Homework #2
(Due: Nov 8)

Task 1. [80 Points] Average Case Analysis of Median-of-3 Quicksort
Consider the median-of-3 quicksort algorithm given in Figure 1.

Figure 1: A variant of standard quicksort algorithm that uses the median of the first three numbers in its input (sub-)array as the pivot.

Given an input of size n, in this task we will analyze the average number of element comparisons (i.e., comparisons between two numbers of the input array) performed by this algorithm over all $n!$ possible permutations of the input numbers. We will assume that the partitioning algorithm is **stable**, i.e., if two numbers p and q end up in the same partition and p appears before q in the input, then p must also appear before q in the resulting partition.

(a) [10 Points] Show how to implement steps 4 and 5 of Figure 1 to get a stable partitioning of the numbers in $A[1:n]$ using only $n - \frac{1}{3}$ element comparisons on average, where the average is taken over all $n!$ possible permutations of the input numbers.

(b) [10 Points] Let t_n be the average number of element comparisons performed by the algorithm given in Figure 1 to sort $A[1:n]$, where $n \geq 0$ and the average is taken over all $n!$ possible permutations of the numbers in A. Show that
\(t_n = \begin{cases}
0 & \text{if } n < 2, \\
1 & \text{if } n = 2, \\
\frac{6}{n(n-1)(n-2)} \sum_{k=1}^{n} (k-1)(n-k)(t_{k-1} + t_{n-k}) & \text{otherwise.}
\end{cases} \)

(c) [20 Points] Let \(T(z) \) be a generating function for \(t_n \):
\[
T(z) = t_0 + t_1z + t_2z^2 + \ldots + t_nz^n + \ldots .
\]
Show that \(T'''(z) = \frac{12}{(1-z)^2} T'(z) - \frac{8}{(1-z)^4} + \frac{24}{(1-z)^5} \).

(d) [20 Points] Solve the differential equation from part (c) to show that
\[
T(z) = -3 \left(4 \ln (1-z) + \frac{28}{9}z + \frac{29}{63} (1-z)^{-2} - \frac{2}{735} (1-z)^5 + \frac{1}{5} \right).
\]

(e) [15 Points] Use your solution from part (d) to show that for \(n \geq 0 \),
\[
t_n = \frac{12}{7} (n+1) H_n - \frac{159}{49} n - \frac{29}{147} - (-1)^n \frac{2}{735} \left(\frac{5}{n} \right) + \frac{1}{5} \left(\frac{0}{n} \right),
\]
where \(H_n = \sum_{k=1}^{n} \frac{1}{k} \) is the \(n \)th Harmonic number.\(^1\)

Compute the numerical value of \(t_n \) for \(0 \leq n \leq 10 \).

(f) [5 Points] Use your solution from part (e) to show that \(t_n = \Theta (n \log n) \).

Task 2. [60 Points] A Linear Sieve

In this task we will analyze the running time of a Linear Sieve which is a variant of the original Sieve of Eratosthenes modified to mark each composite exactly once. In contrast, the number of times the original sieve marks a composite \(C \) is equal to the number of prime factors of \(C \), and hence for finding all primes in \([2, N]\) it marks all composites in that range around \(N \log \log N \) times in total. The linear sieve we will consider in this task is known as the Sieve of Gries and Misra or the GM Linear Sieve.

Figure 2 shows an implementation of the GM linear sieve which uses a supporting data structure \(D \) composed of two priority queues and a stack. Indeed, one can show that when external-memory priority queues are used this implementation becomes more I/O-efficient than the standard implementation that does not use priority queues. Of course, in this task we are not concerned about I/O-efficiency. So, we will analyze the internal-memory running time of the implementation shown in Figure 2 when internal-memory priority queues (e.g., binary heaps, binomial heaps) are used.

The GM linear sieve uses the following property of composite numbers to reduce the number of times it marks them: each composite number \(C \) can be represented uniquely as \(C = p^r q \) where \(p \) is the smallest prime factor of \(C \), \(r \) is a positive integer, and either \(q = p \) or \(q > p \) is not divisible by

\(^1\)Compare this with \(t_n = 2(n+1) H_n - 4n \) which we obtained when we analyzed standard quicksort in Lecture 7.
Figure 2: An implementation of GM linear sieve using two priority queues and a stack.
p. Hence, one can generate all composites in a lexicographical order using a triply nested loop with
p in the outermost loop, q in the middle and r in the innermost loop, and this will generate/mark
every composite exactly once.

The support data structure \(D \) has three components: two priority queues \(D.Q_1 \) and \(D.Q_2 \) and
one stack \(D.S \). The priority queues support three operations: \textsc{Insert}, \textsc{Find-Min} and \textsc{Extract-Min}. The stack supports \textsc{Push} and \textsc{Pop}. The data structure \(D \) itself supports the following four
operations (see Figure 2 for details): \(D.\text{Insert} \), \(D.\text{InvSucc} \), \(D.\text{Save} \) and \(D.\text{Restore} \). It also
has an initialization function \(D.\text{Init} \). When called with parameter \(N \), the \textsc{Linear-Sieve} function
shown in Figure 2 uses this data structure to find all prime numbers in \([2, N]\).

Now answer the following questions.

(a) [10 Points] Assuming that \(D.Q_1 \) and \(D.Q_2 \) are standard binary heaps that support \textsc{Insert},
\textsc{Find-Min} and \textsc{Extract-Min} operations in \(O(\log n) \), \(O(1) \) and \(O(\log n) \) worst-case time,
respectively, where \(n \) is the number of items in the heap, find the worst case running times
of \(D.\text{Insert} \), \(D.\text{InvSucc} \), \(D.\text{Save} \) and \(D.\text{Restore} \) in terms of \(N \).

(b) [5 Points] Based on your results from part (a) give an upper bound on the worst-case running time of \textsc{Linear-Sieve}(\(N \)).

(c) [30 Points] Under the assumption that \(D.Q_1 \) and \(D.Q_2 \) are standard binary heaps as in
part (a), show that the amortized times complexities of \(D.\text{Insert} \), \(D.\text{InvSucc} \), \(D.\text{Save} \) and
\(D.\text{Restore} \) are \(\Theta(\log N) \), \(\Theta(1) \), \(\Theta(\log N) \) and \(\Theta(1) \), respectively.

(d) [5 Points] Based on your results from part (c) give an upper bound on the worst-case running time of \textsc{Linear-Sieve}(\(N \)).

(e) [10 Points] Suppose \(D.Q_1 \) and \(D.Q_2 \) are binomial heaps that support \textsc{Insert}, \textsc{Find-Min}
and \textsc{Extract-Min} operations in \(O(1) \), \(O(1) \) and \(O(\log n) \) amortized time, respectively,
where \(n \) is the number of items in the heap. Then what amortized bounds do you get for
\(D.\text{Insert} \), \(D.\text{InvSucc} \), \(D.\text{Save} \) and \(D.\text{Restore} \)? Based on those bounds give an upper
bound on the worst-case running time of \textsc{Linear-Sieve}(\(N \)).

Task 3. [40 Points] A Binomial Heap Variant Supporting Decrease-Key Operations

We modify the lazy binomial heap implementation (with doubly linked list representation) to
support \textsc{Decrease-Key} operations as follows.

Let’s denote the modified heap by \(\mathcal{H} \). Each node \(x \) of \(\mathcal{H} \) will now have a flag called \textit{dirty}. We will
say that node \(x \) is \textit{clean} provided \(x.\text{dirty} = \text{false} \), otherwise it’s \textit{dirty}. Initially, \(x.\text{dirty} \) is set to
\text{false}. Only a \textsc{Decrease-Key} operation performed on \(x \) can set \(x.\text{dirty} \) to \text{true}.

An \texttt{Insert}(\(\mathcal{H}, x \)) operation sets \(x.\text{dirty} = \text{false} \), creates a \(B_0 \) containing \(x \), and adds the new \(B_0 \)
to the doubly linked list containing all binomial trees of \(\mathcal{H} \).

A \texttt{Decrease-Key}(\(\mathcal{H}, x, k \)) operation is performed provided \(x.\text{dirty} = \text{false} \) and \(k < x.\text{key} \). It
sets \(x.\text{dirty} = \text{true} \), creates a new node \(y \) and sets \(y.\text{key} = k \). Then it performs \texttt{Insert}(\(\mathcal{H}, y \)).
An Extract-Min(\(\mathcal{H} \)) operation first performs a cleanup of \(\mathcal{H} \). The way the cleanup phase works depends on the percentage of dirty nodes in \(\mathcal{H} \). If the data structure contains more dirty nodes than clean nodes then the cleanup phase involves removing all dirty nodes from \(\mathcal{H} \) and inserting each clean node as a separate \(B_0 \) into the linked list. Otherwise, the cleanup phase proceeds as follows. It scans the doubly linked list in one direction and when it encounters some \(B_k \) with a dirty root it removes that root from \(\mathcal{H} \) and inserts its \(k \) children into the doubly linked list right in front of the current scan location (meaning that the scan will encounter these \(k \) trees before encountering any other tree currently in the linked list). The scan stops when the linked list no longer has a tree with a dirty root. Note that the trees can still have dirty (internal) nodes, but there will be no dirty roots.

After the cleanup phase an Extract-Min operation proceeds in exactly the way we saw in the class: convert the doubly linked list representation to the array representation, perform Extract-Min on the array representation, and finally convert the array representation back to the doubly linked list representation.

Now answer the following questions.

(a) [30 Points] Suppose we want to show that the amortized costs of Insert and Decrease-Key operations are \(O(1) \) and \(O(f(n)) \), respectively, where \(n \) is the number of clean nodes in \(\mathcal{H} \) and \(f(n) \) is any non-decreasing positive function of \(n \). Then what is the best amortized (upper) bound you can get for the cost of an Extract-Min operation?

(b) [10 Points] How will you modify the implementation above to also support Find-Min operations in amortized \(O(1) \) time?