Iterated Functions

\[f^*(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
1 + f^*(f(n)) & \text{if } n > 1
\end{cases} \]

\[= \min \left\{ i \geq 0 : f \left(f \left(f \left(\ldots f(n) \ldots \right) \right) \right) \leq 1 \right\} \]

\[= \min \{ i \geq 0 : f^{(i)}(n) \leq 1 \}, \]

where \(f^{(i)}(n) = \begin{cases}
n & \text{if } i = 0 \\
f \left(f^{(i-1)}(n) \right) & \text{if } i > 0
\end{cases} \)

Example: If \(f = \log \), we have:

\[
\begin{align*}
\log^{(0)}(65536) &= 65536 & \log^{(3)}(65536) &= 2 \\
\log^{(1)}(65536) &= 16 & \log^{(4)}(65536) &= 1 \\
\log^{(2)}(65536) &= 4 & \therefore \log^*(65536) &= 4
\end{align*}
\]
Iterated Functions

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$f^*(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n - 1$</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>$n - 2$</td>
<td>$\frac{n}{2}$</td>
</tr>
<tr>
<td>$n - c$</td>
<td>$\frac{n}{c}$</td>
</tr>
<tr>
<td>$n - c$</td>
<td>$\log_2 n$</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$\log \log n$</td>
</tr>
<tr>
<td>$\log n$</td>
<td>$\log^* n$</td>
</tr>
</tbody>
</table>
The Inverse Ackermann Function: $\alpha(n)$

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$f^*(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log n$</td>
<td>$\log^* n$</td>
</tr>
<tr>
<td>$\log^* n$</td>
<td>$\log^{**} n$</td>
</tr>
<tr>
<td>$\log^{**} n$</td>
<td>$\log^{***} n$</td>
</tr>
<tr>
<td>$\log^{k-2} n$</td>
<td>$\log^{k-1} n$</td>
</tr>
<tr>
<td>$\log^{k-1} n$</td>
<td>$\log^k n$</td>
</tr>
</tbody>
</table>

$k = \alpha(n)$

\[\alpha(n) = \min \left\{ k \geq 1 : \log^{k-1} n \leq 3 \right\} \]
Union-Find: A Disjoint-Set Data Structure
Disjoint Set Operations

A disjoint-set data structure maintains a collection of disjoint dynamic sets. Each set is identified by a representative which must be a member of the set.

The collection is maintained under the following operations:

MAKE-SET(x): create a new set \(\{x\} \) containing only element \(x \).

Element \(x \) becomes the representative of the set.

FIND(x): returns a pointer to the representative of the set containing \(x \)

UNION(x, y): replace the dynamic sets \(S_x \) and \(S_y \) containing \(x \) and \(y \), respectively, with the set \(S_x \cup S_y \)
Union-Find Data Structure
with Union by Rank and Find with Path Compression

MAKE-SET (x)
1. \(\pi(x) \leftarrow x \)
2. \(\text{rank}(x) \leftarrow 0 \)

LINK (x, y)
1. \(\text{if} \ \text{rank}(x) > \text{rank}(y) \ \text{then} \ \pi(y) \leftarrow x \)
2. \(\text{else} \ \pi(x) \leftarrow y \)
3. \(\text{if} \ \text{rank}(x) = \text{rank}(y) \ \text{then} \ \text{rank}(y) \leftarrow \text{rank}(y) + 1 \)

UNION (x, y)
1. **LINK**(FIND (x), FIND (y))

FIND (x)
1. \(\text{if} \ x \neq \pi(x) \ \text{then} \ \pi(x) \leftarrow \text{FIND} (\pi(x)) \)
2. return \(\pi(x) \)
Some Useful Properties of Rank

- If x is not a root then $\text{rank}(x) < \text{rank}(\pi(x))$
- Node ranks strictly increase along any simple path towards a root
- Once a node becomes a non-root its rank never changes
- If $\pi(x)$ changes from y to z then $\text{rank}(z) > \text{rank}(y)$
- If the root of x's tree changes from y to z then $\text{rank}(z) > \text{rank}(y)$
- If x is the root of a tree then $\text{size}(x) \geq 2^{\text{rank}(x)}$
- If there are only n nodes the highest possible rank is $\lceil \log_2 n \rceil$
- There are at most $\frac{n}{2^r}$ nodes with rank $r \geq 0$
Some Useful Properties of Rank

- We will analyze the total running time of m' MAKE-SET, UNION and FIND operations of which exactly $n \ (\leq m')$ are MAKE-SET
- But each UNION can be replaced with two FIND and one LINK
- Hence, we can simply analyze the total running time of m MAKE-SET, LINK and FIND operations of which exactly $n \ (\leq m)$ are MAKE-SET and where $m' \leq m \leq 3m'$
Compress

```plaintext
Compress (x, y) \{ y is an ancestor of x \}
1. if x \neq y then \pi(x) \leftarrow Compress (\pi(x), y)
2. return \pi(x)
```

- We will analyze the total running time of \(m \) MAKE-SET, LINK and FIND operations of which exactly \(n (\leq m) \) are MAKE-SET.
- But FIND\((x) \) is nothing but Compress\((x, y) \), where \(y \) is the root of the tree containing \(x \).
- Hence, we can analyze the total running time of \(m \) MAKE-SET, LINK and Compress operations of which exactly \(n (\leq m) \) are MAKE-SET.
Compress

\[\text{Compress} \left(x, y \right) \quad \text{\{ } y \text{ is an ancestor of } x \text{ \}} \]

1. \text{if } x \neq y \text{ then } \pi(x) \leftarrow \text{Compress} \left(\pi(x), y \right) \\
2. \text{return } \pi(x) \\

We can reorder the sequence of Link and Compress operations so that all Link’s are performed before all Compress operations without changing the number of parent pointer reassignments!
\textsc{Shatter}(x)

1. \textit{if} $x \neq \pi(x)$ \textit{then} \textsc{Shatter}(\pi(x))
2. $\pi(x) \leftarrow x$

\hspace{1cm}

w
\hspace{1cm}
\hspace{1cm}
\hspace{1cm}
z
\hspace{1cm}
\hspace{1cm}
y
\hspace{1cm}
\hspace{1cm}
x

w
\hspace{1cm}
\hspace{1cm}
\hspace{1cm}
z
\hspace{1cm}
\hspace{1cm}
y
\hspace{1cm}
\hspace{1cm}
x
Let $T(m, n, r) =$ worst-case number of parent pointer assignments

- during any sequence of at most m COMPRESS operations
- on a forest of n nodes
- with maximum rank r

Bound 0: $T(m, n, r) \leq nr$.

Proof: Since there are at most r distinct ranks, and each new parent of a node has a higher rank than its previous parent, any node can change parents fewer than r times.
Bound 1

Bound 1: $T(m, n, r) \leq m + 2n \log^* r$.

Proof: Let F be the forest, and C be the sequence of COMPRESS operations performed on F.

Let $T(F, C)$ be the number of parent pointer assignments by C in F.

Let s be an arbitrary rank. We partition F into two subforests:

- F_b containing all nodes with rank $\leq s$, and
- F_t containing all nodes with rank $> s$.

\[F_b \quad \text{containing all nodes with rank } \leq s, \quad \text{and} \]
\[F_t \quad \text{containing all nodes with rank } > s. \]
Bound 1: \(T(m, n, r) \leq m + 2n \log^* r \).

Proof: Let \(s \) be an arbitrary rank. We partition \(F \) into two subforests:

- \(F_b \) containing all nodes with rank \(\leq s \), and
- \(F_t \) containing all nodes with rank \(> s \).

Let \(n_t = \#\text{nodes in } F_t \), and \(n_b = \#\text{nodes in } F_b \)

Let \(m_t = \#\text{COMPRESS operations with at least one node in } F_t \), and

\(m_b = m - m_t \)
Bound 1

Bound 1: \(T(m, n, r) \leq m + 2n \log^* r. \)

Proof: The sequence \(C \) on \(F \) can be decomposed into

- a sequence of \textsc{Compress} operations in \(F_t \), and
- a sequence of \textsc{Compress} and \textsc{Shatter} operations in \(F_b \)

Suppose, this decomposition partitions \(C \) into two subsequences

- \(C_t \) in \(F_t \), and
- \(C_b \) in \(F_b \)
Bound 1

Bound 1: $T(m, n, r) \leq m + 2n \log^* r$.

Proof: We get the following recurrence:

$$T(F, C) \leq T(F_t, C_t) + T(F_b, C_b) + m_t + n_b$$

<table>
<thead>
<tr>
<th>Cost on Left Side</th>
<th>Corresponding Cost on Right Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>node $\in F_t$ gets new parent $\in F_t$</td>
<td>$T(F_t, C_t)$</td>
</tr>
<tr>
<td>node $\in F_b$ gets new parent $\in F_b$</td>
<td>$T(F_b, C_b)$</td>
</tr>
<tr>
<td>node $\in F_b$ gets new parent $\in F_t$</td>
<td>n_b</td>
</tr>
<tr>
<td>(for the first time)</td>
<td></td>
</tr>
<tr>
<td>node $\in F_b$ gets new parent $\in F_t$</td>
<td>m_t</td>
</tr>
<tr>
<td>(again)</td>
<td></td>
</tr>
</tbody>
</table>
Bound 1

Bound 1: \(T(m, n, r) \leq m + 2n \log^* r \).

Proof: We get the following recurrence:

\[
T(F, C) \leq T(F_t, C_t) + T(F_b, C_b) + m_t + n_b
\]

Now \(n_t \leq \sum_{i>s} \frac{n}{2^i} = \frac{n}{2^s} \), and \(r_t = r - s < r \).

Hence, using bound 0: \(T(F_t, C_t) \leq n_t r_t < \frac{nr}{2^s} \)

Let \(s = \log r \). Then \(T(F_t, C_t) < n \).

Hence, \(T(F, C) \leq T(F_b, C_b) + m_t + 2n \)

\[\Rightarrow T(F, C) - m \leq T(F_b, C_b) - m_b + 2n\]
Bound 1

Bound 1: \(T(m, n, r) \leq m + 2n \log^* r \).

Proof:

We got \(T(F, C) - m \leq T(F_b, C_b) - m_b + 2n \)

Let \(T_1(m, n, r) = T(m, n, r) - m \)

Then \(T_1(m, n, r) \leq T_1(m_b, n_b, r_b) + 2n \)

\[\Rightarrow T_1(m, n, r) \leq T_1(m, n, \log r) + 2n \]

Solving, \(T_1(m, n, r) \leq 2n \log^* r \)

Hence, \(T(m, n, r) \leq m + 2n \log^* r \)
Bound 2: $T(m, n, r) \leq 2m + 3n \log** r$.

Proof: Similar to the proof of bound 1.

But we solve $T(F_t, C_t)$ using bound 1, instead of bound 0!

We fix $s = \log^* r$ (instead of $\log r$ for bound 1)

Then using bound 1: $T(F_t, C_t) \leq m_t + 2n_t \log^* r_t$

$\leq m_t + 2 \frac{n}{2\log^* r} \log^* r$

$\leq m_t + 2n$

Then from $T(F, C) \leq T(F_t, C_t) + T(F_b, C_b) + m_t + n_b$, we get

$T(F, C) \leq T(F_b, C_b) + 2m_t + 3n_b$
Bound 2: \(T(m, n, r) \leq 2m + 3n \log^{**} r. \)

Proof: Our recurrence:

\[
T(F, C) \leq T(F_b, C_b) + 2m_t + 3n_b
\]

\[
\Rightarrow T(F, C) - 2m \leq T(F_b, C_b) - 2m_b + 3n_b
\]

Let \(T_2(m, n, r) = T(m, n, r) - 2m \)

Then \(T_2(m, n, r) \leq T_2(m_b, n_b, r_b) + 3n \)

\[
\Rightarrow T_2(m, n, r) \leq T_2(m, n, \log^* r) + 3n
\]

Solving, \(T_2(m, n, r) \leq 3n \log^{**} r \)

Hence, \(T(m, n, r) \leq 2m + 3n \log^{**} r \)
Bound k

Bound k: $T(m, n, r) \leq km + (k + 1)n \log^{k} r$.

Observation: As we increase k:
- the dependency on m increases
- the dependency on r decreases

When $k = \alpha(r)$, we have $\log^{k} r \leq 3$!

Bound α: $T(m, n, r) \leq m\alpha(r) + 3(\alpha(r) + 1)n$.
The α Bound

Bound α: $T(m,n,r) \leq m\alpha(r) + 3(\alpha(r) + 1)n$.

Observing that $r < n$, we have:

Bound α: $T(m,n,r) \leq (m + 3n)\alpha(n) + 3n = O((m + n)\alpha(n))$.

Assuming $m \geq n$, we have:

Bound α: $T(m,n,r) = O(m\alpha(n))$.

So, amortized complexity of each operation is only $O(\alpha(n))$!