Iterative Matrix-Multiply Variants

double Z[n][n], X[n][n], Y[n][n];

I-J-K

for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 for (int k = 0; k < n; k++)
 Z[i][j] += X[i][k] * Y[k][j];

I-K-J

for (int i = 0; i < n; i++)
 for (int k = 0; k < n; k++)
 for (int j = 0; j < n; j++)
 Z[i][j] += X[i][k] * Y[k][j];

J-I-K

for (int j = 0; j < n; j++)
 for (int i = 0; i < n; i++)
 for (int k = 0; k < n; k++)
 Z[i][j] += X[i][k] * Y[k][j];

J-K-I

for (int j = 0; j < n; j++)
 for (int k = 0; k < n; k++)
 for (int i = 0; i < n; i++)
 Z[i][j] += X[i][k] * Y[k][j];

K-I-J

for (int k = 0; k < n; k++)
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 Z[i][j] += X[i][k] * Y[k][j];

K-J-I

for (int k = 0; k < n; k++)
 for (int j = 0; j < n; j++)
 for (int i = 0; i < n; i++)
 Z[i][j] += X[i][k] * Y[k][j];
Performance of Iterative Matrix-Multiply Variants

Processor: 2.7 GHz Intel Xeon E5-2680 (used only one core)

Caches & RAM: private 32KB L1, private 256KB L2, shared 20MB L3, 32 GB RAM

Optimizations: none (icc 13.0 with –O0)

$n = 1000$

- **Running Times**
- **L1 Cache Misses**
- **L2 Cache Misses**

$n = 2000$

- **Running Times**
- **L1 Cache Misses**
- **L2 Cache Misses**

$n = 3000$

- **Running Times**
- **L1 Cache Misses**
- **L2 Cache Misses**
For efficient computation we need

- fast processors
- fast and large (but not so expensive) memory

But memory cannot be cheap, large and fast at the same time, because of

- finite signal speed
- lack of space to put enough connecting wires

A reasonable compromise is to use a memory hierarchy.
The Memory Hierarchy

A memory hierarchy is

- almost as fast as its fastest level
- almost as large as its largest level
- inexpensive
To perform well on a memory hierarchy algorithms must have **high locality** in their memory access patterns.
Locality of Reference

Spatial Locality: When a block of data is brought into the cache it should contain as much useful data as possible.

Temporal Locality: Once a data point is in the cache as much useful work as possible should be done on it before evicting it from the cache.
CPU-bound vs. Memory-bound Algorithms

The Op-Space Ratio: Ratio of the number of operations performed by an algorithm to the amount of space (input + output) it uses. Intuitively, this gives an upper bound on the average number of operations performed for every memory location accessed.

CPU-bound Algorithm:
- high op-space ratio
- more time spent in computing than transferring data
- a faster CPU results in a faster running time

Memory-bound Algorithm:
- low op-space ratio
- more time spent in transferring data than computing
- a faster memory system leads to a faster running time
The two-level I/O model [Aggarwal & Vitter, CACM’88] consists of:

- an internal memory of size M
- an arbitrarily large external memory partitioned into blocks of size B.

I/O complexity of an algorithm

$=$ number of blocks transferred between these two levels

Basic I/O complexities: $\text{scan}(N) = \Theta \left(\frac{N}{B} \right)$ and $\text{sort}(N) = \Theta \left(\frac{N}{B} \log_M \frac{N}{B} \right)$

Algorithms often crucially depend on the knowledge of M and B

\Rightarrow algorithms do not adapt well when M or B changes
The ideal-cache model [Frigo et al., FOCS’99] is an extension of the I/O model with the following constraint:

- algorithms are not allowed to use knowledge of M and B.

Consequences of this extension:
- algorithms can simultaneously adapt to all levels of a multi-level memory hierarchy
- algorithms become more flexible and portable

Algorithms for this model are known as cache-oblivious algorithms.
The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement & full associativity
The model makes the following assumptions:

- Optimal offline cache replacement policy
 - LRU & FIFO allow for a constant factor approximation of optimal [Sleator & Tarjan, JACM’85]
- Exactly two levels of memory
- Automatic replacement & full associativity
The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
 - can be effectively removed by making several reasonable assumptions about the memory hierarchy [Frigo et al., FOCS’99]
- Automatic replacement & full associativity
The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement & full associativity
 - in practice, cache replacement is automatic (by OS or hardware)
 - fully associative LRU caches can be simulated in software with only a constant factor loss in expected performance [Frigo et al., FOCS’99]
The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement & full associativity

Often makes the following assumption, too:

- \(M = \Omega(B^2) \), i.e., the cache is tall
The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement & full associativity

Often makes the following assumption, too:

- $M = \Omega(B^2)$, i.e., the cache is tall
 - most practical caches are tall
Basic I/O bounds (same as the cache-aware bounds):

- \(\text{scan}(N) = \Theta\left(\frac{N}{B}\right) \)

- \(\text{sort}(N) = \Theta\left(\frac{N}{B \log M} \frac{N}{B}\right) \)

Most cache-oblivious results match the I/O bounds of their cache-aware counterparts.

There are few exceptions; e.g., no cache-oblivious solution to the \textit{permutation} problem can match cache-aware I/O bounds [Brodal & Fagerberg, STOC’03].
Some Known Cache Aware / Oblivious Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cache-Aware Results</th>
<th>Cache-Oblivious Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Scanning ((\text{scan}(N)))</td>
<td>(O\left(\frac{N}{B}\right))</td>
<td>(O\left(\frac{N}{B}\right))</td>
</tr>
<tr>
<td>Sorting ((\text{sort}(N)))</td>
<td>(O\left(\frac{N \log_M N}{B}\right))</td>
<td>(O\left(\frac{N \log_M N}{B}\right))</td>
</tr>
<tr>
<td>Selection</td>
<td>(O(\text{scan}(N)))</td>
<td>(O(\text{scan}(N)))</td>
</tr>
<tr>
<td>B-Trees [Am] ((\text{Insert, Delete}))</td>
<td>(O\left(\log_B N\right))</td>
<td>(O\left(\log_B N\right))</td>
</tr>
<tr>
<td>Priority Queue [Am] ((\text{Insert, Weak Delete, Delete-Min}))</td>
<td>(O\left(\frac{1}{B} \log_M N\right))</td>
<td>(O\left(\frac{1}{B} \log_M N\right))</td>
</tr>
<tr>
<td>Matrix Multiplication</td>
<td>(O\left(\frac{N^3}{B\sqrt{M}}\right))</td>
<td>(O\left(\frac{N^3}{B\sqrt{M}}\right))</td>
</tr>
<tr>
<td>Sequence Alignment</td>
<td>(O\left(\frac{N^2}{BM}\right))</td>
<td>(O\left(\frac{N^2}{BM}\right))</td>
</tr>
<tr>
<td>Single Source Shortest Paths</td>
<td>(O\left(\left(\frac{V + E}{B}\right) \cdot \log_2 \frac{V}{B}\right))</td>
<td>(O\left(\left(\frac{V + E}{B}\right) \cdot \log_2 \frac{V}{B}\right))</td>
</tr>
<tr>
<td>Minimum Spanning Forest</td>
<td>(O\left(\min\left(\text{sort}(E) \log_2 \log_2 V, \frac{V + \text{sort}(E)}{B}\right)\right))</td>
<td>(O\left(\min\left(\text{sort}(E) \log_2 \log_2 \frac{VB}{E}, \frac{V + \text{sort}(E)}{B}\right)\right))</td>
</tr>
</tbody>
</table>

Table 1: \(N = \#\text{elements}, \ V = \#\text{vertices}, \ E = \#\text{edges}, \ \text{Am} = \text{Amortized.}\)
Matrix Multiplication
Iterative Matrix Multiplication

\[z_{ij} = \sum_{k=1}^{n} x_{ik} y_{kj} \]

Iter-MM(X, Y, Z, n)

1. for i ← 1 to n do
2. for j ← 1 to n do
3. for k ← 1 to n do
4. \(z_{ij} \leftarrow z_{ij} + x_{ik} \times y_{kj} \)
Iterative Matrix Multiplication

Iter-MM(X, Y, Z, n)

1. for i ← 1 to n do
2. for j ← 1 to n do
3. for k ← 1 to n do
4. \(z_{ij} \leftarrow z_{ij} + x_{ik} \times y_{kj} \)

Each iteration of the for loop in line 3 incurs \(O(n) \) cache misses.

I/O-complexity of Iter-MM, \(Q(n) = O(n^3) \)
Each iteration of the `for` loop in line 3 incurs $O \left(1 + \frac{n}{B} \right)$ cache misses.

I/O-complexity of `Iter-MM, Q(n) = O \left(n^2 \left(1 + \frac{n}{B} \right) \right) = O \left(\frac{n^3}{B} + n^2 \right)`
Block Matrix Multiplication

\[\text{cache (size } = M \text{)} \]

\[
\begin{array}{c|c|c}
\frac{M}{3} & \frac{M}{3} & \frac{M}{3} \\
\end{array}
\]

\[
\begin{array}{c}
\frac{m}{3} \\
\end{array}
\]

Block-MM(\(X, Y, Z, n \))

1. for \(i \leftarrow 1 \) to \(n / m \) do
2. for \(j \leftarrow 1 \) to \(n / m \) do
3. for \(k \leftarrow 1 \) to \(n / m \) do
4. \text{Iter-MM}(X_{ik}, Y_{kj}, Z_{ij})
Choose $m = \sqrt{M/3}$, so that X_{ik}, Y_{kj} and Z_{ij} just fit into the cache.

Then line 4 incurs $\Theta \left(m \left(1 + \frac{m}{B} \right) \right)$ cache misses.

I/O-complexity of \textit{Block-MM} [assuming a \textit{tall cache}, i.e., $M = \Omega(B^2)$]

$$
= \Theta \left(\left(\frac{n}{m} \right)^3 \left(m + \frac{m^2}{B} \right) \right) = \Theta \left(\frac{n^3}{m^2} + \frac{n^3}{Bm} \right) = \Theta \left(\frac{n^3}{M} + \frac{n^3}{B\sqrt{M}} \right) = \Theta \left(\frac{n^3}{B\sqrt{M}} \right)
$$

(Optimal: Hong & Kung, STOC’81)
Block Matrix Multiplication

Choose \(m = \sqrt[3]{M/2} \), so that \(X, Y \), and \(Z \) just fit into the cache.

Optimal for any algorithm that performs the operations given by the following definition of matrix multiplication:

\[
\mathbf{z}_{ij} = \sum_{k=1}^{n} \mathbf{x}_{ik} \mathbf{y}_{kj}
\]

I/O-complexity:

\[
\Theta \left(\left(\frac{n}{m} \right)^3 \left(m + \frac{m^2}{B} \right) \right) = \Theta \left(\frac{n^3}{m^2} + \frac{n^3}{Bm} \right) = \Theta \left(\frac{n^3}{m} + \frac{n^3}{B\sqrt{M}} \right) = \Theta \left(\frac{n^3}{B\sqrt{M}} \right)
\]

(Optimal: Hong & Kung, STOC’81)
Multiple Levels of Cache

```
Block-MM(X, Y, Z, n)

1. for i ← 1 to n / s do
2.   for j ← 1 to n / s do
3.     for k ← 1 to n / s do
4.       Iter-MM(X_{ik}, Y_{kj}, Z_{ij}, s)
```
Multiple Levels of Cache

Block-MM(X, Y, Z, n)

1. for $i_1 ← 1$ to n / s do
2. for $j_1 ← 1$ to n / s do
3. for $k_1 ← 1$ to n / s do
4. for $i_2 ← 1$ to s / t do
5. for $j_2 ← 1$ to s / t do
6. for $k_2 ← 1$ to s / t do
7. $Iter-MM((X_{i_1k_1})_{i_2k_2}, (Y_{k_1j_1})_{k_2j_2}, (X_{i_1j_1})_{i_2j_2}, t)$
Multiple Levels of Cache

One Parameter Per Caching Level!

Block-MM(X, Y, Z, n)

1. for $i_1 ← 1$ to n / s do
2. for $j_1 ← 1$ to n / s do
3. for $k_1 ← 1$ to n / s do
4. for $i_2 ← 1$ to s / t do
5. for $j_2 ← 1$ to s / t do
6. for $k_2 ← 1$ to s / t do
7. Iter-MM((X_{i_1k_1})_{i_2k_2}, (Y_{k_1j_1})_{k_2j_2}, (X_{i_1j_1})_{i_2j_2}, t)
Recursive Matrix Multiplication

\[
\begin{array}{cc}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}
\begin{array}{cc}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}
\begin{array}{cc}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}
= \\
\begin{array}{cc}
X_{11} Y_{11} + X_{12} Y_{21} & X_{11} Y_{12} + X_{12} Y_{22} \\
X_{21} Y_{11} + X_{22} Y_{21} & X_{21} Y_{12} + X_{22} Y_{22}
\end{array}
\]
Recursive Matrix Multiplication

Rec-MM(Z, X, Y)

1. if $Z \equiv 1 \times 1$ matrix then $Z \leftarrow Z + X \cdot Y$

2. else

3. $\text{Rec-MM}(Z_{11}, X_{11}, Y_{11}), \text{Rec-MM}(Z_{11}, X_{12}, Y_{21})$

4. $\text{Rec-MM}(Z_{12}, X_{12}, Y_{12}), \text{Rec-MM}(Z_{12}, X_{12}, Y_{22})$

5. $\text{Rec-MM}(Z_{21}, X_{21}, Y_{11}), \text{Rec-MM}(Z_{21}, X_{22}, Y_{21})$

6. $\text{Rec-MM}(Z_{22}, X_{21}, Y_{12}), \text{Rec-MM}(Z_{22}, X_{22}, Y_{22})$
Recursive Matrix Multiplication

Rec-MM(Z, X, Y)

1. if Z ≡ 1 × 1 matrix then Z ← Z + X · Y
2. else
3. Rec-MM(Z_{11}, X_{11}, Y_{11}), Rec-MM(Z_{11}, X_{12}, Y_{21})
4. Rec-MM(Z_{12}, X_{12}, Y_{12}), Rec-MM(Z_{12}, X_{12}, Y_{22})
5. Rec-MM(Z_{21}, X_{21}, Y_{11}), Rec-MM(Z_{21}, X_{22}, Y_{21})
6. Rec-MM(Z_{22}, X_{21}, Y_{12}), Rec-MM(Z_{22}, X_{22}, Y_{22})

I/O-complexity (for n > M), Q(n) = \begin{cases}
0 \left(n + \frac{n^2}{B} \right), & \text{if } n^2 \leq \alpha M \\
8Q \left(\frac{n}{2} \right) + O(1), & \text{otherwise}
\end{cases}

= O \left(\frac{n^3}{M} + \frac{n^3}{B \sqrt{M}} \right) = O \left(\frac{n^3}{B \sqrt{M}} \right), \text{when } M = \Omega \left(B^2 \right)

I/O-complexity (for all n) = O \left(\frac{n^3}{B \sqrt{M}} + \frac{n^2}{B} + 1 \right) \quad (\text{why?})
Recursive Matrix Multiplication with Z-Morton Layout
Recursive Matrix Multiplication with Z-Morton Layout

\[
\begin{array}{c|c}
Z_{11} & Z_{12} \\
\hline
Z_{21} & Z_{22}
\end{array}
\]
Recursive Matrix Multiplication with Z-Morton Layout
Recursive Matrix Multiplication with Z-Morton Layout

Source: wikipedia
Recursive Matrix Multiplication with Z-Morton Layout

\[\text{Rec-MM}(Z, X, Y) \]

1. \textit{if} \ Z \equiv 1 \times 1 \text{ matrix then} \ Z \leftarrow Z + X \cdot Y \\
2. \textit{else} \\
3. \text{Rec-MM}(Z_{11}, X_{11}, Y_{11}), \text{Rec-MM}(Z_{11}, X_{12}, Y_{21}) \\
4. \text{Rec-MM}(Z_{12}, X_{12}, Y_{12}), \text{Rec-MM}(Z_{12}, X_{12}, Y_{22}) \\
5. \text{Rec-MM}(Z_{21}, X_{21}, Y_{11}), \text{Rec-MM}(Z_{21}, X_{22}, Y_{21}) \\
6. \text{Rec-MM}(Z_{22}, X_{21}, Y_{12}), \text{Rec-MM}(Z_{22}, X_{22}, Y_{22}) \\

I/O-complexity (for \ n > M), Q(n) = \begin{cases}
0 \left(1 + \frac{n^2}{B} \right), & \text{if } n^2 \leq \alpha M \\
8Q \left(\frac{n}{2} \right) + O(1), & \text{otherwise}
\end{cases} \\
= O \left(\frac{n^3}{M \sqrt{M}} + \frac{n^3}{B \sqrt{M}} \right) = O \left(\frac{n^3}{B \sqrt{M}} \right), \text{when } M = \Omega(B) \\
I/O-complexity (for all \ n) = O \left(\frac{n^3}{B \sqrt{M}} + \frac{n^2}{B} + 1 \right)
Recursive Matrix Multiplication with Z-Morton Layout

<table>
<thead>
<tr>
<th>x: 0 1 2 3 4 5 6 7</th>
<th>y: 0 1 2 3 4 5 6 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>010</td>
<td>010</td>
</tr>
<tr>
<td>011</td>
<td>011</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

Source: wikipedia
Searching
(Static B-Trees)
A perfectly balanced binary search tree

- Static: no insertions or deletions
- Height of the tree, $h = \Theta(\log_2 n)$
A Static Search Tree

- A perfectly balanced binary search tree
- Static: no insertions or deletions
- Height of the tree, \(h = \Theta(\log_2 n) \)
- A search path visits \(O(h) \) nodes, and incurs \(O(h) = O(\log_2 n) \) I/Os
Each node stores B keys, and has degree $B + 1$

Height of the tree, $h = \Theta(\log_B n)$
Each node stores B keys, and has degree $B + 1$

Height of the tree, $h = \Theta(\log_B n)$

A search path visits $O(h)$ nodes, and incurs $O(h) = O(\log_B n)$ I/Os
Cache-Oblivious Static B-Trees?
van Emde Boas Layout

a binary search tree
If the tree contains n nodes,
each subtree contains $\Theta\left(2^{h/2}\right) = \Theta\left(\sqrt{n}\right)$ nodes,
and $k = \Theta\left(\sqrt{n}\right)$.
If the tree contains n nodes, each subtree contains $\Theta(2^{h/2}) = \Theta(\sqrt{n})$ nodes, and $k = \Theta(\sqrt{n})$.

Recursive Subdivision
van Emde Boas Layout

Recursive Subdivision

If the tree contains n nodes, each subtree contains $\Theta(2^{h/2}) = \Theta(\sqrt{n})$ nodes, and $k = \Theta(\sqrt{n})$.
van Emde Boas Layout

If the tree contains n nodes, each subtree contains $\Theta(2^{h/2}) = \Theta(\sqrt{n})$ nodes, and $k = \Theta(\sqrt{n})$.

Recursive Subdivision
van Emde Boas Layout

Recursive Subdivision

If the tree contains n nodes, each subtree contains $\Theta(2^{h/2}) = \Theta(\sqrt{n})$ nodes, and $k = \Theta(\sqrt{n})$.
I/O-Complexity of a Search

- The height of the tree is $\log n$
- Each △ has height between $\frac{1}{2}\log B$ & $\log B$.
- Each △ spans at most 2 blocks of size B.
I/O-Complexity of a Search

- The height of the tree is $\log n$
- Each △ has height between $\frac{1}{2}\log B$ & $\log B$.
- Each △ spans at most 2 blocks of size B.

- $p =$ number of △‘s visited by a search path

- Then $p \geq \frac{\log n}{\log B} = \log_B n$, and $p \leq \frac{\log n}{\frac{1}{2}\log B} = 2\log_B n$

- The number of blocks transferred is $\leq 2 \times 2\log_B n = 4\log_B n$
Sorting (Mergesort)
Merge-Sort

\[\text{Merge-Sort} \left(A, p, r \right) \quad \{ \text{sort the elements in } A[p \ldots r] \} \]

1. \textit{if} \: p < r \: \textit{then}
2. \quad q \leftarrow \left\lfloor \frac{p + r}{2} \right\rfloor
3. \quad \text{Merge-Sort} \left(A, p, q \right)
4. \quad \text{Merge-Sort} \left(A, q + 1, r \right)
5. \quad \text{Merge} \left(A, p, q, r \right)
Merging k Sorted Sequences

- $k \geq 2$ sorted sequences S_1, S_2, \ldots, S_k stored in external memory
- $|S_i| = n_i$ for $1 \leq i \leq k$
- $n = n_1 + n_2 + \cdots + n_k$ is the length of the merged sequence S
- S (initially empty) will be stored in external memory
- Cache must be large enough to store
 - one block from each S_i
 - one block from S

Thus $M \geq (k + 1)B$
Merging \(k \) Sorted Sequences

- Let \(B_i \) be the cache block associated with \(S_i \), and let \(B \) be the block associated with \(S \) (initially all empty)
- Whenever a \(B_i \) is empty fill it up with the next block from \(S_i \)
- Keep transferring the next smallest element among all \(B_i \)s to \(B \)
- Whenever \(B \) becomes full, empty it by appending it to \(S \)
- In the Ideal Cache Model the block emptying and replacements will happen automatically \(\Rightarrow \) cache-oblivious merging

I/O Complexity

- Reading \(S_i \): \#block transfers \(\leq 2 + \frac{n_i}{B} \)
- Writing \(S \): \#block transfers \(\leq 1 + \frac{n}{B} \)
- Total \#block transfers \(\leq 1 + \frac{n}{B} + \sum_{1\leq i \leq k} \left(2 + \frac{n_i}{B} \right) = O \left(k + \frac{n}{B} \right) \)
Cache-Oblivious 2-Way Merge Sort

\[\text{Merge-Sort} \left(A, p, r \right) \quad \{ \text{sort the elements in } A[p \ldots r] \} \]

1. if \(p < r \) then
2. \(q \leftarrow \lfloor (p + r) / 2 \rfloor \)
3. \text{Merge-Sort} \left(A, p, q \right)
4. \text{Merge-Sort} \left(A, q + 1, r \right)
5. \text{Merge} \left(A, p, q, r \right)

I/O Complexity: \[Q(n) = \begin{cases}
O \left(1 + \frac{n}{B} \right), & \text{if } n \leq M, \\
2Q \left(\frac{n}{2} \right) + O \left(1 + \frac{n}{B} \right), & \text{otherwise.}
\end{cases} \]

\[= O \left(\frac{n}{B} \log \frac{n}{M} \right) \]

How to improve this bound?
Cache-Oblivious k-Way Merge Sort

I/O Complexity: \(Q(n) = \begin{cases}
O\left(1 + \frac{n}{B}\right), & \text{if } n \leq M, \\
k \cdot Q\left(\frac{n}{k}\right) + O\left(k + \frac{n}{B}\right), & \text{otherwise.}
\end{cases} \)

\[
= O\left(k \cdot \frac{n}{M} + \frac{n}{B} \log_k \frac{n}{M}\right)
\]

How large can \(k \) be?

Recall that for \(k \)-way merging, we must ensure

\[
M \geq (k + 1)B \Rightarrow k \leq \frac{M}{B} - 1
\]
Cache-Aware $\left(\frac{M}{B} - 1\right)$-Way Merge Sort

I/O Complexity: $Q(n) = \begin{cases} O\left(1 + \frac{n}{B}\right), & \text{if } n \leq M, \\ k \cdot Q\left(\frac{n}{k}\right) + O\left(k + \frac{n}{B}\right), & \text{otherwise}. \end{cases}$

$$= O\left(k \cdot \frac{n}{M} + \frac{n}{B} \log_k \frac{n}{M}\right)$$

Using $k = \frac{M}{B} - 1$, we get:

$$Q(n) = O\left(\left(\frac{M}{B} - 1\right)\frac{n}{M} + \frac{n}{B} \log_M \left(\frac{n}{M}\right)\right) = O\left(\frac{n}{B} \log_M \left(\frac{n}{M}\right)\right)$$
Sorting (Funnelsort)
k-Merger (k-Funnel)

$k \geq 2$ sorted input sequences

$k\sqrt{k}$ linking buffers
(each of size $2k^{\frac{3}{2}}$)

k - mergers
(\sqrt{k} of them)

Memory layout of a k-merger:

<table>
<thead>
<tr>
<th>R</th>
<th>L_1</th>
<th>B_1</th>
<th>L_2</th>
<th>B_2</th>
<th>$L_{\sqrt{k}}$</th>
<th>$B_{\sqrt{k}}$</th>
</tr>
</thead>
</table>
Space usage of a k-merger:

$$S(k) = \begin{cases} \Theta(1), & \text{if } k \leq 2, \\ (\sqrt{k} + 1)S(\sqrt{k}) + \Theta(k^2), & \text{otherwise}. \end{cases}$$

$$= \Theta(k^2)$$

A k-merger occupies $\Theta(k^2)$ contiguous locations.
Each invocation of a k-merger

- produces a sorted sequence of length k^3
- incurs $O\left(1 + \frac{k}{B} + \frac{k^3}{B \log M} \left(\frac{k}{B}\right)^2\right)$ cache misses provided $M = \Omega(B^2)$
k-Merger (k-Funnel)

$k \geq 2$ sorted input sequences

\[
\sqrt{k} \text{ linking buffers (each of size } 2k^2)\]

\[
\sqrt{k} \text{ - merger (one)}\]

\[
\sqrt{k} \text{ - mergers (} \sqrt{k} \text{ of them)}\]

\[
\text{Memory layout of a } k\text{-merger:}
\]

\[
\begin{array}{cccccc}
R & L_1 & B_1 & L_2 & B_2 & L_{\sqrt{k}} B_{\sqrt{k}}
\end{array}
\]

Cache-complexity:

\[
Q'(k) = \begin{cases}
O\left(1 + k + \frac{k^3}{B}\right), & \text{if } k < \alpha \sqrt{M}, \\
\left(2k^2 + 2\sqrt{k}\right)Q'(\sqrt{k}) + \Theta(k^2), & \text{otherwise.}
\end{cases}
\]

\[
= O\left(\frac{k^3}{B} \log_M \left(\frac{k}{B}\right)\right), \quad \text{provided } M = \Omega(B^2)
\]
k-Merger (k-Funnel)

$k \geq 2$ sorted input sequences

\sqrt{k} linking buffers (each of size $2k^{\frac{3}{2}}$)

\sqrt{k}-merger (one)

\sqrt{k} - mergers (\sqrt{k} of them)

one merged output sequence

Let c_i be #items extracted the i-th input queue. Then $\sum c_i = O(1 + k^3)$. Since $k < \alpha \sqrt{M}$ and $M = \Omega(B^2)$, at least $\frac{M}{B} = \Omega(k)$ cache blocks are available for the input buffers.

Hence, cache-misses for accessing the input queues (assuming circular buffers) $= \sum_{i=1}^{k} O \left(1 + \frac{r_i}{B} \right) = O \left(k + \frac{k^3}{B} \right)$

$Q'(k) = \begin{cases} O \left(1 + k + \frac{k^3}{B} \right), & \text{if } k < \alpha \sqrt{M}, \\ (2k^{\frac{3}{2}} + 2\sqrt{k})Q'(\sqrt{k}) + \Theta(k^2), & \text{otherwise.} \end{cases}$

provided $M = \Omega(B^2)$

Memory layout of a k-merger:

<table>
<thead>
<tr>
<th>R</th>
<th>L_1</th>
<th>B_1</th>
<th>L_2</th>
<th>B_2</th>
<th>$L_{\sqrt{k}}$</th>
<th>$B_{\sqrt{k}}$</th>
</tr>
</thead>
</table>

$k < \alpha \sqrt{M}$: $Q'(k) = O \left(1 + k + \frac{k^3}{B} \right)$
k-Merger (k-Funnel)

- **Memory layout of a k-merger:**

 $\begin{array}{c|cccc}
 R & L_1 & B_1 & L_2 & B_2 \\
 \hline
 L_{\sqrt{k}} & B_{\sqrt{k}} \\
 \end{array}$

- **Cache-complexity:**

 $Q'(k) = \begin{cases}
 O\left(1 + k + \frac{k^3}{B}\right), & \text{if } k < \alpha\sqrt{M}, \\
 \left(2k^{\frac{3}{2}} + 2\sqrt{k}\right)Q'(\sqrt{k}) + \Theta(k^2), & \text{otherwise}.
 \end{cases}$

 $= O\left(\frac{k^3}{B} \log_M \left(\frac{k}{B}\right)\right), \quad \text{provided } M = \Omega(B^2)$

- **$k < \alpha\sqrt{M}$:**

 $Q'(k) = O\left(1 + k + \frac{k^3}{B}\right)$

- **#cache-misses for accessing the input queues**

 $= O\left(\frac{k + k^3}{B}\right)$

- **#cache-misses for writing the output queue**

 $= O\left(1 + \frac{k^3}{B}\right)$

- **#cache-misses for touching the internal data structures**

 $= O\left(1 + \frac{k^2}{B}\right)$

- **Hence. total #cache-misses**

 $= O\left(1 + k + \frac{k^3}{B}\right)$
\[k \geq \alpha \sqrt{M}: \quad Q'(k) = \left(2k^{\frac{3}{2}} + 2\sqrt{k}\right) Q'\left(\sqrt{k}\right) + \Theta(k^2) \]

- Each call to \(R \) outputs \(k^2 \) items. So, \#times merger \(R \) is called = \(\frac{k^3}{k^2} = k^2 \)

- Each call to an \(L_i \) puts \(k^2 \) items into \(B_i \). Since \(k^3 \) items are output, and the buffer space is \(\sqrt{k} \times 2k^{\frac{3}{2}} = 2k^2 \), \#times the \(L_i \)'s are called \(\leq k^2 + 2\sqrt{k} \)

- Before each call to \(R \), the merger must check each \(L_i \) for emptiness, and thus incurring \(O\left(\sqrt{k}\right) \) cache-misses. So, \#such cache-misses = \(k^2 \times O\left(\sqrt{k}\right) = \)
Funnelsort

- Split the input sequence A of length n into $\frac{1}{n^3}$ contiguous subsequences $A_1, A_2, \ldots, A_{\frac{1}{n^3}}$ each
- Recursively sort each subsequence
- Merge the $\frac{1}{n^3}$ sorted subsequences using a $\frac{1}{n^3}$-merger

Cache-complexity:

$$Q(n) = \begin{cases}
 O\left(1 + \frac{n}{B}\right), & \text{if } n \leq M, \\
 \frac{1}{n^3}Q\left(\frac{2}{n^3}\right) + Q'\left(\frac{1}{n^3}\right), & \text{otherwise.}
\end{cases}$$

$$= \begin{cases}
 O\left(1 + \frac{n}{B}\right), & \text{if } n \leq M, \\
 \frac{1}{n^3}Q\left(\frac{2}{n^3}\right) + O\left(\frac{n}{B}\log_M\left(\frac{n}{B}\right)\right), & \text{otherwise.}
\end{cases}$$

$$= O\left(1 + \frac{n}{B}\log_M n\right)$$