
CSE 590: Special Topics Course

(Supercomputing)

Lecture 2

(Analytical Modeling of Parallel Programs)

Rezaul A. Chowdhury
Department of Computer Science

SUNY Stony Brook

Spring 2012

Parallel Execution Time & Overhead

Serial running time = T

Parallel running time on p processing elements,

TP = tend – tstart ,

where, tstart = starting time of the processing element

that starts first

tend = termination time of the processing element

that finishes last

S
o

u
rc

e
:

G
ra

m
a

e
t

a
l.

,

“I
n

tr
o

d
u

ct
io

n
 t

o
 P

a
ra

lle
l

C
o

m
p

u
ti

n
g

”,

2
n

d
E

d
it

io
n

S
o

u
rc

e
:

G
ra

m
a

e
t

a
l.

,

“I
n

tr
o

d
u

ct
io

n
 t

o
 P

a
ra

lle
l

C
o

m
p

u
ti

n
g

”,

2
n

d
E

d
it

io
n

Sources of overhead (w.r.t. serial execution)

― Interprocess interaction

― Interact and communicate data (e.g., intermediate results)

― Idling

― Due to load imbalance, synchronization, presence of serial

computation, etc.

― Excess computation

― Fastest serial algorithm may be difficult/impossible to parallelize

― Reuse of intermediate results may be difficult (e.g., FFT)

Parallel Execution Time & Overhead

S
o

u
rc

e
:

G
ra

m
a

e
t

a
l.

,

“I
n

tr
o

d
u

ct
io

n
 t

o
 P

a
ra

lle
l

C
o

m
p

u
ti

n
g

”,

2
n

d
E

d
it

io
n

Parallel Execution Time & Overhead

Overhead function or total parallel overhead,

TO = pTp – T ,

where, p = number of processing elements

T = time spent doing useful work

(often execution time of the fastest serial algorithm)

Speedup

��=
�

��
Speedup,

where, T = time to solve on a single processing element

(often the runtime of the fastest serial algorithm)

Tp = time to solve in parallel on p identical processing

Theoretically, (why?)

�� =	pPerfect or linear or ideal speedup if

�� ≤	p

Speedup

S
o

u
rc

e
:

G
ra

m
a

e
t

a
l.

,
 “

In
tr

o
d

u
ct

io
n

 t
o

 P
a

ra
lle

l
C

o
m

p
u

ti
n

g
”,

2

n
d

E
d

it
io

n

��= Θ log �

�=
�

��
= Θ

�

��� �

�	= Θ �

Consider adding n numbers

using n identical processing

elements.

Serial runtime,

Parallel runtime,

Speedup,

Speedup not ideal. (why?)

Theoretically,

�� >	p

But in practice superlinear speedup is sometimes observed,

that is, (why?)

�� ≤	p

Reasons for superlinear speedup

― Cache effects

― Exploratory decomposition

Superlinear Speedup

Superlinear Speedup
(Cache Effects)

DRAM

cache

CPU

core

cache

CPU

core

Let cache access latency = 2 ns

DRAM access latency = 100 ns

Suppose we want solve a problem

instance that executes k FLOPs.

With 1 Core: Suppose cache hit rate is 80%.

If the computation performs 1 FLOP/memory access, then each

FLOP will take 2 × 0.8 + 100 × 0.2 = 21.6 ns to execute.

With 2 Cores: Cache hit rate will improve. (why?)

Suppose cache hit rate is now 90%.

Then each FLOP will take 2 × 0.9 + 100 × 0.1 = 11.8 ns to execute.

Since now each core will execute only k / 2 FLOPs,

�=
�×��.�

(�/�)×��.�
≈3.66 > 2!Speedup,

Superlinear Speedup
(Due to Exploratory Decomposition)

x

A[1] A[2] A[3] A[k] A[2n]… … … … … …

sequential search

Consider searching an array of 2n unordered elements for a specific

element x.

Suppose x is located at array location k > n and k is odd.

��= 1

�=
�

��
= " > �

�	= "Serial runtime,

Parallel running time with n

processing elements,

Speedup,

Speedup is superlinear!

x

A[1] A[2] A[3] A[k] A[2n]… … … … … …

P1 P2 P
#/$

Pn… … … … … …

parallel search

Efficiency

%�=
��

�
Efficiency,

Efficiency is a measure of the fraction of time for which a processing

element is usefully employed.

In an ideal parallel system,
& = ' and (& = 1.

�=
�

��
= Θ

�

��� �

Consider again the example of adding n numbers using n identical

processing elements.

Speedup,

(�=
*�

�
= Θ

�

��� �
Efficiency,

Cost or Work

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is the execution time � of the fastest known

sequential algorithm for solving the problem.

On a Parallel Computer: is given by '�&.

A parallel algorithm is cost-optimal or work-optimal provided

'�& = Θ �

For a work-optimal parallel algorithm:	(& =
*+

&
=

�

&�+
= Θ 1

Our algorithm for adding n numbers using n identical processing

elements is clearly not cost optimal.

Suppose we use p processing elements.

First each processing element locally

adds its
�

&
numbers in time Θ

�

&
.

Then p processing elements adds these p partial sums in time Θ log ' .

Thus �& = Θ
�

&
, log ' , and (& =

*+

&
=

�

&�+
=

Θ �

Θ �-& ��� &
.

So the algorithm is work-optimal, i.e., (& = Θ 1 , provided

� = Ω ' log '

Adding n Numbers Work-Optimality

Source: Grama et al.,

“Introduction to Parallel Computing”, 2nd Edition

We reduce the number of processing

elements which in turn increases the

granularity of the subproblem assigned

to each processing element.

Scaling of Parallel Algorithms
(Amdahl’s Law)

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, �& . 1 / 0 � , 0
�

&

Speedup,
& =
�

�+
≤

&

1- �21 &
≤

�

�21

Scaling of Parallel Algorithms
(Amdahl’s Law)

Suppose only a fraction f of a computation can be parallelized.

Speedup,
& =
�

�+
≤

&

1- �21 &
≤

�

�21

Source: Wikipedia

Scaling of Parallel Algorithms
(Gustafson-Barsis’ Law)

Suppose only a fraction f of a computation was parallelized.

Then serial running time, � ≤ �� = 1 / 0 �& , '0�&

Speedup,
& =
�

�+
≤

�3

�+
=

�21 �+-&1�+

�+
= 1 , ' / 1 0

Suppose only a fraction f of a computation was parallelized.

Speedup,
& =
�

�+
≤

�3

�+
=

�21 �+-&1�+

�+
= 1 , ' / 1 0

Source: Wikipedia

S
p

e
e

d
u

p

Number of Processors

f = 0.1

f = 0.2

f = 0.3

f = 0.4

f = 0.5

f = 0.6
f = 0.7f = 0.8f = 0.9

Scaling of Parallel Algorithms
(Gustafson-Barsis’ Law)

A parallel algorithm is called scalable if its efficiency can be

maintained at a fixed value by simultaneously increasing the number

of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing

processing elements effectively.

Scalable Parallel Algorithms

Efficiency, (& =
*+

&
=

�

&�+
=

�

�-�;
=

�

�-
<;
<

Observe that if the problem size is fixed, �= increases with p. (why?)

So (& drops as p increases.

On the other hand, for many algorithms �=	grows sublinearly w.r.t. T.

For such algorithms (& can be kept fixed by increasing the problem

size and p simultaneously.

Scalable Parallel Algorithms

Efficiency, (& =
*+

&
=

�

&�+
=

�

�-�;
=

�

�-
<;
<

Observe that if the problem size is fixed, �= increases with p. (why?)

So (& drops as p increases.

On the other hand, for many algorithms �=	grows sublinearly w.r.t. T.

For such algorithms (& can be kept fixed by increasing the problem

size and p simultaneously.

S
o

u
rc

e
:

G
ra

m
a

e
t

a
l.

,

“I
n

tr
o

d
u

ct
io

n
 t

o
 P

a
ra

lle
l

C
o

m
p

u
ti

n
g

”,

2
n

d
E

d
it

io
n

In order to keep (& fixed at a constant k, we need

Scalable Parallel Algorithms

(& = "	⇒
�

'�&
= "	⇒	� = "'�&

Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition

Fig: Efficiency for adding n numbers using p processing elements

For the algorithm that adds n numbers using p processing elements:

� = � and �& =
�

&
, 2 log '

So in order to keep (& fixed at k, we must have:

� = "'
�

'
, 2 log ' ⇒	� =

2"

1 / "
' log '

For a given problem, we define problem size W as the number of

basic computation steps in the fastest sequential algorithm that

solves the problem on a serial machine.

The Isoefficiency Function

Thus > = �.

We have already seen, (& =
�

�-
<;
<

=
�

�-
<; ?,+

?

Rearranging,> =
@+

�2@+
�= >,' = A�= >,' , where A =

@+

�2@+

We have already seen how to obtain the isoefficiency function for

adding n numbers using p processing elements.

Suppose, �= = 'B/� , 'B/C>B/C.

We balance > against each term of �=, and the component of �=

that requires > to grow at the highest rate w.r.t. ' gives the overall

asymptotic isoefficiency function for the algorithm.

Isoefficiency for Complex Overhead Functions

Using only the 1st term,> = A'B/�

Hence, the overall isoefficiency function is Θ 'B .

Using only the 2nd term,> = AC'B

