
CSE 548: Analysis of Algorithms

Lecture 4

(Divide-and-Conquer Algorithms:

Polynomial Multiplication)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2015

Coefficient Representation of Polynomials

� � � �������	
�
�� �� � �	� � �� �⋯� ���	���	

� � is a polynomial of degree bound � represented as a vector � � ��, �	, ⋯ , ���	 of coefficients.

The degree of � � is � provided it is the largest integer such that �� is nonzero. Clearly, 0 � � � � � 1.

Evaluating � � 	at a given point:

Takes Θ � time using Horner’s rule:

� �� � �� � �	�� � � �� �⋯� ���	 �� ��	
� �� � �� �	 � �� � �⋯� �� ��� � �� ���	 ⋯

Then , where, for .

Coefficient Representation of Polynomials

� � � � ������	
�
�

Adding Two Polynomials:

Adding two polynomials of degree bound � takes Θ � time.

�� � �� � ��

� � � � � � � �
� � � �������	

�
� � � � �������	
�
�where, and .

0 � � � � � 1

Then , where, for .

Coefficient Representation of Polynomials

� � � � ������
�
�

Multiplying Two Polynomials:

The product of two polynomials of degree bound � is another

polynomial of degree bound 2� � 1.

�� � ��������
�
�

� � � � � � �
� � � �������	

�
� � � � �������	
�
�where, and .

0 � � � 2� � 2
The coefficient vector � � ��, �	,⋯ , ��� , denoted by � � �	⊗	�,

is also called the convolution of vectors � � ��, �	, ⋯ , ���	 and � � ��, �	, ⋯ , ���	 .

Clearly, straightforward evaluation of � takes Θ � 	time.

Convolution

�� � �	� � �� � � �
� � � �� � �	� � ��

����

Convolution

�� � �	� � �� � � �
� � � �� � �	� � ��

���	� � �	���

Convolution

�� � �	� � �� � � �
� � � �� � �	� � ��

���� � �	�	� � ����

Convolution

�� � �	� � �� � � �
� � � �� � �	� � ��
��� � � �	�� � ��	� � � ���

Convolution

�� � �	� � �� � � �
� � � �� � �	� � ��
�	� �! � ���! � � �	�!

Convolution

�� � �	� � �� � � �
� � � �� � �	� � ��
�� �" � � ��"

Convolution

�� � �	� � �� � � �
� � � �� � �	� � ��
� � �#

Then

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

We can use Karatsuba’s algorithm (assume � to be a power of 2):

� � � � � � �� �	 � �	 � � �$% �	 � � � � � � �	 � � �� � � � �

� � � ����� � �����
��	
�
� � �� ���&���

��	
�
� � �	 � � ��� ���	

�
�
� � � ����� � �����

��	
�
� � �� ���&���

��	
�
� � �	 � � ��� ���	

�
�

But �	 � � � � � � �	 �
� �	 � �� � �	 � �� � � �	 � �	 � � � � � �

3 recursive multiplications of polynomials of degree bound
� .

Similar recurrence as in Karatsuba’s integer multiplication

algorithm leading to a complexity of Ο �()*% � Ο �	."+ .

Point-Value Representation of Polynomials

If then

Adding Two Polynomials:

Suppose we have point-value representations of two polynomials

of degree bound � using the same set of � points.

� � � � � � � �

�: ��, -�. , �	, -	. , … , ���	, -��	.
�: ��, -�0 , �	, -	0 , … , ���	, -��	0

�: ��, -�. � -�0 , �	, -	. � -	0 , … , ���	, -��	. � -��	0
Thus polynomial addition takes Θ � time.

A point-value representation of a polynomial � � is a set of � point-

value pairs ��, -� , �	, -	 , … , ���	, -��	 such that all �� are

distinct and -� � � �� for 0 � � � � � 1.

A polynomial has many point-value representations.

Point-Value Representation of Polynomials

If then

Multiplying Two Polynomials:

Suppose we have extended (why?) point-value representations of

two polynomials of degree bound � using the same set of 2� points.

� � � � � � �

�: ��, -�. , �	, -	. , … , ���	, -��	.
�: ��, -�0 , �	, -	0 , … , ���	, -��	0

�: ��, -�.-�0 , �	, -	.-	0 , … , ���	, -��	. -��	0
Thus polynomial multiplication also takes only Θ � time!

(compare this with the Θ � time needed in the coefficient form)

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � �	� � ⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� � ⋯� ���	���	

� �� , � ��� �	 , � �	⋮� ���	 , � ���	
� ��� �	⋮� ���	

ordinary

multiplication

Time Θ �

pointwise

multiplication

Time Θ �

e
va

lu
a

ti
o

n

T
im

e
?

in
te

rp
o

la
ti

o
n

T
im

e
?

Using Horner’s rule this approach takes Θ � time.

Coefficient Representation ⇒⇒⇒⇒ Point-Value Representation:

We select any set of � distinct points ��, �	, … , ���	 , and

evaluate � �� for 0 � � � � � 1.

This again takes Θ � time.

Point-Value Representation ⇒⇒⇒⇒ Coefficient Representation:

We can interpolate using Lagrange’s formula:

� � � � ∏ � � ���3�∏ �� � ���3� -���	
�
�

In both cases we need to do much better!

Faster Polynomial Multiplication?
(in Coefficient Form)

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

� ��� �	···� ���	
�

1 �� �� ⋯ �� ��	1 �	 �	 ⋯ �	 ��	· · · ⋯ ·· · · ⋯ ·· · · ⋯ ·1 ���	 ���	 ⋯ ���	 ��	

���	···���	

� � � �� � �	� � ⋯� ���	���	A polynomial of degree bound �:

A set of � distinct points: ��, �	, … , ���	
Compute point-value form: ��, � �� , �	, � �	 , … , ���	, � ���	
Using matrix notation:

We want to choose the set of points in a way that simplifies the

multiplication.

In the rest of the lecture on this topic we will assume:5 is a power of 2.

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

� ��� �	·� �� ⁄ �		� �� ⁄ &�� �� ⁄ &	·� �� ⁄ & � ⁄ �	

�

1 �� �� ⋯ �� ��	1 �	 �	 ⋯ �	 ��	· · · ⋯ ·1 �� ⁄ �	 �� ⁄ �	 ⋯ �� ⁄ �	 ��		 	 	 	 	1 ��� ��� ⋯ ��� ��	1 ��	 ��	 ⋯ ��	 ��	· · · ⋯ ·1 ��� ⁄ �	 ��� ⁄ �	 ⋯ ��� ⁄ �	 ��	

���	·····���	

Let’s choose �� ⁄ &� � ��� for 0 � � � � 2⁄ � 1. Then

�� ⁄ &� � � 7 �� � , 			89	� � :;:�,� �� � , 	89	� � <==.Observe that for 0 � � � � 2⁄ � 1:

Thus we have just split the original � > � matrix into two almost

similar
� > � matrices!

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

How and how much do we save?

where, and .

� � � ��?�? ���	
?
� � �?�?� ⁄ �	

?
� � � �?&	�?&	� ⁄ �	
?
�

										� � �? � ?� ⁄ �	
?
� � � � �?&	 � ?� ⁄ �	

?
� � �@A@� � � ��BCC � ,
�@A@� � � � �?�?� ⁄ �	

?
� �BCC � � � �?&	�?� ⁄ �	
?
�

Observe that for 0 � � � � 2⁄ � 1: � �� � �@A@� �� � ���BCC ��� �� ⁄ &� � � ��� � �@A@� �� � ���BCC ��
So in order to evaluate � �� for all 0 � � � � � 1, we need:� 2⁄ evaluations of �@A@� and � 2⁄ evaluations of �BCC� multiplications� 2⁄ additions and � 2⁄ subtractions

Thus we save about half the computation!

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

If we can recursively evaluate �@A@� and �BCC using the same

approach, we get the following recurrence relation for the running

time of the algorithm:

D � � 7Θ 1 , 																		89	� � 1,2D �2 � Θ � , 			<EF:GH8I:.
� 	Θ � log �

Our trick was to evaluate � at � (positive) and �� (negative).

But inputs to �@A@� and �BCC are always of the form � (positive)!

How can we apply the same trick?

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

�@A@� ���@A@� �	···�@A@� �� ⁄ �	
�

1 �� �� ! ⋯ �� ��1 �	 �	 ! ⋯ �	 ��· · · ⋯ ·· · · ⋯ ·· · · ⋯ ·1 �� ⁄ �	 �� ⁄ �	 ! ⋯ �� ⁄ �	 ��

����!··���

Let us consider the evaluation of �@A@� �� for 0 � � � � 2⁄ � 1:

In order to apply the same trick on �@A@� we must set:�� !&�⁄ � � ��
for 0 � � � � 4⁄ � 1

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

In �@A@� we set: �� !&�⁄ � ��� for 0 � � � � 4⁄ � 1. Then

This means setting �� !&�⁄ � 8��, where 8 � �1 (imaginary)!

This also allows us to apply the same trick on �BCC.

�@A@� ���@A@� �	·�@A@� �� !⁄ �		�@A@� �� !⁄ &��@A@� �� !⁄ &	·�@A@� �� !⁄ & � !⁄ �	

�

1 �� �� ⋯ �� ��	
1 �	 �	 ⋯ �	 ��	· · · ⋯ ·
1 �� !⁄ �	 �� !⁄ �	 ⋯ �� !⁄ �	 ��		 	 	 	 	1 ��� ��� ⋯ ��� ��	
1 ��	 ��	 ⋯ ��	 ��	· · · ⋯ ·
1 ��� !⁄ �	 ��� ⁄ �	 ⋯ ��� !⁄ �	 ��	

����!····���

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

We can apply the trick once if we set:�� &�⁄ � ��� for 0 � � � � 2⁄ � 1
We can apply the trick (recursively) 2 times if we also set:

�� %&�⁄ � � ��
for 0 � � � � 2⁄ � 1

We can apply the trick (recursively) 3 times if we also set:

�� N&�⁄ % � � �� %
for 0 � � � � 2 ⁄ � 1

We can apply the trick (recursively) � times if we also set:

�� O&�⁄ OPQ � � �� OPQ
for 0 � � � � 2�⁄ � 1

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Consider the ERS primitive root of unity:

TR � :%UVW � cos ZR � 8 · sin ZR 8 � �1
�� &�⁄ � ���		⇒ �� Q&�⁄ � TQ · ��Then

�� %&�⁄ � � ��
⇒ �� %&�⁄ � T% · ��

�� N&�⁄ % � � �� %
⇒ �� N&�⁄ � TN · ��

�� O&�⁄ OPQ � � �� OPQ
⇒ �� O&�⁄ � TO · ��

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

If � � 2� we would like to apply the trick � times recursively.

What values should we choose for ��, �	, … , ���	 ?
Example: For � � 2 we need to choose ��, �	, … , �^ .

Choose: �� � 1
� � 3: �	 � TN · ��� � 2: � � T% · ��� � T% · �	
� � 1: �! � TQ · ���" � TQ · �	�# � TQ · ��^ � TQ · �

� T	̀
� T̀
� T ̀
� T!̀
� T"̀
� T#̀
� T`̂

� T�̀

1�1

8

�8

T�̀ � T`̀

T	̀
T̀

T ̀

T!̀

T"̀
T#̀

T`̂

complex abc roots of unity

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

For a polynomial of degree bound � � 2�, we need to apply the

trick recursively at most log � � � times.

We choose �� � 1 � T�� and set �� � T�� for 1 � � � � � 1.

Then we compute the following product:

-�-	-··-��	
�

� 1� T�� T�··� T���	
�

1 1 1 ⋯ 11 T� T� ⋯ T� ��	
1 T� T� ⋯ T� ��	· · · ⋯ ·· · · ⋯ ·1 T���	 T���	 ⋯ T���	 ��	

���	�··���	
The vector - � -�, -	, ⋯ , -��	 is called the discrete Fourier

transform (DFT) of ��, �	, ⋯ , ���	 .

This method of computing DFT is called the fast Fourier transform

(FFT) method.

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Rec-FFT ((a0, a1, …, an - 1)) { n = 2k for integer k ≥ 0 }

1. if n = 1 then

3. ωn ← e2πi/n

5. yeven ← Rec-FFT ((a0, a2, …, an - 2))

2. return (a0)

7. for j ← 0 to n/2 − 1 do

8. yj ← yj
even + ω yj

odd

11. return y

4. ω ← 1

6. yodd ← Rec-FFT ((a1, a3, …, an - 1))

9. yn/2+j ← yj
even − ω yj

odd

10. ω ← ω ωn

D � � 7Θ 1 , 																		89	� � 1,2D �2 � Θ � , 			<EF:GH8I:.
� 	Θ � log �

Running time:

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � �	� � ⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� � ⋯� ���	���	

� T�� , � T��� T�	 , � T�	⋮� T���	 , � T���	

� T��� T�	⋮� T���	

ordinary

multiplication

Time Θ �

pointwise

multiplication

Time Θ �

fo
rw

a
rd

 F
F

T

T
im

e
 Θ

�log
�

in
te

rp
o

la
ti

o
n

T
im

e
?

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

Given: 1 1 1 ⋯ 11 T� T� ⋯ T� ��	
1 T� T� ⋯ T� ��	· · · ⋯ ·· · · ⋯ ·1 T���	 T���	 ⋯ T���	 ��	

d e$d.�C@fgB�C@	h.Rfij

���	�··���	.k

�
-�-	-··-��	lk

⇒	m T� · �k � -k
We want to solve: �k � m T� �	 · -k
It turns out that: m T� �	 � 1�m 1T�
That means m T� �	 looks almost similar to m T� !

We want to show that ,

where n� is the � > � identity matrix.

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

Show that: m T� �	 � 1�m 1T�
Let o T� � 1�m 1T� o T� m T� � n�
Observe that for 0 � �, � � � � 1, the �, � RS entries are: o T� �� � 1�T����m T� �� � T��� and

Then entry p, q of o T� m T� ,
o T� m T� rs � � o T� r�

��	
�
� m T� �s � 1��T�� s�r��	

�
�

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

o T� m T� rs � 1��T�� s�r��	
�
�

CASE p � q:
o T� m T� rs � 1��T��

��	
�
� � 1��1��	

�
� � 1� > � � 1
CASE p t q:

o T� m T� rs � 1�� T�s�r ���	
�
� � 1� > T�s�r � � 1T�s�r � 1

																																										� 1� > T�� s�r � 1T�s�r � 1 � 1� > 1 s�r � 1T�s�r � 1 � 0
Hence o T� m T� � n�

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

We need to compute the following matrix-vector product:

���	�··���	.k

� 1� >

1 1 1 ⋯ 1
1 1T�

1T�
 ⋯ 1T�

��	

1 1T�
1T�

 ⋯ 1T�
��	

· · · ⋯ ·· · · ⋯ ·
1 1T���	

1T���	
 ⋯ 1T���	

��	
d e$ PQ

-�-	-··-��	lk

This inverse problem is almost similar to the forward problem,

and can be solved in Θ � log � 	time using the same algorithm as

the forward FFT with only minor modifications!

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � �	� � ⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� � ⋯� ���	���	

� T�� , � T��� T�	 , � T�	⋮� T���	 , � T���	

� T��� T�	⋮� T���	

ordinary

multiplication

Time Θ �

pointwise

multiplication

Time Θ �

fo
rw

a
rd

 F
F

T

T
im

e
 Θ

�log
�

in
ve

rs
e

 F
F

T

T
im

e
Θ

�log
�

Two polynomials of degree bound � given in the coefficient form

can be multiplied in Θ � log � time!

Some Applications of Fourier Transform and FFT

• Signal processing

• Image processing

• Noise reduction

• Data compression

• Solving partial differential equation

• Multiplication of large integers

• Polynomial multiplication

• Molecular docking

Some Applications of Fourier Transform and FFT

Jean Baptiste Joseph Fourier

Any periodic signal can be represented as a sum of a series of

sinusoidal (sine & cosine) waves. [1807]

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Spatial (Time) Domain

Frequency Domain

Source: The Scientist and Engineer’s Guide to Digital Signal Processing by Steven W. Smith

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

(Fourier Transforms)

u 9 � v I E · :�ZiwRx
�x =E

I E � v u 9 · :ZiwRx
�x =9

Let I E be a signal specified in the time domain.

The strength of I E at frequency 9 is given by:

Now I E can be retrieved by summing up the signal strengths

at all possible frequencies:

Evaluating this integral for all values of 9 gives the frequency

domain function.

	y z I E · :�ZiwRy�y =E � 1 � {|} !Zwy!Zwy , if	9 � F,
{|} Z S�w yZ S�w y � {|} Z S&w yZ S&w y , otherwise.

Let’s try to get a little intuition behind why the transforms work.

We will look at a very simple example.

Suppose: I E � cos 2�F ⋅ E

Why do the Transforms Work?

⇒	 limy→x
1Dv I E · :�ZiwRy

�y =E � 71, if	9 � F,
0, otherwise.

So, the transform can detect if 9 � F!

Noise Reduction

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

FFT
inverse FFT

remove
noise

Data Compression

− Discrete Cosine Transforms (DCT) are used for lossy data

compression (e.g., MP3, JPEG, MPEG)

− DCT is a Fourier-related transform similar to DFT (Discrete

Fourier Transform) but uses only real data (uses cosine waves

only instead of both cosine and sine waves)

− Forward DCT transforms data from spatial to frequency domain

− Each frequency component is represented using a fewer

number of bits (i.e., truncated / quantized)

− Low amplitude high frequency components are also removed

− Inverse DCT then transforms the data back to spatial domain

− The resulting image compresses better

1Dv I E · cos 2�9Ey
�y =E �

1 � sin 4�9D4�9D , if	9 � F,
sin 2� F � 9 D2� F � 9 D � sin 2� F � 9 D2� F � 9 D , otherwise.

Transformation to frequency domain using cosine transforms

work in the same way as the Fourier transform.

Suppose: I E � cos 2�F ⋅ E

Data Compression

⇒	 limy→x
1Dv I E · cos 2�9Ey

�y =E � 71, if	9 � F,
0, otherwise.

So, this transform can also detect if 9 � F.

Protein-Protein Docking

� Knowledge of complexes is used in

− Drug design

− Studying molecular assemblies

� Protein-Protein Docking: Given two proteins, find the best relative

transformation and conformations to obtain a stable complex.

� Docking is a hard problem

− Search space is huge (6D for rigid proteins)

− Protein flexibility adds to the difficulty

− Structure function analysis

− Protein interactions

Here �� � is a Gaussian representation of atom �, and H� its weight.

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

To maximize skin-skin overlaps and minimize core-core overlaps

− assign positive real weights to skin atoms

− assign positive imaginary weights to core atoms

For P ∈ {A′, B} with MP atoms, affinity function: 9� � � ∑ H� ⋅ �� �h��
	
Let A′ denote molecule A with the pseudo skin atoms.

For rotation G and translation E of molecule � (i.e., �R,f),

the interaction score, ��,� E, G � z 9�� � 9�W,� �j =�

For P ∈ {A′, B} with MP atoms, affinity function:

Let A′ denote molecule A with the pseudo skin atoms.

9� � � ∑ H� ⋅ �� �h��
	

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

For rotation G and translation E of molecule � (i.e., �R,f),

the interaction score, ��,� E, G � z 9�� � 9�W,� �j =�
�: ��,� E, G � skin-skin overlap score – core-core overlap scoren� ��,� E, G � skin-core overlap score

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Forward

Translational Search using FFT

rotate

discretize

discretize

FFT

multiply frequency maps

MA’ atoms

MB atoms

(((()))) Ω∀ ∈∀ ∈∀ ∈∀ ∈z , zhForward

FFT

Inverse

FFT

co
m

p
le

x

co
n

ju
g

a
te

∀� ∈ Ω � ��, � , F � � v 9�� � 9�� � � � =�j∈Ω 		

