < 2 Py g ;c\a‘ 3\) 5 f;\lr io? § % - cﬁ UQ
= TS TR S N Y

Number of Processors

Source: Wikipedia

Scaling of Parallel Algorithms
(Gustafson-Barsis’ Law)

[

(1-)T, pfT,
serial section parallelizable section

T 1processing

p processing
elements

(1_f)Tp pr
TP

Suppose only a fraction f of a computation was parallelized.

Then serial runningtime, T < T; = (1 —)T, + pfT,

Speedup, Sp _ Tl < % _ (1-f)Tp+pfTp -1+ (p _ 1)f

p p Tp

Scaling of Parallel Algorithms
(Gustafson-Barsis’ Law)

Suppose only a fraction f of a computation was parallelized.

Speedup, 5, = % < ;—; = (1_f)7;f;+pﬁp =1+ (p—1f

| | | f= 0-9 | f= O- =l 1
60 |- /8/f 02 f=0.6

f=05
f=04
f=0.3

f=0.2

T =01

0 1 1 1 L 1 1

0 20 40 60 S0 100 120
Number of Processors

Source: Wikipedia

Scalable Parallel Algorithms

A parallel algorithm is called scalable if its efficiency can be
maintained at a fixed value by simultaneously increasing the number
of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing
processing elements effectively.

. s T T 1
Efficiency, E, = £ = — = = —
p pTp, T+To 1+T0

Observe that if the problem size is fixed, T, increases with p. (why?)

So E,, drops as p increases.

On the other hand, for many algorithms T, grows sublinearly w.r.t. T.

For such algorithms E,, can be kept fixed by increasing the problem

size and p simultaneously.

Scalable Parallel Algorithms

Fixed problem size (W) Fixed number of processors (p)

e
Source: Grama et al.,
“Introduction to Parallel Computing”,
2nd Edition

P w

. s T T 1
Efficiency, E, = - = — = = —
p pTp, T+To 1+T0

Observe that if the problem size is fixed, T increases with p. (why?)

So E,, drops as p increases.

On the other hand, for many algorithms T, grows sublinearly w.r.t. T.

For such algorithms E,, can be kept fixed by increasing the problem

size and p simultaneously.

Scalable Parallel Algorithms

In order to keep E, fixed at a constant k, we need

T
E,=k=>—=k=T = kpT,
p pr p

For the algorithm that adds n numbers using p processing elements:

T =n and Tp=§+210gp

So in order to keep E,, fixed at k, we must have:

n 2k
n=kp <—+ 210gp>:>n =——nplogp
D 1—-k
n p=1 p=4 p=8 p =16 p =32
64 1.0 0.80 0.57 0.33 0.17
192 1.0 0.92 0.80 0.60 0.38
320 1.0 0.95 0.87 0.71 0.50
512 1.0 0.97 0.91 0.80 0.62

Fig: Efficiency for adding n numbers using p processing elements

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

The Isoefficiency Function

For a given problem, we define problem size W as the number of
basic computation steps in the fastest sequential algorithm that

solves the problem on a serial machine.

ThusW =T.
We have alread Ep=—7=—1
e have already seen, E,, = 1+TTO = 1+T0§AV;/,p)
Rearranging, W = “p To(W,p) = KTo(W,p), where K = -
1-E, 1=Ep

We have already seen how to obtain the isoefficiency function for

adding n numbers using p processing elements.

Isoefficiency for Complex Overhead Functions

Suppose, Ty = p3/? + p3/4W3/4,

We balance W against each term of T, and the component of T,
that requires W to grow at the highest rate w.r.t. p gives the overall
asymptotic isoefficiency function for the algorithm.

Using only the 1st term, W = Kp3/2

Using only the 2nd term, W = K*p?

Hence, the overall isoefficiency function is ®(p3).

