
Algorithms Seminar Session 3

Scribe: Sichen Zhong

9/19/14

Prefix Matching Problem (Continued)

Claim: Suppose our alphabet size is 2 and the number of strings is N .Then the Prefix
Matching Problem is NP-Complete.

Proof:

Let L denote the length of each of our strings and M denote the alphabet size. We
first reduce the Vertex Cover problem to the L=2 prefix matching problem. We then
reduce the L = 2 prefix matching problem to the M = 2 prefix matching problem. From
the algorithms seminar notes on 9/05/2014, we already know how to transform a simply
connected graph G(V,E) to a set of length L = 2 strings with cardinality |E|. We focus
on the second reduction. Given a set of N strings of length L = 2, we do the following
transformation:

- Look at the i-th length 2 string. Convert both letters to binary. Reverse the binary
representation of the second letter. Now add N2 number of zeros between the binary
representation of the first letter and the reverse of the binary representation of the second
letter. This resulting string of 0’s and 1’s is the i-th string in our M = 2 prefix matching
problem.

- Repeat the above for all i = 1...N

Now suppose we can calculate the optimal solution to the M = 2 prefix matching problem
in polynomial time. Let OPT denote the total prefix matching. We claim the following is
true:

N − V C + 1 ≥ OPT

lgN + N2
≥ N − V C − 1 (1)

The denominator of the middle term follows because for a set of N strings each of which are
2-characters long, the binary representation of 2N characters is lg2N digits long. For each

1

pair of strings in the binary prefix matching problem, the maximum number of matchings
is lgN + N2. We know that N − V C is the maximum number of matchings in the L=2
prefix matching problem, so it follows that OPT

lgN+N2 must be bounded between N −V C + 1
and N − V C − 1. Hence, if we can find OPT in polynomial time, then we can find V C in
polynomial time.

Open Question 1 Knowing that the 2-approximation to the general prefix matching prob-

lem is O(
√
NM), (from max matching), we can save some time by doing Greedy matching

on the complete graph KN in O(N + M) time. This gives us a 2-approximation on the
max matching problem. Since finding a max matching on KN is itself a 2-approximation
to the prefix matching problem, a Greedy Matching would give us a 4-approximation to
the prefix matching problem.

Is there a faster method to further reduce the O(N + M) running time?

Open Question 2 Is there a c-approximation where c < 2?

2

