CSE 590: Special Topics Course
( Supercomputing )

Department of Computer Science
SUNY Stony Brook
Spring 2012

“To put it quite bluntly: as long as there were no machines, programming
was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming
has become an equally gigantic problem.”

— Edsger Dijkstra, The Humble Programmer, CACM



Course Information

Lecture Time: TuTh 5:20 pm - 6:40 pm
Location: Earth & Space 069, West Campus

Instructor: Rezaul A. Chowdhury
Office Hours: TuTh 12:00 pm - 1:30 pm, 1421 Computer Science
Email: rezaul@cs.stonybrook.edu

TA: No idea!
TA Office Hours: Same as above
TA Email: Same as above

Class Webpage:
http://www.cs.sunysb.edu/~rezaul/CSE590-512.html



Prerequisites

Required: Background in algorithms analysis
(e.g., CSE 373 or CSE 548 )

Required: Background in programming languages ( C / C++)

Helpful but Not Required: Background in computer architecture

Please Note: This is not a course on
— Programming languages
— Computer architecture

Main Emphasis: Parallel algorithms ( for supercomputing )



Course Organization

— First Part: 11 Lectures
— Introduction ( 2)
— Shared-memory parallelism & Cilk ( 2 )
— Distributed-memory parallelism & MPI ( 2 )
— GPGPU computation & CUDA ( 2)
— MapReduce & Hadoop (2)
— Cloud computing (1)

— Second Part:
— Paper presentations
— Group projects



Grading Policy

Programming assignments ( best 3 0of 4 ): 15%
Paper presentation ( one ): 25%
Report on a paper presented by another student ( one ): 10%

Group project ( one ): 40%
— Proposal ( in-class ): Feb 28
— Progress report ( in-class ): April 10
— Final presentation ( in-class ): May 8 - 15

Class participation & attendance: 10%



Programming Environment

This course is supported by educational grants from

— Extreme Science and Engineering Discovery Environment
( XSEDE ): https://www.xsede.org

— Amazon Web Services ( AWS ): http://aws.amazon.com

We will use XSEDE for homeworks/projects involving
— Shared-memory parallelism

— Distributed-memory parallelism

And AWS for those involving
— GPGPUs
— MapReduce



Programming Environment

On XSEDE we have access to

— Ranger: = 4,000 compute nodes with 16 cores/node

— Lonestar 4: = 2,000 compute nodes with 12 cores/node

World’s Most Powerful Supercomputers in June, 2008
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Recommended Texis

No required textbook.

Some useful ones are as follows

A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel
Computing (2nd Edition), Addison Wesley, 2003.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming (1st
Edition), Morgan Kaufmann, 2008.

P. Pacheco. Parallel Programming with MPI (1st Edition), Morgan
Kaufmann, 1996.

D. and W. Hwu. Programming Massively Parallel Processors: A Hands-on
Approach (1st Edition), Morgan Kaufmann, 2010.

J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce,
Morgan and Claypool Publishers, 2010.

T. White. Hadoop: The Definitive Guide (2nd Edition), Yahoo Press, 2010.
T. Velte, A. Velte, and R. Elsenpeter. Cloud Computing, A Practical
Approach (1st Edition), McGraw-Hill Osborne Media, 2009.



Supercomputing
&
Parallel Computing



Top 10 Supercomputing Sites in Nov. 2011

Rank Site Computer/Year Vendor Cores |Rmax Rpeak Power
RIKEN Advanced Institute for K computer, SPARC64 Vllifx 2.0GHz,
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Top 500 Supercomputing Sites
( Cores / System )
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Why Parallelism?
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Unicore Performance Has Hit a Wall!

Some Reasons

— Lack of additional ILP
(Instruction Level Hidden Parallelism)

— High power density
— Manufacturing issues
— Physical limits

— Memory speed



Unicore Performance: No Additional ILP

Exhausted all ideas to exploit hidden parallelism?
— Multiple simultaneous instructions
— Dynamic instruction scheduling
— Branch prediction
— Out-of-order instructions
— Speculative execution
— Pipelining

— Non-blocking caches, etc.



Unicore Performance: High Power Density
— Dynamic power, P o< V2 fC

— V =supply voltage
— f=clock frequency
— C=capacitance

— But Ve f
3
— Thus P, o< f
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Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 ( Simon Floyd )



Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?
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Source: Andrew A. Chien, Vice President of Research, Intel Corporation



Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

1.73x 1| Performance
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Source: Andrew A. Chien, Vice President of Research, Intel Corporation



Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

Over-clocked Design Dual-core
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Source: Andrew A. Chien, Vice President of Research, Intel Corporation



Unicore Performance: Manufacturing Issues

— Frequency, foe<1/s

— s =feature size ( transistor dimension )

— Transistors / unit area o< 1 / s2
— Typically, die size <1/ s

— So, what happens if feature size goes down by a factor of x?

— Raw computing power goes up by a factor of x*!

— Typically most programs run faster by a factor of x3
without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Manufacturing Issues

As feature size decreases
— Manufacturing cost goes up

— Cost of a semiconductor fabrication plant doubles
every 4 years ( Rock’s Law )

— Yield ( % of usable chips produced ) drops

Cost of semiconductor factories in millions of 1995 dollars
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Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for (i=0;i<10%; ++i)

zZlil=x[i]+yli];
— We will have to access 3x1012 data items in one second
— Speed of light is, c = 3x108m/s

— So each data item must be within ¢/ 3x102 = 0.1 mm
from the CPU on the average

— All data must be putinside a 0.2 mm x 0.2 mm square

— Each data item ( = 8 bytes ) can occupy only 1 A2 space!
( size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Memory Wall
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Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems



Moore’s Law Reinterpreted
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Cores / Processor ( General Purpose )
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Operations per second for serial code

No Free Lunch for Traditional Software
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Insatiable Demand for Performance

Genomics Research Financial Analysis Medical Imaging

Source: Patrick Gelsinger, Intel Developer Forum, 2008



Numerical Weather Prediction
Problem: (temperature, pressure, ..., humidity, wind velocity )
< f( longitude, latitude, height, time )

Approach ( very coarse resolution ):

— Consider only modeling fluid flow in the atmosphere

— Divide the entire global atmosphere into cubic cells of
size 1 mile x 1 mile x 1 mile each to a height of 10 miles
=~ 2 x 10° cells

— Simulate 7 days in 1 minute intervals
~ 10% time-steps to simulate

— 200 floating point operations ( flop ) / cell / time-step
~ 4 x 10'> floating point operations in total

— To predictin 1 hour = 1 Tflop/s ( Tera flop / sec)



Insatiable Demand for Performance

Weather Prediction
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Some Useful Classifications
of Parallel Computers



Parallel Computer Memory Architecture
( Shared Memory )

— All processors access all memory
as global address space

— Changes in memory by one
processor are visible to all others

— Tow types:

— Uniform Memory Access
(UMA)

Bus Interconnect

— Non-Uniform Memory
NUMA

Source: Blaise Barney, LLNL



Parallel Computer Memory Architecture
( Shared Memory )

Advantages

— User-friendly programming
perspective to memory

— Fast data sharing

Disadvantages

— Difficult and expensive

to scale

Bus Interconnect

user responsibility
NUMA

Source: Blaise Barney, LLNL



Parallel Computer Memory Architecture
( Distributed Memory )

— Each processor has its own
local memory — no global
address space

— Changes in local memory by

one processor have no effect

Source: Blaise Barney, LLNL

on memory of other processors

— Communication network to connect inter-processor memory



Parallel Computer Memory Architecture
( Distributed Memory )

Advantages
— Easily scalable

— No cache-coherency
needed among processors

— Cost-effective

Source: Blaise Barney, LLNL
Disadvantages
— Communication is user responsibility

— Non-uniform memory access

— May be difficult to map shared-memory data structures

to this type of memory organization



Parallel Computer Memory Architecture
(_ Hybrid Distributed-Shared Memory )

— The share-memory component
can be a cache-coherent SMP or
a Graphics Processing Unit (GPU)

— The distributed-memory
component is the networking of
multiple SMP/GPU machines

— Most common architecture
for the largest and fastest
computers in the world today

Source: Blaise Barney, LLNL



Flynn's Taxonomy of Parallel Computers

Flynn’s classical taxonomy ( 1966 ):
Classification of multi-processor computer architectures along
two independent dimensions of instruction and data.

Single Data Multiple Data
(SD) (MD)
Single Instruction

(sl) SISD SIMD

Multlpl(el:,rlmls;ructlon MISD MIMD




Flynn's Taxonomy of Parallel Computers

SISD

— A serial ( non-parallel ) computer

— The oldest and the most common

type of computers

— Example: Uniprocessor unicore

machines

load A
load B
C=A+B

aw)

store C
A=B*2

store A

Source: Blaise Barney, LLNL



Flynn's Taxonomy of Parallel Computers

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)|
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 ~ P2 Pn
SIMD

— A type of parallel computer
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Source: Blaise Barney, LLNL

— All PU’s run the same instruction at any given clock cycle

— Synchronous ( lockstep ) execution

Each PU can act on a different data item

— Two types: processor arrays and vector pipelines

Example: GPUs ( Graphics Processing Units )



Flynn's Taxonomy of Parallel Computers

MISD
— A type of parallel computer

— Very few ever existed

MIMD
— A type of parallel computer

— Synchronous /asynchronous

execution

— Examples: most modern
supercomputers, parallel
computing clusters,
multicore PCs

prev instruct prev instruct prev instruct
load A(1) load A(1) load A(1)
C(1)=A(1)" C(2)=A(1)"2 C(n)=A(1)"n
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
e P2 Pn
prev instruct prev instruct prev instruct
load A(1) call funcD do 10 i=1,N
load B(1) X=y*z alpha=w**3
C(1)=A(1)*B(1) sum=x*2 zeta=C(i)
store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct
P1 P2 Pn

awn

dwiy

Source: Blaise Barney, LLNL



Parallel Algorithms
Warm-up

“The way the processor industry is going, is to add more and more cores, but
nobody Rnows how to program those things. I mean, two, yeah; four, not
really; eight, forget it.”

— Steve Jobs, NY Times interview, June 10 2008



Parallel Algorithms Warm-up (1)

Consider the following loop:

fori=1tondo
Cli]<A[i]xB[i]

— Suppose you have an infinite number of processors/cores

— lIgnore all overheads due to scheduling, memory accesses,
communication, etc.

— Suppose each operation takes a constant amount of time
— How long will this loop take to complete execution?

— O(1)time



Parallel Algorithms Warm-up (2)

Now consider the following loop:

c<—0
fori=1tondo
c<—Cc+A[i]xB[i]

— How long will this loop take to complete execution?

— O(logn) time



Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort( A)
if |A|<1returnA
else p<« Alrand( |A] )]
return QSort({xe A:x<p})

#{p}#
QSort({xe A:x>p})

— Assuming that A is split in the middle everytime, and the two
recursive calls can be made in parallel, how long will this

algorithm take?

— O(log?n) time



