
CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Oct 17

Homework #2
( Due: Nov 1 )

Task 1. [ 80 Points ] Average Case Analysis of 3-way Quicksort

Consider the 3-way quicksort algorithm given in Figure 1.

Figure 1: The 3-way quicksort algorithm.

Given an input of size n, in this task we will analyze the average number of element comparisons
(i.e., comparisons between two numbers of the input array) performed by this algorithm over all
n! possible permutations of the input numbers. We will assume that the partionting algorithm is
stable, i.e., if two numbers p and q end up in the same partition and p appears before q in the input,
then p must also appear before q in the resulting partition.

(a) [ 8 Points ] Show how to implement steps 1 and 2 of Figure 1 to get a stable partitioning of
A[1 : n] using only 2n − rank(min (x, y)) − 2 element comparisons, where rank(u) gives you
the number of entries in A[1 : n] with value not larger than u.

(b) [ 12 Points ] Let tn be the average number of element comparisons performed by the
algorithm given in Figure 1 to sort A[1 : n], where n ≥ 1 and the average is taken over
all n! possible permutations of the numbers in A. Show that

tn =

{
0 if n < 2,
5n−7

3 + 2
n(n−1)

∑n−1
i=1

∑n
j=i+1 (ti−1 + tj−i−1 + tn−j) otherwise.

(c) [ 20 Points ] Give an algorithm that can compute tn in O (n) time and O (1) space, where
n ≥ 1 is an integer.
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(d) [ 20 Points ] Let T (z) be a generating function for tn:

T (z) = t0 + t1z + t2z
2 + . . .+ tnz

n + . . . . . .

Show that T ′′(z) = 6
(1−z)2 T (z) + 2

(1−z)3 + 10z
(1−z)4 .

(e) [ 20 Points] Solve the differential equation from part (d) to express the precise value of tn
in terms of n.

Task 2. [ 100 Points ] Amortized Analysis of a Priority Queue

In this task we will consider a priority queue Q that supports Insert and Extract-Min operations.
An Insert(Q, x) operation inserts an item x into Q, and Extract-Min(Q) deletes and returns the
item with the smallest key from Q. We will assume for simplicity that all values stored in Q are
distinct.

The structure of Q at any given time is determined by three constants: µmax > 1, µ ∈ (1, µmax)
and α ∈ (1, 2], where µmax and α remain fixed throughout the lifetime of Q, but µ may change
when the data structure is reconstructed periodically.

The data structure consists of L+1 levels, where L = logα logµ (N0) and N0
2 is the number of items

in Q at the time of its last reconstruction. The data structure is reconstructed periodically in order
to ensure that 1

4N0 ≤ N ≤ 3
4N0 always holds, where N is the number of items currently in Q.

Let ni =
⌊
µα

i
⌋

for 0 ≤ i ≤ L. Level 0 consists of two buffers F0 and S0, where |F0|, |S0| ≤ n0. For

Figure 2: Structure of the priority queue in task 2. Intuitively, float sets store items that are on
their way up (i.e., floating) and sink sets store items that are on their way down (i.e., sinking). The
arrow inside each box shows this general direction of movements.
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Figure 3: Pictorial depiction of Invariants 1–4. An arrow directed from box B1 to box B2 means
that the key of every item in box B1 is smaller than the key of every item in box B2.

1 ≤ i ≤ L, level i consists of a sink set Si with |Si| ≤ ni, and at most ki =
⌈

ni
ni−1

⌉
+ 1 float sets

Fi,1, Fi,2, . . . , Fi,ki , where |Fi,1| < 2ni−1 and ni−1 ≤ |Fi,j | < 2ni−1 for 2 ≤ j ≤ ki. See Figure 2.

The entire priority queue is stored in a linear array A as follows. The first n0 locations of A are
reserved for S0 and the next n0 locations for F0. Then space is reserved for the sink set and float
sets of level 1, followed by those of level 2, then level 3, and so on. For any level i ∈ [1, L + 1],
first ni locations are reserved for Si followed by 2ni−1 locations for each of the ki possible float
sets of level i. The float sets are not necessarily stored in sorted order1, but they are always linked
together to form an ordered linked list.

The following four invariants are always maintained (see Figure 3 for a pictorial depiction).

Invariant 1 For 1 ≤ i ≤ L and 1 ≤ j < ki, keys in Fi,j are smaller than those in Fi,j+1.

Invariant 2 For 1 ≤ i ≤ L and 1 ≤ j ≤ ki, keys in Fi,j are smaller than those in Si.

1e.g., Fi,j+1 may be necessarily be stored next to Fi,j and it may appear before or after Fi,j
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Invariant 3 For 1 ≤ i < L and 1 ≤ j ≤ ki, keys in Fi,j are smaller than those in Fi+1,1.

Invariant 4 Keys in F0 are smaller than those in S0 and F1,1.

The item with the largest key in Fi,j will be called a splitter, and will be denoted by fi,j .

The Insert and Extract-Min operations internally use the following two recursive operations.

• Lift(i, V ): Extracts the ni items with the smallest keys from level i + 1 (and below), and
returns them in V .

• Sink(i, V ): Inserts the ni items stored in V (each with a key larger than all keys in the float
sets of level i) into level i+ 1.

The Lift and Sink operations work as follows.

• Sink(i, V ): First we sort the items in V . Then we distribute those items among the float
sets of level i + 1 by simultaneously scanning the sorted items in V and visiting the float sets
Fi+1,1, Fi+1,2, . . . , Fi+1,ki+1

in that linked list order. When visiting Fi+1,j for some j < ki+1 we
keep copying items from V (in sorted order) to the end of Fi+1,j until we encounter an item with
key larger than the key of the splitter fi+1,j , and at that point we move to Fi+1,j+1 and continue
copying. Items with keys larger than the largest key in the last float set are inserted into Si+1. If at
any point a float set overflows (i.e., contains 2ni items), it is split into two float sets of size ni each.
If the number of float sets after the split does not exceed ki+1, the new float set is stored in any
empty float set slot for that level and the linked list is updated accordingly. Otherwise, we move
the at most 2ni − 1 items of the last float set to Si+1, store the new float set in the newly freed
space and update the linked list. If Si+1 itself overflows because of the insertion, i.e., it contains
more than ni+1 items, we move the ni+1 items with the largest ni+1 keys from Si+1 to a temporary
array V ′ leaving the remaining at most ni+1 items in Si+1. We then call Sink(i + 1, V ′) to push
the items in V ′ into level i+ 2.

• Lift(i, V ): If Fi+1,1 has at least ni items, we sort those items, copy the ni items with the smallest
keys to V , and leave the remaining items (if any) in Fi+1,1.

If Fi+1,1 has m < ni items but Fi+1,2 is nonempty (i.e., has at least ni items), we first remove Fi+1,1

by moving all its items to V . Then Fi+1,2 takes the role of Fi+1,1. The new Fi+1,1 has between ni
and 2ni − 1 items. We sort those items, move the ni −m items with the smallest keys to V and
leave the remaining items in this new Fi+1,1.

If Fi+1,1 is the only nonempty float set in level i + 1, and it has m < ni items, we move those m
items to V leaving Fi+1,1 empty, and recursivly extract ni+1 items with the smallest keys from level
i + 2 by calling Lift(i + 1, V ′) where V ′ is a temporary array into which the extracted items are
copied. Let m′ (≤ ni+1) be the number of items in Si+1. We now move all items of Si+1 to V ′,
sort the items in V ′, move the ni−m items with the smallest keys from V ′ to V , and move the m′

items with largest keys to Si+1. The remaining ni+1−ni+m < ni+1 ≤ ki+1ni items are distributed
among the float sets of level i+ 1 with Fi+1,1 getting at most ni items and at most ki+1 − 1 other
float sets getting ni items each.

Now the Insert and Extract-Min operations are performed as follows.
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Insert( Q, x ): We compare the key k of item x with the largest key in F0. If k is larger, we
simply insert x into S0, otherwise we insert it into F0 and move the item with the largest key in
F0 to S0. If S0 now contains n0 items we empty it by calling Sink(0, S0).

Extract-Min( Q ): If F0 is empty, we call Lift(0, F0) to fill F0 with n0 items, and keep in F0 the
n0 items with the smallest keys among F0 and S0 and leave the remaining items in S0. We then
extract and return the item with the smallest key from F0.

We reconstruct Q periodically in order to make sure that N0 = Θ (N) always holds, where N0
2 is

the number of items in the data structure at the time of the latest rebuild and N is the number of
items currently in Q. The structure is rebuilt right after the N0

4 -th Insert/Extract-Min operation is

performed on it. First we find the largest value µ < µmax such that µα
l

= 2N holds for some integer
l, and this value of l is our new L meaning that the rebuilt priority queue will have l + 1 = L+ 1
levels. We first sort the N items currently in Q. Then we rebuild Q top-down starting from level
0 and going up to level L while maintaining Invariants 1–4 as follows. We leave F0 and S0 empty.
Then for each level i ∈ [1, L), the sink set Si and Fi,1 will be left completely empty while exactly
ni−1 items will be stored in each Fi,j for 2 ≤ j ≤ ki. The remaining items are stored in level L such
that sink set SL is empty while FL,1 contains at most nL−1 item and at most kL of the remaining
float sets of level L contains nL−1 items each.

Now answer the following questions.

(a) [ 4 Points ] Argue that Q uses only Θ (N) space.

(b) [ 14 Points ] Show that both Lift( i, V ) and Sink( i, V ) maintain invariants 1–3.

(c) [ 6 Points ] Use your results from part (b) to argue that both Insert( Q, x ) and Extract-
Min( Q ) operations maintain invariants 1–4.

(d) [ 14 Points ] What is the worst-case running time of Lift( i, V ) without considering any
recursive use of this operation? What about Sink( i, V )?

(e) [ 6 Points ] Use your results from part (d) to find the worst-case time needed for performing
the Insert( Q, x ) and Extract-Min( Q ) operations.

(f) [ 36 Points ] Argue that the amortized running time of Lift( i, V ) is only O (ni log ni)
without considering any recursive use of this operation. Show the same for Sink( i, V ).

(g) [ 20 Points ] Use your results from part (f) to show that Argue that the amortized running
time of and Insert( Q, x ) operation is only O (logN). Show that same for Extract-Min( Q ).

5


