Final In-Class Exam
(7:05 PM – 8:20 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.

- There are three (3) questions, worth 75 points in total. Please answer all of them in the spaces provided.

- There are 16 pages including four (4) blank pages and one (1) page of appendix. Please use the blank pages if you need additional space for your answers.

- The exam is open slides and open notes. But no books and no computers (no laptops, tablets, capsules, cell phones, etc.).

Good Luck!

<table>
<thead>
<tr>
<th>Question</th>
<th>Pages</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Lazy Deletion Filter</td>
<td>2–5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2. Randomized (\frac{3}{2})-Approximate 3-way Max-Cut</td>
<td>7–11</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>3. Exam Scores</td>
<td>13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
I have an application that requires a \texttt{Delete} operation that supports only \texttt{Insert}, \texttt{Delete}, \texttt{Minimum} and \texttt{Extract-Min} operations.

\textbf{Question 1. [30 Points] The Lazy Deletion Filter.} I have a basic priority queue implementation that supports only \texttt{Insert}, \texttt{Minimum} and \texttt{Extract-Min} operations in $O(1)$, $O(1)$ and $O(\log n)$ worst-case time, respectively, where n is the number of items currently in it. If the queue is empty both \texttt{Minimum} and \texttt{Extract-Min} return NIL.

I have an application that requires a \texttt{Delete} operation in addition to the three operations mentioned above, but unfortunately, I cannot change the given priority queue implementation to add the \texttt{Delete} operation\footnote{I only have a pre-compiled library, not the source code.}.

Figure 1 shows how I have used the given basic priority queue implementation as a blackbox to create a new priority queue Q that supports \texttt{Insert}, \texttt{Delete}, \texttt{Minimum} and \texttt{Extract-Min} operations.

Figure 1: Using two instances ($Q.queue$ and $Q.filter$) of the given basic priority queue to create a new priority queue Q that supports \texttt{Insert}, \texttt{Delete}, \texttt{Minimum} and \texttt{Extract-Min} operations.

\begin{table}
\begin{tabular}{|l|l|}
\hline
\texttt{Init}(Q) () & \{Q\queue and Q.filter are basic priority queues\} \\
\hline
\texttt{Insert}(Q, x) & \{insert key x into Q\} \\
1. \texttt{Insert}(Q.queue)(x) & \{ delete key x from Q\} \\
\hline
\texttt{Delete}(Q, x) & \{ delete key x from Q\} \\
1. \texttt{Insert}(Q.filter)(x) & \{ delete key x from Q\} \\
\hline
\texttt{Minimum}(Q) () & \{return the smallest key in Q\} \\
1. $x \leftarrow \text{Minimum}(Q.queue)(\)$, $x' \leftarrow \text{Minimum}(Q.filter)(\)$ \hspace{1cm} \{x is the smallest key in Q, and x' is the smallest key with a pending Delete request\} \\
2. \texttt{while} $x \neq \text{NIL}$ \texttt{and} $x = x'$ \texttt{do} \hspace{1cm} \{x = x' \neq \text{NIL} means that \texttt{Delete}(Q, x) was issued for x\} \\
3. \texttt{Extract-Min}(Q.queue)(\) \hspace{1cm} \{remove x from Q.queue\} \\
4. \texttt{Extract-Min}(Q.filter)(\) \hspace{1cm} \{remove \texttt{Delete}(Q, x) from Q.filter\} \\
5. $x \leftarrow \text{Minimum}(Q.queue)(\)$, $x' \leftarrow \text{Minimum}(Q.filter)(\)$ \hspace{1cm} \{next smallest key and pending Delete\} \\
6. \texttt{return} x \hspace{1cm} \{x is the smallest key in Q for which \texttt{Delete}(Q, x) was not issued\} \\
\hline
\texttt{Extract-Min}(Q) () & \{extract and return the smallest key in Q\} \\
1. $x \leftarrow \text{Minimum}(Q)(\)$ \hspace{1cm} \{x is the smallest key in Q for which \texttt{Delete}(Q, x) was not issued\} \\
2. \texttt{Extract-Min}(Q.queue)(\) \hspace{1cm} \{remove x from Q\} \\
3. \texttt{return} x \\
\hline
\end{tabular}
\end{table}
Suppose my application first initializes Q by calling $\text{INIT}^{(Q)}(\)$ and then performs an intermixed sequence of INSERT, DELETE, MINIMUM and EXTRACT-MIN operations among which exactly N (≥ 1) are INSERT operations. Then answer the following questions.

1(a) [8 Points] What is the worst-case cost of each of the following operations: (i) $\text{INSERT}^{(Q)}(x)$, (ii) $\text{DELETE}^{(Q)}(x)$, (iii) $\text{MINIMUM}^{(Q)}(\)$ and (iv) $\text{EXTRACT-MIN}^{(Q)}(\)$? Justify your answers.
1(b) [4 Points] In order to find the amortized costs of the operations performed on Q we will use the following potential function:

$$
\Phi(Q_i) = c \log N \times \text{number of items in } Q.queue \text{ after the } i\text{-th operation},
$$

where, Q_i is the state of Q after the i-th ($i \geq 0$) operation is performed on it assuming that Q was initially empty, and c is a positive constant.

Argue that this potential function guarantees that the total amortized cost will always be an upper bound on the total actual cost.
1(c) [18 Points] Use the potential function given in part 1(b) to find the amortized cost of each of the following operations: (i) \textsc{Insert}(Q)(x), (ii) \textsc{Delete}(Q)(x), (iii) \textsc{Minimum}(Q)() and (iv) \textsc{Extract-Min}(Q)().
Use this page if you need additional space for your answers.
Question 2. [35 Points] Randomized \(\frac{3}{2} \)-Approximate 3-way Max-Cut. Suppose you are given an undirected graph \(G = (V, E) \) with vertex set \(V \) and edge set \(E \), where \(|V| = n \) and \(|E| = m \). Now you divide \(V \) into three pairwise disjoint subsets \(V_1, V_2 \) and \(V_3 \) such that \(V_1 \cup V_2 \cup V_3 = V \). For any edge \((u, v) \in E\), let \(u \in V_i \) and \(v \in V_j \) for some \(i, j \in [1, 3] \). Then we say that \((u, v)\) is a cut edge provided \(i \neq j \). Let \(E_c \subseteq E \) be the set of all cut edges of \(G \), and let \(m_c = |E_c| \). We will call \(E_c \) the cut set. Figure 2 shows an example.

\[
E_c = \{(a, b), (a, f), (d, e), (d, g), (g, h)\}
\]

\[
m_c = |E_c| = 5
\]

Figure 2: A 3-way cut example.

The 3-way Max-Cut problem asks one to find subsets \(V_1, V_2 \) and \(V_3 \) to maximize \(m_c \). A randomized approximation algorithm for solving the problem is given in Figure 3 below.

```
APPROX-3-WAY-MAX-CUT( V, E )
1. \( V_1 \leftarrow \emptyset \), \( V_2 \leftarrow \emptyset \), \( V_3 \leftarrow \emptyset \)
2. for each vertex \( v \in V \) do
3. \hspace{1em} choose a \( V_k \) from \( \{V_1, V_2, V_3\} \) uniformly at random \hspace{1em} \( \{i.e., k \text{ takes each value from} \} \)
4. \hspace{1em} \{1, 2, 3\} \text{ with probability } \frac{1}{3} \}
5. \hspace{1em} \{v\} \}
6. for each edge \((x, y) \in E \) do
7. \hspace{1em} if \( x \in V_i \text{ and } y \in V_j \text{ and } i \neq j \) then \hspace{1em} \{1 \leq i, j \leq 3\}
8. \hspace{1em} \{x, y\} \text{ is a cut edge}\}
9. return \((V_1, V_2, V_3, E_c)\)
```

Figure 3: Approximating 3-way Max-Cut.
2(a) [7 Points] Show that the expected approximation ratio of APPROX-3-WAY-MAX-CUT given in Figure 3 is $\frac{3}{2}$.
2(b) [8 Points] Show that for the cut set E_c returned by APPROX-3-WAY-MAX-CUT:

$$\Pr \left\{ m_c \geq \frac{2m}{3} \right\} \geq \frac{3}{m+3}.$$
2(c) [10 Points] Explain how you will use APPROX-3-WAY-MAX-CUT as a subroutine to design an approximation algorithm with

\[\Pr \left\{ m_c \geq \frac{2m}{3} \right\} \geq 1 - \frac{1}{e}, \]

where, \(m_c \) is the size of the cut set returned by the algorithm.

You must describe your algorithm (briefly in words) and prove the probability bound.
2(d) [10 Points] Explain how you will use your algorithm from part (c) as a subroutine to design another approximation algorithm that returns a cut set of size at least $\frac{2m^3}{9}$ with high probability in m. You must describe your algorithm (briefly in words) and prove the probability bound.
Use this page if you need additional space for your answers.
Question 3. [10 Points] Exam Scores. After grading the last midterm exam I made a sorted list of n anonymous scores public. That was, indeed, a complete list of the scores obtained by all n students of the class. This time I plan to release a smaller list L. I will use the algorithm shown in Figure 4 for constructing L.

1. $L \leftarrow \emptyset$
2. for each student x in the class do
3. include x’s score in L with probability $\frac{1}{n^{2/3}}$

![Figure 4: Making the list L of scores to release.](image_url)

3(a) [10 Points] Show that $\Pr\left\{ |L| < n^{2/3} + n^{1/2} \right\} \geq 1 - \frac{1}{e^{n^{2/3}}}$.
Use this page if you need additional space for your answers.
Use this page if you need additional space for your answers.
Appendix I: Useful Tail Bounds

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then for all $\delta > 0$, $Pr[X \geq \delta] \leq \frac{E[X]}{\delta}$.

Chebyshev’s Inequality. Let X be a random variable with a finite mean $E[X]$ and a finite variance $Var[X]$. Then for any $\delta > 0$, $Pr[|X - E[X]| \geq \delta] \leq \frac{Var[X]}{\delta^2}$.

Chernoff Bounds. Let X_1, \ldots, X_n be independent Poisson trials, that is, each X_i is a 0-1 random variable with $Pr[X_i = 1] = p_i$ for some p_i. Let $X = \sum_{i=1}^{n} X_i$ and $\mu = E[X]$. Following bounds hold:

Lower Tail:
- for $0 < \delta < 1$, $Pr[X \leq (1 - \delta)\mu] \leq \left(\frac{e^{-\delta}}{(1 - \delta)(1 - \delta)}\right)^{\mu}$
- for $0 < \delta < 1$, $Pr[X \leq (1 - \delta)\mu] \leq e^{-\frac{\mu\delta^2}{2}}$
- for $0 < \gamma < \mu$, $Pr[X \leq \mu - \gamma] \leq e^{-\frac{\gamma^2}{2\mu}}$

Upper Tail:
- for any $\delta > 0$, $Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)(1 + \delta)}\right)^{\mu}$
- for $0 < \delta < 1$, $Pr[X \geq (1 + \delta)\mu] \leq e^{-\frac{\mu\delta^2}{3}}$
- for $0 < \gamma < \mu$, $Pr[X \geq \mu + \gamma] \leq e^{-\frac{\gamma^2}{3\mu}}$