
CSE 548: Analysis of Algorithms

Lecture 4

(Divide-and-Conquer Algorithms:

Polynomial Multiplication)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2016

Coefficient Representation of Polynomials

� � � �������	
�
�� �� � �	� � �
�
 �⋯� ���	���	

� � is a polynomial of degree bound � represented as a vector � � ��, �	, ⋯ , ���	 of coefficients.

The degree of � � is � provided it is the largest integer such that �� is nonzero. Clearly, 0 � � � � � 1.

Evaluating � � 	at a given point:

Takes Θ � time using Horner’s rule:

� �� � �� � �	�� � �
 ��
 �⋯� ���	 �� ��	
� �� � �� �	 � �� �
 �⋯� �� ���
 � �� ���	 ⋯

Then , where, for .

Coefficient Representation of Polynomials

� � � � ������	
�
�

Adding Two Polynomials:

Adding two polynomials of degree bound � takes Θ � time.

�� � �� � ��

� � � � � � � �
� � � �������	

�
� � � � �������	
�
�where, and .

0 � � � � � 1

Then , where, for .

Coefficient Representation of Polynomials

� � � � ����
��

�
�

Multiplying Two Polynomials:

The product of two polynomials of degree bound � is another

polynomial of degree bound 2� � 1.

�� � ��������
�
�

� � � � � � �
� � � �������	

�
� � � � �������	
�
�where, and .

0 � � � 2� � 2
The coefficient vector � � ��, �	,⋯ , �
��
 , denoted by � � �	⊗	�,

is also called the convolution of vectors � � ��, �	, ⋯ , ���	 and � � ��, �	, ⋯ , ���	 .

Clearly, straightforward evaluation of � takes Θ �
 	time.

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��

����

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��

���	� � �	���

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��

���
�
 � �	�	�
 � �
���

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��
��� � � �	�
� � �
�	� � � ���

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��
�	� �! � �
�
�! � � �	�!

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��
�
� �" � � �
�"

Convolution

�� � �	� � �
�
 � � �
� � � �
�
 � �	� � ��
� � �#

Then

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

We can use Karatsuba’s algorithm (assume � to be a power of 2):

� � � � � � �� �	 � �	 � � �$% �	 � �
 � � �
 � �	 � � �� �
 � �
 �

� � � ����� � �����
�
�	
�
� � ��
 ���
&���

�
�	
�
� � �	 � � ��
�
 ���	

�
�
� � � ����� � �����

�
�	
�
� � ��
 ���
&���

�
�	
�
� � �	 � � ��
�
 ���	

�
�

But �	 � �
 � � �
 � �	 �
� �	 � ��
 � �	 � ��
 � � �	 � �	 � � �
 � �
 �

3 recursive multiplications of polynomials of degree bound
�
 .

Similar recurrence as in Karatsuba’s integer multiplication

algorithm leading to a complexity of Ο �()*% � Ο �	."+ .

Point-Value Representation of Polynomials

If then

Adding Two Polynomials:

Suppose we have point-value representations of two polynomials

of degree bound � using the same set of � points.

� � � � � � � �

�: ��, -�. , �	, -	. , … , ���	, -��	.
�: ��, -�0 , �	, -	0 , … , ���	, -��	0

�: ��, -�. � -�0 , �	, -	. � -	0 , … , ���	, -��	. � -��	0
Thus polynomial addition takes Θ � time.

A point-value representation of a polynomial � � is a set of � point-

value pairs ��, -� , �	, -	 , … , ���	, -��	 such that all �� are

distinct and -� � � �� for 0 � � � � � 1.

A polynomial has many point-value representations.

Point-Value Representation of Polynomials

If then

Multiplying Two Polynomials:

Suppose we have extended (why?) point-value representations of

two polynomials of degree bound � using the same set of 2� points.

� � � � � � �

�: ��, -�. , �	, -	. , … , �
��	, -
��	.
�: ��, -�0 , �	, -	0 , … , �
��	, -
��	0

�: ��, -�.-�0 , �	, -	.-	0 , … , �
��	, -
��	. -
��	0
Thus polynomial multiplication also takes only Θ � time!

(compare this with the Θ �
 time needed in the coefficient form)

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � �	� � ⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� � ⋯� �
��	�
��	

� �� , � ��� �	 , � �	⋮� �
��	 , � �
��	
� ��� �	⋮� �
��	

ordinary

multiplication

Time Θ �

pointwise

multiplication

Time Θ �

e
va

lu
a

ti
o

n

T
im

e
?

in
te

rp
o

la
ti

o
n

T
im

e
?

Using Horner’s rule this approach takes Θ �
 time.

Coefficient Representation ⇒⇒⇒⇒ Point-Value Representation:

We select any set of � distinct points ��, �	, … , ���	 , and

evaluate � �� for 0 � � � � � 1.

This again takes Θ �
 time.

Point-Value Representation ⇒⇒⇒⇒ Coefficient Representation:

We can interpolate using Lagrange’s formula:

� � � � ∏ � � ��3�4�∏ �� � ��3�4� -���	
�
�

In both cases we need to do much better!

Faster Polynomial Multiplication?
(in Coefficient Form)

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

� ��� �	···� ���	
�

1 �� ��
 ⋯ �� ��	1 �	 �	
 ⋯ �	 ��	· · · ⋯ ·· · · ⋯ ·· · · ⋯ ·1 ���	 ���	
 ⋯ ���	 ��	

���	···���	

� � � �� � �	� � ⋯� ���	���	A polynomial of degree bound �:

A set of � distinct points: ��, �	, … , ���	
Compute point-value form: ��, � �� , �	, � �	 , … , ���	, � ���	
Using matrix notation:

We want to choose the set of points in a way that simplifies the

multiplication.

In the rest of the lecture on this topic we will assume:6 is a power of 2.

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

� ��� �	·� ��
⁄ �		� ��
⁄ &�� ��
⁄ &	·� ��
⁄ & �
⁄ �	

�

1 �� ��
 ⋯ �� ��	1 �	 �	
 ⋯ �	 ��	· · · ⋯ ·1 ��
⁄ �	 ��
⁄ �	
 ⋯ ��
⁄ �	 ��		 	 	 	 	1 ��� ���
 ⋯ ��� ��	1 ��	 ��	
 ⋯ ��	 ��	· · · ⋯ ·1 ���
⁄ �	 ���
⁄ �	
 ⋯ ���
⁄ �	 ��	

���	·····���	

Let’s choose ��
⁄ &� � ��� for 0 � � � � 2⁄ � 1. Then

��
⁄ &� � � 8 �� � , 			9:	� � ;<;�,� �� � , 	9:	� � =>>.Observe that for 0 � � � � 2⁄ � 1:

Thus we have just split the original � ? � matrix into two almost

similar
�
 ? � matrices!

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

How and how much do we save?

where, and .

� � � ��@�@ ���	
@
� � �
@�
@�
⁄ �	

@
� � � �
@&	�
@&	�
⁄ �	
@
�

										� � �
@ �
 @�
⁄ �	
@
� � � � �
@&	 �
 @�
⁄ �	

@
� � �ABA� �
 � ��CDD �
 ,
�ABA� � � � �
@�@�
⁄ �	

@
� �CDD � � � �
@&	�@�
⁄ �	
@
�

Observe that for 0 � � � � 2⁄ � 1: � �� � �ABA� ��
 � ���CDD ��
� ��
⁄ &� � � ��� � �ABA� ��
 � ���CDD ��

So in order to evaluate � �� for all 0 � � � � � 1, we need:� 2⁄ evaluations of �ABA� and � 2⁄ evaluations of �CDD� multiplications� 2⁄ additions and � 2⁄ subtractions

Thus we save about half the computation!

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

If we can recursively evaluate �ABA� and �CDD using the same

approach, we get the following recurrence relation for the running

time of the algorithm:

E � � 8Θ 1 , 																		9:	� � 1,2E �2 � Θ � , 			=FG;HI9J;.
� 	Θ � log �

Our trick was to evaluate � at � (positive) and �� (negative).

But inputs to �ABA� and �CDD are always of the form �
 (positive)!

How can we apply the same trick?

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

�ABA� ���ABA� �	···�ABA� ��
⁄ �	
�

1 ��
 �� ! ⋯ �� ��
1 �	
 �	 ! ⋯ �	 ��
· · · ⋯ ·· · · ⋯ ·· · · ⋯ ·1 ��
⁄ �	
 ��
⁄ �	 ! ⋯ ��
⁄ �	 ��

���
�!··���

Let us consider the evaluation of �ABA� �� for 0 � � � � 2⁄ � 1:

In order to apply the same trick on �ABA� we must set:�� !&�⁄
 � � ��

for 0 � � � � 4⁄ � 1

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

In �ABA� we set: �� !&�⁄
 � ���
 for 0 � � � � 4⁄ � 1. Then

This means setting �� !&�⁄ � 9��, where 9 � �13
(imaginary)!

This also allows us to apply the same trick on �CDD.

�ABA� ���ABA� �	·�ABA� �� !⁄ �		�ABA� �� !⁄ &��ABA� �� !⁄ &	·�ABA� �� !⁄ & � !⁄ �	

�

1 ��
 ��

 ⋯ ��
 �
�	
1 �	
 �	

 ⋯ �	
 �
�	· · · ⋯ ·
1 �� !⁄ �	
 �� !⁄ �	

 ⋯ �� !⁄ �	
 �
�		 	 	 	 	1 ���
 ���

 ⋯ ���
 �
�	
1 ��	
 ��	

 ⋯ ��	
 �
�	· · · ⋯ ·
1 ��� !⁄ �	
 ���
⁄ �	

 ⋯ ��� !⁄ �	
 �
�	

���
�!····���

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

We can apply the trick once if we set:��
&�⁄ � ��� for 0 � � � � 2⁄ � 1
We can apply the trick (recursively) 2 times if we also set:

��
%&�⁄
 � � ��

for 0 � � � � 2
⁄ � 1

We can apply the trick (recursively) 3 times if we also set:

��
O&�⁄
% � � ��
%
for 0 � � � � 2 ⁄ � 1

We can apply the trick (recursively) � times if we also set:

��
P&�⁄
PQR � � ��
PQR
for 0 � � � � 2�⁄ � 1

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Consider the FST primitive root of unity:

US � ;%VWX � cos
[S � 9 · sin
[S 9 � �13

��
&�⁄ � ���		⇒ ��
R&�⁄ � U
R · ��Then

��
%&�⁄
 � � ��

⇒ ��
%&�⁄ � U
% · ��

��
O&�⁄
% � � ��
%
⇒ ��
O&�⁄ � U
O · ��

��
P&�⁄
PQR � � ��
PQR
⇒ ��
P&�⁄ � U
P · ��

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

If � � 2� we would like to apply the trick � times recursively.

What values should we choose for ��, �	, … , ���	 ?
Example: For � � 2 we need to choose ��, �	, … , �_ .

Choose: �� � 1
� � 3: �	 � U
O · ��� � 2: �
 � U
% · ��� � U
% · �	
� � 1: �! � U
R · ���" � U
R · �	�# � U
R · �
�_ � U
R · �

� Ua	� Ua
� Ua
� Ua!� Ua"� Ua#� Ua_

� Ua�

1�1

9

�9

Ua� � Uaa

Ua	
Ua

Ua

Ua!

Ua" Ua#
Ua_

complex bcd roots of unity

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

For a polynomial of degree bound � � 2�, we need to apply the

trick recursively at most log � � � times.

We choose �� � 1 � U�� and set �� � U�� for 1 � � � � � 1.

Then we compute the following product:

-�-	-
··-��	
�

� 1� U�� U�
··� U���	
�

1 1 1 ⋯ 11 U� U�
 ⋯ U� ��	
1 U�
 U�

 ⋯ U�
 ��	· · · ⋯ ·· · · ⋯ ·1 U���	 U���	
 ⋯ U���	 ��	

���	�
··���	
The vector - � -�, -	, ⋯ , -��	 is called the discrete Fourier

transform (DFT) of ��, �	, ⋯ , ���	 .

This method of computing DFT is called the fast Fourier transform

(FFT) method.

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Example: For � � 2 � 8:� � � �� � �	� � �
�
 � � � � �!�! � �"�" � �#�# � �_�_
We need to evaluate �f�g at � � Uah for 0 � 9 i 8.

Now � � � �ABA� �
 � � · �CDDf�
g,
where �ABA� - � �� � �
- � �!-
 � �#-

and �CDD - � �	 � � - � �"-
 � �_-

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Observe that:Ua� � Uaa 				� U!�Ua
 � Ua	� 		� U!	Ua! � Ua	
 		� U!
Ua# � Ua	! 		� U!

� Ua� 		� �ABA� Ua� � Ua� · �CDD Ua� 					� �ABA� U!� � Ua� · �CDDfU!�g, � Ua	 		� �ABA� Ua
 � Ua	 · �CDD Ua
 					� �ABA� U!	 � Ua	 · �CDDfU!	g, � Ua
 		� �ABA� Ua! � Ua
 · �CDD Ua! 					� �ABA� U!
 � Ua
 · �CDDfU!
g, � Ua 		� �ABA� Ua# � Ua · �CDD Ua# 					� �ABA� U! � Ua · �CDDfU! g,
� Ua! 		� �ABA� Uaa � Ua! · �CDD Uaa 					� �ABA� U!� � Ua� · �CDDfU!�g,� Ua" 		� �ABA� Ua	� � Ua" · �CDD Ua	� 	� �ABA� U!	 � Ua	 · �CDDfU!	g, � Ua# 		� �ABA� Ua	
 � Ua# · �CDD Ua	
 	� �ABA� U!
 � Ua
 · �CDDfU!
g, � Ua_ 		� �ABA� Ua	! � Ua_ · �CDD Ua	! 	� �ABA� U! � Ua · �CDDfU! g,

Also:Ua! � �Ua�Ua" � �Ua	Ua# � �Ua
Ua_ � �Ua

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Rec-FFT ((a0, a1, …, an - 1)) { n = 2k for integer k ≥ 0 }

1. if n = 1 then

3. ωn ← e2πi/n

5. yeven ← Rec-FFT ((a0, a2, …, an - 2))

2. return (a0)

7. for j ← 0 to n/2 − 1 do

8. yj ← yj
even + ω yj

odd

11. return y

4. ω ← 1

6. yodd ← Rec-FFT ((a1, a3, …, an - 1))

9. yn/2+j ← yj
even − ω yj

odd

10. ω ← ω ωn

E � � 8Θ 1 , 																		9:	� � 1,2E �2 � Θ � , 			=FG;HI9J;.
� 	Θ � log �

Running time:

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � �	� � ⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� � ⋯� �
��	�
��	

� U
�� , � U
��� U
�	 , � U
�	⋮� U
�
��	 , � U
�
��	

� U
��� U
�	⋮� U
�
��	

ordinary

multiplication

Time Θ �

pointwise

multiplication

Time Θ �

fo
rw

a
rd

 F
F

T

T
im

e
 Θ

�log
�

in
te

rp
o

la
ti

o
n

T
im

e
?

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

Given: 1 1 1 ⋯ 11 U� U�
 ⋯ U� ��	
1 U�
 U�

 ⋯ U�
 ��	· · · ⋯ ·· · · ⋯ ·1 U���	 U���	
 ⋯ U���	 ��	

j k$j.�DAlmC�DA	n.Slho

���	�
··���	.p

�
-�-	-
··-��	qp

⇒	r U� · �p � -p
We want to solve: �p � r U� �	 · -p
It turns out that: r U� �	 � 1�r 1U�
That means r U� �	 looks almost similar to r U� !

We want to show that ,

where s� is the � ? � identity matrix.

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

Show that: r U� �	 � 1�r 1U�
Let t U� � 1�r 1U� t U� r U� � s�
Observe that for 0 � �, � � � � 1, the �, � ST entries are: t U� �� � 1�U����r U� �� � U��� and

Then entry u, v of t U� r U� ,
t U� r U� wx � � t U� w�

��	
�
� r U� �x � 1��U�� x�w��	

�
�

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

t U� r U� wx � 1��U�� x�w��	
�
�

CASE u � v:
t U� r U� wx � 1��U��

��	
�
� � 1��1��	

�
� � 1� ? � � 1
CASE u y v:

t U� r U� wx � 1�� U�x�w ���	
�
� � 1� ? U�x�w � � 1U�x�w � 1

																																										� 1� ? U�� x�w � 1U�x�w � 1 � 1� ? 1 x�w � 1U�x�w � 1 � 0
Hence t U� r U� � s�

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

We need to compute the following matrix-vector product:

���	�
··���	.p

� 1� ?

1 1 1 ⋯ 1
1 1U�

1U�

 ⋯ 1U�

��	

1 1U�

1U�

 ⋯ 1U�

��	

· · · ⋯ ·· · · ⋯ ·
1 1U���	

1U���	

 ⋯ 1U���	

��	
j k$ QR

-�-	-
··-��	qp

This inverse problem is almost similar to the forward problem,

and can be solved in Θ � log � 	time using the same algorithm as

the forward FFT with only minor modifications!

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � �	� � ⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� � ⋯� �
��	�
��	

� U
�� , � U
��� U
�	 , � U
�	⋮� U
�
��	 , � U
�
��	

� U
��� U
�	⋮� U
�
��	

ordinary

multiplication

Time Θ �

pointwise

multiplication

Time Θ �

fo
rw

a
rd

 F
F

T

T
im

e
 Θ

�log
�

in
ve

rs
e

 F
F

T

T
im

e
 Θ

�log
�

Two polynomials of degree bound � given in the coefficient form

can be multiplied in Θ � log � time!

Some Applications of Fourier Transform and FFT

• Signal processing

• Image processing

• Noise reduction

• Data compression

• Solving partial differential equation

• Multiplication of large integers

• Polynomial multiplication

• Molecular docking

Some Applications of Fourier Transform and FFT

Jean Baptiste Joseph Fourier

Any periodic signal can be represented as a sum of a series of

sinusoidal (sine & cosine) waves. [1807]

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Spatial (Time) Domain

Frequency Domain

Source: The Scientist and Engineer’s Guide to Digital Signal Processing by Steven W. Smith

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

(Fourier Transforms)

z : � { J F · ;�
[h|S}
�} >F

J F � { z : · ;
[h|S}
�} >:

Let J F be a signal specified in the time domain.

The strength of J F at frequency : is given by:

Now J F can be retrieved by summing up the signal strengths

at all possible frequencies:

Evaluating this integral for all values of : gives the frequency

domain function.

	~ � J F · ;�
[h|S~�~ >F � 1 � ��� ![|~![|~ , if	: � G,
���
[T�| ~
[T�| ~ � ���
[T&| ~
[T&| ~ , otherwise.

Let’s try to get a little intuition behind why the transforms work.

We will look at a very simple example.

Suppose: J F � cos 2�G ⋅ F

Why do the Transforms Work?

⇒	 lim~→}
1E{ J F · ;�
[h|S~

�~ >F � 81, if	: � G,
0, otherwise.

So, the transform can detect if : � G!

Noise Reduction

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

FFT
inverse FFT

remove
noise

Data Compression

− Discrete Cosine Transforms (DCT) are used for lossy data

compression (e.g., MP3, JPEG, MPEG)

− DCT is a Fourier-related transform similar to DFT (Discrete

Fourier Transform) but uses only real data (uses cosine waves

only instead of both cosine and sine waves)

− Forward DCT transforms data from spatial to frequency domain

− Each frequency component is represented using a fewer

number of bits (i.e., truncated / quantized)

− Low amplitude high frequency components are also removed

− Inverse DCT then transforms the data back to spatial domain

− The resulting image compresses better

1E{ J F · cos 2�:F~
�~ >F �

1 � sin 4�:E4�:E , if	: � G,
sin 2� G � : E2� G � : E � sin 2� G � : E2� G � : E , otherwise.

Transformation to frequency domain using cosine transforms

work in the same way as the Fourier transform.

Suppose: J F � cos 2�G ⋅ F

Data Compression

⇒	 lim~→}
1E{ J F · cos 2�:F~

�~ >F � 81, if	: � G,
0, otherwise.

So, this transform can also detect if : � G.

Protein-Protein Docking

� Knowledge of complexes is used in

− Drug design

− Studying molecular assemblies

� Protein-Protein Docking: Given two proteins, find the best relative

transformation and conformations to obtain a stable complex.

� Docking is a hard problem

− Search space is huge (6D for rigid proteins)

− Protein flexibility adds to the difficulty

− Structure function analysis

− Protein interactions

Here �� � is a Gaussian representation of atom �, and I� its weight.

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

To maximize skin-skin overlaps and minimize core-core overlaps

− assign positive real weights to skin atoms

− assign positive imaginary weights to core atoms

For P ∈ {A′, B} with MP atoms, affinity function: :� � � ∑ I� ⋅ �� �n��
	
Let A′ denote molecule A with the pseudo skin atoms.

For rotation H and translation F of molecule � (i.e., �S,l),

the interaction score, ��,� F, H � � :�� � :�X,� �o >�

For P ∈ {A′, B} with MP atoms, affinity function:

Let A′ denote molecule A with the pseudo skin atoms.

:� � � ∑ I� ⋅ �� �n��
	

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

For rotation H and translation F of molecule � (i.e., �S,l),

the interaction score, ��,� F, H � � :�� � :�X,� �o >�
�; ��,� F, H � skin-skin overlap score – core-core overlap scores� ��,� F, H � skin-core overlap score

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Forward

Translational Search using FFT

rotate

discretize

discretize

FFT

multiply frequency maps

MA’ atoms

MB atoms

(((()))) Ω∀ ∈∀ ∈∀ ∈∀ ∈z , zhForward

FFT

Inverse

FFT

co
m

p
le

x

co
n

ju
g

a
te

∀� ∈ Ω � ��, � , G � � { :�� � :�� � � � >�o∈Ω 		

