
CSE548, AMS542: Analysis of Algorithms, Fall 2017 Date: Oct 26

Homework #2
( Due: Nov 8 )

Task 1. [ 80 Points ] Average Case Analysis of Median-of-3 Quicksort

Consider the median-of-3 quicksort algorithm given in Figure 1.

Median-of-3-Quicksort( A[1 : n], n )

Input: An array A[1 : n] of n distinct numbers.

Output: A[1 : n] with its numbers sorted in increasing order of value.

1. if n = 2 then

2. if A[2] < A[1] then swap A[1] and A[2]

3. elif n > 2 then

4. x← median of A[1], A[2] and A[3]

5. rearrange the numbers of A[1 : n] such that

(i) A[k] = x for some k ∈ [1, n],

(ii) A[i] < x for each i ∈ [1, k − 1], and

(iii) A[i] > x for each i ∈ [k + 1, n],

6. Median-of-3-Quicksort( A[1 : k − 1], k − 1 )

7. Median-of-3-Quicksort( A[k + 1 : n], n− k )

8. return

Figure 1: A variant of standard quicksort algorithm that uses the median of the first three numbers
in its input (sub-)array as the pivot.

Given an input of size n, in this task we will analyze the average number of element comparisons
(i.e., comparisons between two numbers of the input array) performed by this algorithm over all
n! possible permutations of the input numbers. We will assume that the partitioning algorithm
is stable, i.e., if two numbers p and q end up in the same partition and p appears before q in the
input, then p must also appear before q in the resulting partition.

(a) [ 10 Points ] Show how to implement steps 4 and 5 of Figure 1 to get a stable partitioning of
the numbers in A[1 : n] using only n− 1

3 element comparisons on average, where the average
is taken over all n! possible permutations of the input numbers.

(b) [ 10 Points ] Let tn be the average number of element comparisons performed by the
algorithm given in Figure 1 to sort A[1 : n], where n ≥ 0 and the average is taken over
all n! possible permutations of the numbers in A. Show that
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tn =


0 if n < 2,
1 if n = 2,
n− 1

3 + 6
n(n−1)(n−2)

∑n
k=1 (k − 1)(n− k)(tk−1 + tn−k) otherwise.

(c) [ 20 Points] Let T (z) be a generating function for tn:

T (z) = t0 + t1z + t2z
2 + . . . + tnz

n + . . . . . .

Show that T ′′′(z) = 12
(1−z)2 T ′(z)− 8

(1−z)4 + 24
(1−z)5 .

(d) [ 20 Points] Solve the differential equation from part (c) to show that

T (z) = −3

7

(
4 ln (1− z) +

28

9
z +

29

63

)
(1− z)−2 − 2

735
(1− z)5 +

1

5
.

(e) [ 15 Points] Use your solution from part (d) to show that for n ≥ 0,

tn =
12

7
(n + 1)Hn −

159

49
n− 29

147
− (−1)n

2

735

(
5

n

)
+

1

5

(
0

n

)
,

where Hn =
∑n

k=1
1
k is the nth Harmonic number.1

Compute the numerical value of tn for 0 ≤ n ≤ 10.

(f) [ 5 Points] Use your solution from part (e) to show that tn = Θ (n log n).

Task 2. [ 60 Points ] A Linear Sieve

In this task we will analyze the running time of a Linear Sieve which is a variant of the original
Sieve of Eratosthenes modified to mark each composite exactly once. In contrast, the number of
times the original sieve marks a composite C is equal to the number of prime factors of C, and
hence for finding all primes in [2, N ] it marks all composites in that range around N log logN times
in total. The linear sieve we will consider in this task is known as the Sieve of Gries and Misra or
the GM Linear Sieve.

Figure 2 shows an implementation of the GM linear sieve which uses a supporting data structure
D composed of two priority queues and a stack. Indeed, one can show that when external-memory
priority queues are used this implementation becomes more I/O-efficient than the standard imple-
mentation that does not use priority queues. Of course, in this task we are not concerned about
I/O-efficiency. So, we will analyze the internal-memory running time of the implementation shown
in Figure 2 when internal-memory priority queues (e.g., binary heaps, binomial heaps) are used.

The GM linear sieve uses the following property of composite numbers to reduce the number of
times it marks them: each composite number C can be represented uniquely as C = prq where p is
the smallest prime factor of C, r is a positive integer, and either q = p or q (> p) is not divisible by

1Compare this with tn = 2(n+ 1)Hn − 4n which we obtained when we analyzed standard quicksort in Lecture 7.
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Linear-Sieve( N ) {find all prime numbers in [2, N ].}
1. create support data structure D
2. D.Init( N ), p← 1 {initialize support data structure D}

3. while p ≤
√
N do

{
output all primes ∈ [2,

√
N ]
}

4. p′ ← D.InvSucc( p ) {assuming that all composites with value ≤ N and divisible by primes ∈ [2, p]

are already in D, find the smallest integer p′ > p that does not appear as a composite in D}
5. print p′ {then this p′ must be a prime}
6. p← p′, q ← p′

7. while pq ≤ N do

8. for r ← 1 to
⌊
logp

(
N
q

)⌋
do {insert each composite of the form prq with value ≤ N into D,

9. D.Insert( prq ) where either q = p or q > p but is not divisible by p}
10. q ← D.InvSucc( q ) {find the next q that is not divisble by p}
11. D.Save( q ) {save q as we do not yet know if it’s a prime or a composite}
12. D.Restore( ) {restore all saved q’s}

13. while p ≤ N do
{

output all primes ∈ (
√
N,N ]

}
14. p← D.InvSucc( p )

15. if p ≤ N then print p {p must be a prime}

D.Init( N ) {initialize support data structure D for computing primes in [2, N ]}
1. D.Q1 ← {2, . . . , N} {D.Q1 is a priority queue containing numbers not yet known to be composites}
2. D.Q2 ← ∅ {D.Q2 is a priority queue containing composites we have

discovered that are yet to be deleted from D.Q1}
3. D.S ← ∅ {D.S is a stack}

D.InvSucc( x ) {return the smallest number larger than x which is not yet known to be a composite}
1. while Find-Min( D.Q1 ) ≤ x do {get rid of all numbers ≤ x from D.Q1}
2. Extract-Min( D.Q1 )

3. while Find-Min( D.Q2 ) ≤ Find-Min( D.Q1 ) do {keep removing numbers from D.Q1 (in increasing

4. if Find-Min( D.Q2 ) = Find-Min( D.Q1 ) then order of value) which also belong to D.Q2 (i.e., known

5. Extract-Min( D.Q1 ) to be composites) until finding one that does not belong to D.Q2}
6. Extract-Min( D.Q2 ) {remove composites from D.Q2 which have already been removed from D.Q1}
7. y ← Extract-Min( D.Q1 ) {y is the smallest number in D.Q1 which does not belong to D.Q2

and thus not known to be a composite}
8. return y

D.Insert( x ) {x is a composite to be deleted from D.Q1}
1. Insert( D.Q2, x ) {store x in D.Q2 for deletion from D.Q1 at a convenient time later}

D.Save( x ) {save x as we do not yet know if it’s a prime or not}
1. Push( D.S, x ) {store x in stack D.S}

D.Restore( ) {empty the contents of D.S into D.Q1}
1. while D.S 6= ∅ do
2. x← Pop( D.S ) {return the contents of stack D.S
3. Insert( D.Q1, x ) to the priority queue D.Q1}

Figure 2: An implementation of GM linear sieve using two priority queues and a stack.
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p. Hence, one can generate all composites in a lexicographical order using a triply nested loop with
p in the outermost loop, q in the middle and r in the innermost loop, and this will generate/mark
every composite exactly once.

The support data structure D has three components: two priority queues D.Q1 and D.Q2 and
one stack D.S. The priority queues support three operations: Insert, Find-Min and Extract-
Min. The stack supports Push and Pop. The data structure D itself supports the following four
operations (see Figure 2 for details): D.Insert, D.InvSucc, D.Save and D.Restore. It also
has an initialization function D.Init. When called with parameter N , the Linear-Sieve function
shown in Figure 2 uses this data structure to find all prime numbers in [2, N ].

Now answer the following questions.

(a) [ 10 Points ] Assuming that D.Q1 and D.Q2 are standard binary heaps that support Insert,
Find-Min and Extract-Min operations in O (log n), O (1) and O (log n) worst-case time,
respectively, where n is the number of items in the heap, find the worst case running times
of D.Insert, D.InvSucc, D.Save and D.Restore in terms of N .

(b) [ 5 Points ] Based on your results from part (a) give an upper bound on the worst-case
running time of Linear-Sieve( N ).

(c) [ 30 Points ] Under the assumption that D.Q1 and D.Q2 are standard binary heaps as in
part (a), show that the amortized times complexities of D.Insert, D.InvSucc, D.Save and
D.Restore are Θ (logN), Θ (1), Θ (logN) and Θ (1), respectively.

(d) [ 5 Points ] Based on your results from part (c) give an upper bound on the worst-case
running time of Linear-Sieve( N ).

(e) [ 10 Points ] Suppose D.Q1 and D.Q2 are binomial heaps that support Insert, Find-Min
and Extract-Min operations in O (1), O (1) and O (log n) amortized time, respectively,
where n is the number of items in the heap. Then what amortized bounds do you get for
D.Insert, D.InvSucc, D.Save and D.Restore? Based on those bounds give an upper
bound on the worst-case running time of Linear-Sieve( N ).

Task 3. [ 40 Points ] A Binomial Heap Variant Supporting Decrease-Key Operations

We modify the lazy binomial heap implementation (with doubly linked list representation) to
support Decrease-Key operations as follows.

Let’s denote the modified heap by H. Each node x of H will now have a flag called dirty. We will
say that node x is clean provided x.dirty = false, otherwise it’s dirty. Initially, x.dirty is set to
false. Only a Decrease-Key operation performed on x can set x.dirty to true.

An Insert( H, x ) operation sets x.dirty = false, creates a B0 containing x, and adds the new B0

to the doubly linked list containing all binomial trees of H.

A Decrease-Key( H, x, k ) operation is performed provided x.dirty = false and k < x.key. It
sets x.dirty = true, creates a new node y and sets y.key = k. Then it performs Insert( H, y ).
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An Extract-Min( H ) operation first performs a cleanup of H. The way the cleanup phase works
depends on the percentage of dirty nodes in H. If the data structure contains more dirty nodes
than clean nodes then the cleanup phase involves removing all dirty nodes from H and inserting
each clean node as a separate B0 into the linked list. Otherwise, the cleanup phase proceeds as
follows. It scans the doubly linked list in one direction and when it encounters some Bk with a
dirty root it removes that root from H and inserts its k children into the doubly linked list right
in front of the current scan location (meaning that the scan will encounter these k trees before
encountering any other tree currently in the linked list). The scan stops when the linked list no
longer has a tree with a dirty root. Note that the trees can still have dirty (internal) nodes, but
there will be no dirty roots.

After the cleanup phase an Extract-Min operation proceeds in exactly the way we saw in the
class: convert the doubly linked list representation to the array representation, perform Extract-
Min on the array representation, and finally convert the array representation back to the doubly
linked list representation.

Now answer the following questions.

(a) [ 30 Points ] Suppose we want to show that the amortized costs of Insert and Decrease-
Key operations are O (1) and O (f(n)), respectively, where n is the number of clean nodes
in H and f(n) is any non-decreasing positive function of n. Then what is the best amortized
(upper) bound you can get for the cost of an Extract-Min operation?

(b) [ 10 Points ] How will you modify the implementation above to also support Find-Min
operations in amortized O (1) time?
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