
CSE548, AMS542: Analysis of Algorithms, Fall 2012 Date: October 16

In-Class Midterm
( 11:35 AM – 12:50 PM : 75 Minutes )

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

• There are three (3) questions, worth 75 points in total. Please answer all of them in the
spaces provided.

• There are 12 pages including four (4) blank pages. Please use the blank pages if you need
additional space for your answers.

• The exam is open slides. So you can consult the lecture slides during the exam. No additional
cheatsheets are allowed.

Good Luck!

Question Score Maximum

1. Pairing Numbers 20

2. Tower of Hanoi 25

3. Binomial Arrays 30

Total 75

Name:
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Question 1. [ 20 Points ] Pairing Numbers. Suppose you are given two sets of numbers, say,
A and B. For some integer n > 0, each set contains Θ (n) integers between 0 and n (inclusive), and
no number occurs more than once in the set. Let C(m) denote the number of distinct pairs 〈a, b〉
with a ∈ A and b ∈ B such that a + b = m. For example, if A = {1, 7, 3} and B = {2, 1, 6} then
C(9) = 2 as only the pairs 〈7, 2〉 and 〈3, 6〉 produce the sum 9, and C(6) = 0 as no two a ∈ A and
b ∈ B sum up to 6.

1(a) [ 5 Points ] For any given integer m ∈ [0, 2n], show that the computation of C(m) requires
Θ (n) time.
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1(b) [ 15 Points ] Show that for 0 ≤ m ≤ 2n, one can compute all C(m) values simultaneously in
O (n log n) time.
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Use this page if you need additional space for your answers.
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Question 2. [ 25 Points ] Tower of Hanoi. The following recurrences arise while trying to
compute the minimum number of moves needed to solve the Tower of Hanoi problem with n discs
when all moves must be clockwise1. Let Qn and Rn be the minimum number of moves required to
transfer all n discs under the given restriction from the source pole to the target pole and from the
target pole to the source pole, respectively. Then it can be shown that

Qn =

{
0 if n = 0,
2Rn−1 + 1 otherwise;

Rn =

{
0 if n = 0,
Qn + Qn−1 + 1 otherwise.

2(a) [ 5 Points ] Show that one can rewrite the first recurrence as follows.

Qn =


0 if n = 0,
1 if n = 1,
2 (Qn−1 + Qn−2) + 3 otherwise.

1If A is the source pole, B is the target pole, and C is the intermediate pole, then each move must be either
A → B or B → C or C → A.
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2(b) [ 20 Points ] Solve the recurrences to show that

Qn =
1

2
√

3

[(
1 +
√

3
)n+1

−
(

1−
√

3
)n+1

]
−1 and Rn =

1

4
√

3

[(
1 +
√

3
)n+2

−
(

1−
√

3
)n+2

]
−1.
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Use this page if you need additional space for your answers.
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Question 3. [ 30 Points ] Binomial Arrays. Searching for a given number in an array of
n sorted numbers takes O (log n) time using binary search, but inserting a new number into this
array can take Θ (n) time in the worst case. On the other hand, a new number can be inserted into
an array of n unsorted numbers in Θ (1) time2, but searching for a number in this unsorted array
can take up to Θ (n) time. In this problem we will analyze a very simple data structure that can
support both insert and search operations very efficiently3.

We will call the new data structure a binomial array which is nothing but a simple modification
of the binomial heap data structure we saw in the class. If we replace each binomial tree Bk of
a binomial heap with an array Ak of size 2k containing all items of Bk in sorted order, we get
a binomial array (see Figure below). Note that though each individual array is sorted there is
no particular relationship between elements of two different arrays. While a Link operation on a
binomial heap links two binomial trees of the same size (say, two Bk’s) in Θ (1) time, the same
operation on a binomial array merges two sorted arrays 4 of the same size, say two Ak’s, in Θ

(
2k+1

)
time into another sorted array Ak+1 of size 2k+1.

A binomial array supports only the following two operations:

(i) Insert( x ) that inserts x into the data structure, and

(ii) Search( x ) that returns True if x appears in the data structure, and False otherwise.

An Insert operation is implemented in exactly the same way as in a binomial heap except that
each Link operation now merges two arrays instead of linking two binomial trees.

We start with an empty data structure, and perform Insert and Search operations on it in
arbitrary order.

2assuming the array has at least one empty space that can be located in Θ (1) time
3not as efficiently as balanced binary search trees though, but they are very complicated
4two sorted arrays of size n1 and n2 can be merged into a sorted array of size n1 + n2 in Θ (n1 + n2) time
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3(a) [ 5 Points ] Show that an Insert operation on a binomial array containing n numbers can
take Θ (n) time in the worst case.

3(b) [ 5 Points ] Show how to perform a Search operation on a binomial array containing n
numbers in Θ

(
log2 n

)
worst-case time.
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3(c) [ 10 Points ] Define a potential function Φ in order to analyze the amortized complexity of
Insert and Search operations assuming that we insert n numbers into the data structure.
Remember to show that Φ (D0) = 0 and Φ (Di) ≥ 0 for all i > 0, where Di is the state of the
data structure after the ith operation.

3(d) [ 10 Points ] Use your potential function from part 3(c) to argue that the amortized time
complexity of Insert is O (log n) and that of Search is O

(
log2 n

)
.
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Use this page if you need additional space for your answers.
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Use this page if you need additional space for your answers.
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