
Algorithms Seminar Session 1

Scribe: Sichen Zhong

8/29/2014

Prefix Matching Problem

Simple Version

Given a set of n strings, order the strings from top to bottom so there is maximum overlap
starting from left to right.

ex.

ABBA
ACBA
AZBA
ABCD

- A matches with A, but B does not match with C, so number matchings between 1st and
2nd line is 1.
- A matches A but C does not match with Z, so number of matchings between 2nd and
3rd line is 1.
- A matches A but Z does not match with B, so number of matchings between 3rd and 4th
line is 1.
-Total number of matchings is 1 + 1 + 1 = 3

However, we can do better if we shift ABCD to line 2.

ABBA
ABCD
ACBA
AZBA

- Total number of matchings is now 2 + 1 + 1 = 4.

1



Question 1
Given n strings, sorting maximizes the total matching.

Proof: We group the n strings into blocks of matching characters and recur within each
block. For example, if we have the following strings

ABCD
ABRT
BBUI
BAIO
CDFK
CRTS

Then by matching the first character, we have 3 blocks, namely a block with the first 2
strings, a block with the middle 2 strings, and a third block with the last 2 strings. We
then recur in each block and look at the second character. Repeat the process. This gives
us an ordering of the n strings in some lexicographic order. Note that if our n strings are in
lexicographic order, then we cannot get a higher matching score since the total matching
score never increases if any character of a string we move is shifted out of its own block.
Since sorting gives us an ordering of the n strings in lexicographic order, it follows that
sorting will give us a maximum matching.

Difficult Version

Given a set of n strings, order the strings from top to bottom so there is maximum overlap
starting from left to right. In addition, we are now allowed to reverse individual strings to
find the maximum overlap (Total strings 2n).

Open Question 1
What is the Complexity Class of the above problem?

Open Question 2
What are some approximation algorithms to the difficult version of the problem?

The following are some approximation algorithms determined to be bad:

Algorithm 1
-Given n strings, find the maximum matching value using sorting -Now reverse each string
and calculate the total matching again.

ex.

2



AB
BA

-Using the above algorithm, the maximum matching is 0.
-Reversing each string, we still get a maximum matching of 0.
-However, the optimal is to reverse the 2nd string, and get a score of 2.
-Hence, OPT

APX = 2
0 , and OPT

APX can be arbitrarily bad.

Algorithm 2: Greedy Approach

ex.

ABC −−− ZZ
ABC −−− ZZ
BCD −−− ZZ
BCD −−− ZZ
CDE −−− ZZ
CDE −−− ZZ

(The dashed lines represent arbitrary letters which do not match with the string immedi-
ately following it.)

- Optimal value is to flip each string. This gives us a total score of 2 + 2 + 2 + 2 + 2 =
10 - However, if we were to use a Greedy approach, We would get a value of 3 + 0 + 3 +
0 + 3 = 9 - Hence, in the above example, OPT

APX = 10
9 .

However, the above example can be generalized to make Greedy arbitrarily bad, where
OPT
APX converges to infinity. Consider the following example:

ex.

123456789
123456780
193456780
193456780
193456780
...
...

Then Greedy will first find the 2 strings that has the most number of matchings, namely
the first 2 strings. However, the rest of the strings can be constructed such that there is

3



a very small number of prefix matchings, but when each is reversed, the number of prefix
matchings can be very large (depending on the string length). This can make OPT

APX → ∞
as string length increases.

4


