
Algorithms Seminar Session 2

Scribe: Sichen Zhong

9/5/14

Prefix Matching Problem (Continued)

Claim: Prefix Matching is NP-Complete.

Proof: We reduce Vertex Cover to Prefix Matching. Given a simply connected graph
G(V,E), first map each vertex to a different letter. For example, if V = {v1, v2, v3, v4},
then map v1 → A, v2 → B, v3 → C, v4 → D. If there exists an edge between 2 vertices
vi and vj , then this edge corresponds to the length 2 string the 2 vertices are mapped to.
This completes our initial transformation of a vertex cover problem to a prefix matching
problem.

We note the following equation:

|PrefixMatchings| + |V ertexCover| = |E| (1)

Hence, if there exists a polynomial time algorithm to solve the Vertex Cover problem, then
we can also find the number of prefix matchings in polynomial time. It follows that Prefix
Matching is NP-Complete.

Prefix Matching 2-approximation

Algorithm:

1) For a given set of n strings, construct the following complete graph Kn. Each node
represents the forward and reverse orientations of a particular string. The edge weight
between any pair of nodes is the greatest prefix matching between all 4 permutations of
the reverse and forward orientations of the 2 strings.

2) Use Edmonds (or any other polynomial time matching algorithm) algorithm to find a
maximum weight matching for Kn.

Notes:

1

- For the above approximation, we do not care about maximizing the prefix matchings for
strings in lines 2 and 3, lines 4 and 5, etc.... In the optimal solution, the total prefix match-
ing for lines 2 and 3, 4 and 5, etc... cannot exceed the total prefix matching of lines 1 and
2, 3, and 4 etc... in our approximation. Hence, our algorithm is a 2-approximation.

- The above method captures the best pairs of strings with the most prefix matchings in
lines 1 and 2, lines 3 and 4, etc...

Other Potential Approximation Methods

Algorithm: Minimizing unmatched characters

- For a given set of n strings, construct a complete graph Kn for the 1 of a set TSP
problem. The 1 of a set TSP problem is the standard TSP problem except that each node
is a set consisting of the forward and reverse orientations of a string. The edge weights
change depending on which orientation we choose for a node. In this case, the edge weights
are the costs of non-overlap of the orientations we choose for 2 nodes.

- This transformation preserves distance properties. Namely, the edge weights satisfy the
properties of a metric (symmetry, triangle inequality, d(x, y) = 0 iff x = y for any 2 vertices
x and y)

- The 1 of a set TSP problem with metric-preserving properties has a 3-approximation due
to LP-Rounding techniques.

Open Question 1 For a finite small alphabet, what is the complexity of the Prefix Match-
ing Problem?

Open Question 2 For the above 2-approximation, can we improve the approximation
constant by recursing the algorithm on matched pairs of strings?

2

