CSE 613: Parallel Programming

Lectures 7 & 8
(Scheduling and Work Stealing)

(inspiration for some slides comes from lectures given
by Charles Leiserson)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2013

Scheduler

A runtime/online scheduler

maps tasks to processing [(3’”/’:'“ .
elements dynamically at (o @) [0 @) [z @
runtime. /

@] 0 8) (@] (e

The map is called a schedule. @

An offline scheduler prepares P LN
. B B 3|
the schedule prior to the

actual execution of the

program.

Greedy Scheduling

A strand /task is called
ready provided all its parents
(if any) have already been
executed.

O executed task
@ ready to be executed
(O not yet ready

A greedy scheduler tries to
perform as much work as
possible at every step.

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

— if 2 p tasks are ready:
execute any p of them
(complete step)

— if < p tasks are ready:
execute all of them
(incomplete step)

Greed Scheduling Theorem

Theorem [Graham’68, Brent’74]:
For any greedy scheduler,

Proof:
I,= #complete steps

+ #incomplete steps

— Each complete step
performs p work:

T
#complete steps Sj

— Each incomplete step reduces
the span by 1:
#tincomplete steps < T

Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler T, < 2T ;, where T is the
running time due to optimal scheduling on p processing elements.

Proof:
In

Work law: T; >
D

Spanlaw: T, = Too

.. From Graham-Brent Theorem:

T1 % x *
Tp<—+Too S Tp+ Ty = 2T,

Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves S, ~p (i.e., nearly
linear speedup) provided LR D.
Too

Proof:
Given, FS > p = L > T
Too p

.. From Graham-Brent Theorem:

I I3
p p
Ty

szpj szp

Work-Sharing and Work-Stealing Schedulers
Work-Sharing

— Whenever a processor generates new tasks it tries to
distribute some of them to underutilized processors

— Easy to implement through centralized (global) task pool
— The centralized task pool creates scalability problems

— Distributed implementation is also possible (but see below)

Work-Stealing

— Whenever a processor runs out of tasks it tries steal tasks
from other processors

— Distributed implementation
— Scalable

— Fewer task migrations compared to work-sharing (why?)

Cilk++'s Work-Stealing Scheduler

A randomized distributed scheduler
Time bounds
o Provably: T, = % + O(Tw) (expected time)
T
Empirically: T,, ~ = + T,
o Empirically: T, > 0
Space bound: < p x serial space bound

Has provably good cache performance

Cilk++'s Work-Stealing Scheduler

Each core maintains a work dqueue of ready threads

A core manipulates the bottom of its dqueue like a stack
o Pops ready threads for execution
o Pushes new/spawned threads

Whenever a core runs out of ready threads it steals one
from the top of the dqueue of a random core

Cilk++'s Work-Stealing Scheduler

Each core maintains a work dqueue of ready threads

A core manipulates the bottom of its dqueue like a stack
o Pops ready threads for execution
o Pushes new/spawned threads

Whenever a core runs out of ready threads it steals one
from the top of the dqueue of a random core

spawn spawn

Cilk++'s Work-Stealing Scheduler

Each core maintains a work dqueue of ready threads

A core manipulates the bottom of its dqueue like a stack
o Pops ready threads for execution
o Pushes new/spawned threads

Whenever a core runs out of ready threads it steals one
from the top of the dqueue of a random core

return return

Cilk++'s Work-Stealing Scheduler

Each core maintains a work dqueue of ready threads

A core manipulates the bottom of its dqueue like a stack
o Pops ready threads for execution
o Pushes new/spawned threads

Whenever a core runs out of ready threads it steals one
from the top of the dqueue of a random core

return return spawn

Cilk++'s Work-Stealing Scheduler

Each core maintains a work dqueue of ready threads

A core manipulates the bottom of its dqueue like a stack
o Pops ready threads for execution
o Pushes new/spawned threads

Whenever a core runs out of ready threads it steals one
from the top of the dqueue of a random core

steal

Cilk++'s Work-Stealing Scheduler

Each core maintains a work dqueue of ready threads

A core manipulates the bottom of its dqueue like a stack
o Pops ready threads for execution
o Pushes new/spawned threads

Whenever a core runs out of ready threads it steals one
from the top of the dqueue of a random core

steal

Cilk++'s Work-Stealing Scheduler

Each core maintains a work dqueue of ready threads

A core manipulates the bottom of its dqueue like a stack
o Pops ready threads for execution
o Pushes new/spawned threads

Whenever a core runs out of ready threads it steals one
from the top of the dqueue of a random core

spawn return

