CSE 590: Special Topics Course
(Supercomputing)

Department of Computer Science
SUNY Stony Brook
Spring 2012

“To put it quite bluntly: as long as there were no machines, programming
was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming
has become an equally gigantic problem.”

— Edsger Dijkstra, The Humble Programmer, CACM

Course Information

Lecture Time: TuTh 5:20 pm - 6:40 pm
Location: Earth & Space 069, West Campus

Instructor: Rezaul A. Chowdhury
Office Hours: TuTh 12:00 pm - 1:30 pm, 1421 Computer Science
Email: rezaul@cs.stonybrook.edu

TA: No idea!
TA Office Hours: Same as above
TA Email: Same as above

Class Webpage:
http://www.cs.sunysb.edu/~rezaul/CSE590-512.html

Prerequisites

Required: Background in algorithms analysis
(e.g., CSE 373 or CSE 548)

Required: Background in programming languages (C / C++)

Helpful but Not Required: Background in computer architecture

Please Note: This is not a course on
— Programming languages
— Computer architecture

Main Emphasis: Parallel algorithms (for supercomputing)

Course Organization

— First Part: 11 Lectures
— Introduction (2)
— Shared-memory parallelism & Cilk (2)
— Distributed-memory parallelism & MPI (2)
— GPGPU computation & CUDA (2)
— MapReduce & Hadoop (2)
— Cloud computing (1)

— Second Part:
— Paper presentations
— Group projects

Grading Policy

Programming assignments (best 3 0of 4): 15%
Paper presentation (one): 25%
Report on a paper presented by another student (one): 10%

Group project (one): 40%
— Proposal (in-class): Feb 28
— Progress report (in-class): April 10
— Final presentation (in-class): May 8 - 15

Class participation & attendance: 10%

Programming Environment

This course is supported by educational grants from

— Extreme Science and Engineering Discovery Environment
(XSEDE): https://www.xsede.org

— Amazon Web Services (AWS): http://aws.amazon.com

We will use XSEDE for homeworks/projects involving
— Shared-memory parallelism

— Distributed-memory parallelism

And AWS for those involving
— GPGPUs
— MapReduce

Programming Environment

On XSEDE we have access to

— Ranger: = 4,000 compute nodes with 16 cores/node

— Lonestar 4: = 2,000 compute nodes with 12 cores/node

World’s Most Powerful Supercomputers in June, 2008

DOE/NNSA/LANL
United States

DOE/NNSA/LLNL
United States

Argonne National Laboratory

United States

Texas Advanced Computing
Center/Univ. of Texas

United States

N A b
1er - BladeCenter

gl

~‘~I 8i 3.2 Ghz / Optero
Joltaire Infiniband / 2008
IBM
BlueGenel/l -

2007
IBM

Gene/P Solution /2007

Blue

IBM

Ranger - SunBlade x6420, Opte

2Ghz, Infiniband / 2008
Sun Microsystems

eServer Blue Gene

(www.top500.0orqg)

AS22/1.521 Cluster

nDC 1.8 GHz

Solution/

ron Quad

122400

212992

163840

62976

1026.00 1375.78

47820 596.38

450.30 557.06

326.00 503.81

234550

2329.60

1260.00

2000.00

Recommended Texis

No required textbook.

Some useful ones are as follows

A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel
Computing (2nd Edition), Addison Wesley, 2003.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming (1st
Edition), Morgan Kaufmann, 2008.

P. Pacheco. Parallel Programming with MPI (1st Edition), Morgan
Kaufmann, 1996.

D. and W. Hwu. Programming Massively Parallel Processors: A Hands-on
Approach (1st Edition), Morgan Kaufmann, 2010.

J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce,
Morgan and Claypool Publishers, 2010.

T. White. Hadoop: The Definitive Guide (2nd Edition), Yahoo Press, 2010.
T. Velte, A. Velte, and R. Elsenpeter. Cloud Computing, A Practical
Approach (1st Edition), McGraw-Hill Osborne Media, 2009.

Supercomputing
&
Parallel Computing

Top 10 Supercomputing Sites in Nov. 2011

Rank Site Computer/Year Vendor Cores |Rmax Rpeak Power
RIKEN Advanced Institute for K computer, SPARC64 Vllifx 2.0GHz,

1 Computational Science (AICS) Tofu interconnect/ 2011 705024 |10510.00 11280.38 12659.9
Japan Fujitsu
National Supercomputing Centerin NU wm.ﬁio 6C 2.93

2 Tianjin GHz| NVIDIA 2050 /2010 186368 |2566.00 4701.00 4040.0
China NUDT
DOE/SCI/Oak Ridge National Cray XT5-HE Opteron 6-core 2.6 GHz/

3 Laboratory 2009 224162 |1759.00 2331.00 6950.0
United States Cray Inc.

Dawning TC3600 Blade System, Xeon

National Supercomputing Centre in nfiniband QDR
4 gn?nnazhen (NSCS) NVIDI»\205012010' 120640 |1271.00 2984.30 2580.0

: HP Prc% G7 Xeon 6C
GSIC Center, Tokyo Institute of s b . .
5 Technology 36%0‘ Nvidia GPU JLinuxWindows / | 23578 |410200 2287.63 139856
Japan NEC/HP
Cray XE6, Opteron 6136 8C 2.40GHz,
6 DOEMNNSAMLANL/SNL Custom /2011 142272 [1110.00 136581 3980.0
United States
Cray Inc.
SGI Altix ICE 8200EX/8400EX, Xeon H1l
NASA/Ames Research Center/NAS QC 3.0/Xeon 5570/5670 2.93 Ghz,
7 United States Infiniband / 2011 111104]1088.00 131533 4102.0
SGI
Cray XE6, Opteron 6172 12C 2.10GHz]
8 DOE/SC/LBNLUNERSC Custom /2010 153408 |1054.00 128863 2910.0
United States
Cray Inc.
Commissariat a 'Energie Atomique Bull bullx super-node S6010/S6030 /
9 (CEA) 2010 138368 |1050.00 125455 4590.0
France Bull
BladeCenter QS22/1.521 Cluster,
DOE/NNSAMLANL PowerXCell 8i 3.2 Ghz/ Opteron DC
10 United States 1.8 GHz, Voltaire Infiniband / 2009 122400 11042.00 137578 2345.0
IBM

Source: www.top500.org

Top 500 Supercomputing Sites
(Cores / System)

M 1
2
M3-4
5-8
~19-16
17-32
“33-64
65-128
L4129-256
M257-512
~1513-1024
'1025-2048
-12049-4096
'4k-8k
B ot 4 8k-16k
0 = * ' W 16k-32k
132k-64k
M 64k-128k
M 128k-

1993
1994
1995
1996
1997
1998
1999
2000
2002
2003
2004
2005
2010

Source: www.top500.org

Why Parallelism?

Transistor count

2,600,000,000 -
1,000,000,000 -

100,000,000 -

10,000,000 -

1,000,000 -

100,000 -

10,000 -

2,300 -

Moore’s Law

16-Core SPARC T2
Sw-Core Core I7

Six-Core Xeon 7400 l ©10-Cara Xaon Wastman-EX

Cuak-Core Harsum 2@ r a-oo-a P(MER?

AMD K10 on'.‘ Ilaﬂum Tuewia
Powenso Jorm EX
ltanum 2 with 9\8 cache @
um 2 'w MDK\DC '\Cag::ﬁom Optcroﬂ 2@
2 Duwo
wnmze /BEF
/0 AMD K8
Ponthan 4 @ Baron ® Aom
AMD K7
@ A\D Ke-ul
curve shows transistor AMD K&
count doubling every Ll
0 years @AMD K5
@ Pertium
BO4EE /
//'
amac/o/
802050
. ® 80185
soss @ @B0es
noas\
GO0 g e88M
N l ez
20080 OMOS 852
“004@ /RCA 1802
r T T T |
1971 1980 1990 2000 2011

Date of introduction

Source: Wikipedia

10000.00

1000.00

100.00

10.00

1.00

B intel 386

intel 486

intel pentium
X intel pentium2

® intel pentium3
<= intel pentium4

@ intel itanium
=» Alpha 21064
Alpha21164
Alpha 21264
Sparc
Super Spar c
Spar c64
Mips
HP PA
== Power PC
» AMD K6
AMD K7
& AMD x86-64

Unicore Performance

Specint2000

| g ®

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 0102 03 04 05 06 07

Source: Chung-Ta King, Department of Computer Science, National Tsing Hua University

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Unicore Performance Has Hit a Wall!

Some Reasons

— Lack of additional ILP
(Instruction Level Hidden Parallelism)

— High power density
— Manufacturing issues
— Physical limits

— Memory speed

Unicore Performance: No Additional ILP

Exhausted all ideas to exploit hidden parallelism?
— Multiple simultaneous instructions
— Dynamic instruction scheduling
— Branch prediction
— Out-of-order instructions
— Speculative execution
— Pipelining

— Non-blocking caches, etc.

Unicore Performance: High Power Density
— Dynamic power, P o< V2 fC

— V =supply voltage
— f=clock frequency
— C=capacitance

— But Ve f
3
— Thus P, o< f
10.000 Sun’s Surface >
= Rocket Nozzle
£ 1,000 =
L
i Nuclear Reactor
D
§ 100 Pentium®
& 8086
§ 104004 8085 Hot Plate
8008
286 386
8080 486
1
70 ‘80 ‘90 ‘00 ‘10

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

| Performance
Power

1.00x

Design
Frequency

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

1.73x 1| Performance

Over-clocked Design
(+20%) Frequency

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

Over-clocked Design Dual-core
(+20%) Frequency Unc;eé‘r(:)l%ked

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: Manufacturing Issues

— Frequency, foe<1/s

— s =feature size (transistor dimension)

— Transistors / unit area o< 1 / s2
— Typically, die size <1/ s

— So, what happens if feature size goes down by a factor of x?

— Raw computing power goes up by a factor of x*!

— Typically most programs run faster by a factor of x3
without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Manufacturing Issues

As feature size decreases
— Manufacturing cost goes up

— Cost of a semiconductor fabrication plant doubles
every 4 years (Rock’s Law)

— Yield (% of usable chips produced) drops

Cost of semiconductor factories in millions of 1995 dollars

10,000
Hratlo scale)

P
: L
1,000 g /
: o
100 - {‘
z -
10._ ”./ 0

=

1

'G6 ‘T4 's2 'a0 '98

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for (i=0;i<10%; ++i)

zZlil=x[i]+yli];
— We will have to access 3x1012 data items in one second
— Speed of light is, c = 3x108m/s

— So each data item must be within ¢/ 3x102 = 0.1 mm
from the CPU on the average

— All data must be putinside a 0.2 mm x 0.2 mm square

— Each data item (= 8 bytes) can occupy only 1 A2 space!
(size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Memory Wall

Relative
Performance
10000
B CPU
1000
100
10
1
1980 1985 1990 1995 2000 2005

Source: Sun World Wide Analyst Conference Feb. 25, 2003

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

Moore’s Law Reinterpreted

10000000
3
1000000 -
* Transistors (Thousands) o by
“» S
S— = Frequency (MHz) .
a Power (W) ¢
10000 +— ® Cores
wrge s
4 .
1000 — -]
“ -
9 A
100 ! - = e 4 AAAAA
A,
m A9, .2 A A
b A, b2 A
10 < S o ® 9
. A 2 e A A A
. 3 A A)
1 i . ’
0 1 T 1 T L T T
1970 1975 1980 1985 1990 1995 2000 2005

Source: Report of the 2011 Workshop on Exascale Programming Challenges

2010

Cores / Processor (General Purpose)

Future: 100+

[» F
|

arrabee: 12-32

Nehalem: 8+

LWk

Core2 Quad (4)

Number of Core:

Core 2 Duo (2)

2006 2007 2008 2009 2010 2015

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Operations per second for serial code

No Free Lunch for Traditional Software

1

T

8
~

5
Ez
0
w
c—ug: Single Core
Ség 1272007 |
’§§§N 2 Cores
F%g' : | .
/
5§ gl /
wse s
- I r
5§§ / 4 Cores
& | / =
S>3 / s >
- ! } p g 4 8Cores|
g 3GHz 4 Cores E J0HzsCom — — ~
e 7 .-‘.’ --""—_
S N SR =
be=—"

Additional operations per second if code can take advantage of concurrency

Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)

Insatiable Demand for Performance

Genomics Research Financial Analysis Medical Imaging

Source: Patrick Gelsinger, Intel Developer Forum, 2008

Numerical Weather Prediction
Problem: (temperature, pressure, ..., humidity, wind velocity)
< f(longitude, latitude, height, time)

Approach (very coarse resolution):

— Consider only modeling fluid flow in the atmosphere

— Divide the entire global atmosphere into cubic cells of
size 1 mile x 1 mile x 1 mile each to a height of 10 miles
=~ 2 x 10° cells

— Simulate 7 days in 1 minute intervals
~ 10% time-steps to simulate

— 200 floating point operations (flop) / cell / time-step
~ 4 x 10'> floating point operations in total

— To predictin 1 hour = 1 Tflop/s (Tera flop / sec)

Insatiable Demand for Performance

Weather Prediction
1 ZFlops ’O

Genomics Research _ -~

100 EFlops

10 EFlops
1 EFlops
100 PFlops

10 PFlops

1 PFlops
100 TFlops
10 TFlops

1 TFlops
100 GFlops
10 GFlops
1 GFlops

100 MFlops
1993 1999 2005 2011 2017 2023

Source: Patrick Gelsinger, Intel Developer Forum, 2008

Some Useful Classifications
of Parallel Computers

Parallel Computer Memory Architecture
(Shared Memory)

— All processors access all memory
as global address space

— Changes in memory by one
processor are visible to all others

— Tow types:

— Uniform Memory Access
(UMA)

Bus Interconnect

— Non-Uniform Memory
NUMA

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Shared Memory)

Advantages

— User-friendly programming
perspective to memory

— Fast data sharing

Disadvantages

— Difficult and expensive

to scale

Bus Interconnect

user responsibility
NUMA

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Distributed Memory)

— Each processor has its own
local memory — no global
address space

— Changes in local memory by

one processor have no effect

Source: Blaise Barney, LLNL

on memory of other processors

— Communication network to connect inter-processor memory

Parallel Computer Memory Architecture
(Distributed Memory)

Advantages
— Easily scalable

— No cache-coherency
needed among processors

— Cost-effective

Source: Blaise Barney, LLNL
Disadvantages
— Communication is user responsibility

— Non-uniform memory access

— May be difficult to map shared-memory data structures

to this type of memory organization

Parallel Computer Memory Architecture
(_ Hybrid Distributed-Shared Memory)

— The share-memory component
can be a cache-coherent SMP or
a Graphics Processing Unit (GPU)

— The distributed-memory
component is the networking of
multiple SMP/GPU machines

— Most common architecture
for the largest and fastest
computers in the world today

Source: Blaise Barney, LLNL

Flynn's Taxonomy of Parallel Computers

Flynn’s classical taxonomy (1966):
Classification of multi-processor computer architectures along
two independent dimensions of instruction and data.

Single Data Multiple Data
(SD) (MD)
Single Instruction

(sl) SISD SIMD

Multlpl(el:,rlmls;ructlon MISD MIMD

Flynn's Taxonomy of Parallel Computers

SISD

— A serial (non-parallel) computer

— The oldest and the most common

type of computers

— Example: Uniprocessor unicore

machines

load A
load B
C=A+B

aw)

store C
A=B*2

store A

Source: Blaise Barney, LLNL

Flynn's Taxonomy of Parallel Computers

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)|
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 ~ P2 Pn
SIMD

— A type of parallel computer

aw 1)

=7

-+

I/

(XY

X[1 |

YI1 |

(x3 X2 |’ x1 x0 |]
+

v [v2] v1 [yo)

x2+y2 | x1+y1 x0+y0|]

X[1+Y[] [x3+y3

Source: Blaise Barney, LLNL

— All PU’s run the same instruction at any given clock cycle

— Synchronous (lockstep) execution

Each PU can act on a different data item

— Two types: processor arrays and vector pipelines

Example: GPUs (Graphics Processing Units)

Flynn's Taxonomy of Parallel Computers

MISD
— A type of parallel computer

— Very few ever existed

MIMD
— A type of parallel computer

— Synchronous /asynchronous

execution

— Examples: most modern
supercomputers, parallel
computing clusters,
multicore PCs

prev instruct prev instruct prev instruct
load A(1) load A(1) load A(1)
C(1)=A(1)" C(2)=A(1)"2 C(n)=A(1)"n
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
e P2 Pn
prev instruct prev instruct prev instruct
load A(1) call funcD do 10 i=1,N
load B(1) X=y*z alpha=w**3
C(1)=A(1)*B(1) sum=x*2 zeta=C(i)
store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct
P1 P2 Pn

awn

dwiy

Source: Blaise Barney, LLNL

Parallel Algorithms
Warm-up

“The way the processor industry is going, is to add more and more cores, but
nobody Rnows how to program those things. I mean, two, yeah; four, not
really; eight, forget it.”

— Steve Jobs, NY Times interview, June 10 2008

Parallel Algorithms Warm-up (1)

Consider the following loop:

fori=1tondo
Cli]<A[i]xB[i]

— Suppose you have an infinite number of processors/cores

— lIgnore all overheads due to scheduling, memory accesses,
communication, etc.

— Suppose each operation takes a constant amount of time
— How long will this loop take to complete execution?

— O(1)time

Parallel Algorithms Warm-up (2)

Now consider the following loop:

c<—0
fori=1tondo
c<—Cc+A[i]xB[i]

— How long will this loop take to complete execution?

— O(logn) time

Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort(A)
if |A|<1returnA
else p<« Alrand(|A])]
return QSort({xe A:x<p})

#{p}#
QSort({xe A:x>p})

— Assuming that A is split in the middle everytime, and the two
recursive calls can be made in parallel, how long will this

algorithm take?

— O(log?n) time

