CSE 548: Analysis of Algorithms

Lectures 4 & S

(Divide-and-Conquer Algorithms:
Polynomial Multiplication

& the Fast Fourier Transform)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2012

Coefficient Representation of Polynomials

n-—1

Alx) = 2 ajxj

j=0

=ay+ ax + ax? + -+ ap_x™1
A(x) is a polynomial of degree bound n represented as a vector
a = (ag,aq, ,a,_1) of coefficients.

The degree of A(x) is k provided it is the largest integer such that
a; is nonzero. Clearly, 0 < k <n — 1.

Evaluating A(x) at a given point:
Takes ®(n) time using Horner’s rule:
A(xg) = ag + a;xg + a(xg)* + -+ + a1 ()"

= ag + xo(ay +xo(ay + -+ xpo(an—z + x9(an-1)) --+))

Coefficient Representation of Polynomials

Adding Two Polynomials:
Adding two polynomials of degree bound n takes ®(n) time.

C(x) =A(x) + B(x)

n—-1 n-1
where, A(x) = 2 ajx) and B(x) = 2 bix/ .
j=0 j=0
n-1

Then c(x) = 2 ¢ix/, where, ¢;=a;+b; for 0<j<n-1.
Jj=0

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

The product of two polynomials of degree bound n is another
polynomial of degree bound 2n — 1.

C(x) = A(x)B(x)

n-—1 n-—1
where, A(x) = 2 ajx) and B(x) = 2 bix/ .
j=0 j=0
2n—1 J)
Then c(x) = 2 c¢ix) where, ¢ =) apbj_ for 0<j<2n-2.
j=0 k=0

The coefficient vector ¢ = (cy, ¢y, ***, Con—>), denoted by c = a ® b,
is also called the convolution of vectors a = (ay, a4, *,a,,—1) and

b = (bO' blf Y bn—l)-

Clearly, straightforward evaluation of ¢ takes ®(n?) time.

Coefficient Representation of Polynomials
Multiplying Two Polynomials:

We can use Karatsuba’s algorithm (assume n to be a power of 2):

n—1 7-1 %—1
. . n : n
Alx) = 2 ajx’/ = 2 ajx’) + x2 2 agﬂ.x] =A;(x) +x24,(x)
=0 =0 =0
n n

n-—1 2
. . n . n
B(x) = 2 bix’) = 2 bix! + x2 2 bgﬂ.xf = B;(x) + x2B,(x)
j=0 j=0 J

- 2
=0

Then C(x) = A(x)B(x)
= A1 (x)By(x) + x2[A1(x) B (x) + A2 (x)B1 (x)] + x™ A5 (x) B, (x)

But 4; (x)B,(x) + Az(x)B; (x)

= [A1(x) +4; (0)][B1(x) +B; (x)] — A1 (x)B1(x) — A2(x) B, (x)
3 recursive multiplications of polynomials of degree bound %

Similar recurrence as in Karatsuba’s integer multiplication

algorithm leading to a complexity of O(n!°823) = O(n'*>9).

Point-Value Representation of Polynomials

A point-value representation of a polynomial A(x) is a set of n point-

value pairs {(xq, Vo), (X1, V1), v, (Xn—_1, Vnn—1)} such that all x;, are
distinctand y;,, = A(xy) for0 < k <n—1.

A polynomial has many point-value representations.

Adding Two Polynomials:
Suppose we have point-value representations of two polynomials
of degree bound n using the same set of n points.

A: {(x(); yg); (xlI yla))) (x’n—l' y’g—l)}

B: {(xo,y(’,’), (xl, }If); T’ (xn—l' yﬁ—l)}
If C(x) =A(K)+ B(x) then
C: {(xo,yg + yé’), (X1;3’{1 + y{?)» " (xn—1»3’1?—1 + 3’1?—1)}

Thus polynomial addition takes ®(n) time.

Point-Value Representation of Polynomials

Multiplying Two Polynomials:
Suppose we have extended (why?) point-value representations of
two polynomials of degree bound n using the same set of 2n points.

A: {(xo; }’(()1); (x1; }’{1); ey (xZn—l» yéln—l)}

B:{(x0,¥6), (%1, %1), s (X2n-1, V2n-1)}
If C(x) = A(x)B(x) then
C:{(%0 ¥8YE), (x1,YEVE), s (Koot Vo1 1))

Thus polynomial multiplication also takes only ®(n) time!
(compare this with the ®(n?) time needed in the coefficient form)

Faster Polynomial Multiplication?
(in Coefficient Form)

ordinary

_ n—1 | multiplication
A(x) = ag + ayx + -+ ap_ x| HPHESALS)I 00 = - 5 o b

B(x) = by + bix + -+ by_1x" " | Time ©(n?) y Y

evaluation
Time?
interpolation
Time?

Y
A(xg), B(xp) pointyvis? C(xop)
A(x1), B(x;) multiplication > C (%)

Time ®(n)

A(xZn—l);B (X2n-1) C(xzon—1)

Faster Polynomial Multiplication?
(in Coefficient Form)

Coefficient Representation = Point-Value Representation:
We select any set of n distinct points {x,, x4, ..., X;,—1}, and
evaluate A(xy) for0 <k <n—1.

Using Horner’s rule this approach takes ®(n?) time.

Point-Value Representation = Coefficient Representation:
We can interpolate using Lagrange’s formula:

A(x) = 2 T [ljilx = %

]ik(k

This again takes ®(n?) time.

In both cases we need to do much better!

Coefficient Form = Point-Value Form

A polynomial of degree bound n: A(x) = ag + ayx + -+ + ap_1x™?
A set of n distinct points: {x¢, xq, ..., Xp—1}

Compute point-value form: {(xo, A(x0)), (x1, A(x1)), ..., (-1, A(Xn-1))}

Using matrix notation: [A(xg) 7 [1 x0 (x0)* = ()™ " 1 @0 ;
A(xy) I x (x)? -)V R
A(xn-1 11 x4 (xn—l)z (xn—l)n_l- Hn -1

We want to choose the set of points in a way that simplifies the
multiplication.

In the rest of the lecture on this topic we will assume:

n is a power of 2.

Coefficient Form = Point-Value Form

Let’s choose x;, /54 = —x; for0 < j <n/2 — 1. Then
A(xg) 1 [1 Xo (x0)? (x)™ !
A(x1) 1 X1 (x1)? (x)™ | ZO |
. . : 1
2 n—1)
A(xn/Z—l) 1 Xpj2-1 (xn/2—1) (xn/2—1) :
A(*n/2+0) 1 —X (—x¢)? (—xo)™
A(xn/2+1) 1 —X1 (—x1)? (—x)™F -
. . . . R - e
A(xn/2+(n/2—1)) _1 —xn/z_l (—xn/z_l) (—xn/z_l) i
k .
(xj) , if k = even,

k
hat f <jsSn/2—1: (xnpesj) =
Observe thatfor 0 < j <n/ (n/245) {_(x]_)’{ if k = odd.

Thus we have just split the original n X n matrix into two almost

. . n .
similar > X 1n matrices!

Coefficient Form = Point-Value Form

How and how much do we save?

n-—1 n/2-1 n/2-1
Alx) = 2 a;xt = 2 ayx2t + 2 Ay x 2ttt
1=0 [=0 [=0
n/2-1 n/2-1
= 2 a2l(x2)l +x 2 a2l+1(x2)l = Aeven(xz) + ondd(xz):
[=0 [=0
n/2-1 n/2-1
Where; Aepen(x) = 2 aztxl and Apaa(x) = 2 a21+1xl-
[=0 [=0
Observe thatfor0 <j <n/2 —1: A(%;) = Aeven(x?) + xjApaa(x?)

A(xn/2+j) = A(_xj) = Aeven(sz) — XjAoaa (sz)

So in order to evaluate A(xj) forall0 <j <n—1, we need:

n/2 evaluations of A,,.,, and n/2 evaluations of 4,44
n multiplications
n/2 additions and n/2 subtractions

Thus we save about half the computation!

Coefficient Form = Point-Value Form

If we can recursively evaluate A,,.,, and A,44 Using the same
approach, we get the following recurrence relation for the running
time of the algorithm:

0(1), ifn=1,
T =y, (g) +0©(n), otherwise.

= O(nlogn)

Our trick was to evaluate 4 at x (positive) and —x (negative).
But inputs to Agyen, and 4,44 are always of the form x? (positive)!

How can we apply the same trick?

Coefficient Form = Point-Value Form

Let us consider the evaluation of Aeven(xj) for0<j<n/2-1:

[Aewen(x0) 1 |1 (x0)? (x0)* (x)™2 ¢ o 7
Aepen(x1) 1 (xl)z (x1)4 (xl)n_z a
. _ . . . cee . a4
2 4 -2
Aeven(xn/Z—l) _1 (xn/z_l) (xn/z_l) oo (xn/Z—l)n i —an—Z—

In order to apply the same trick on A,,.,, we must set:

(xnas;) = —(x;) for0<j<n/4—1

Coefficient Form = Point-Value Form

In Agpen, We set: xﬁ/4+] x for0 <j<n/4—1.Then
M) 1 | Xo a2 - <xo>f‘1
even\Xo 2 2 21 _ .
Agpen(x1) 1 1 (xl) (xl)2 ZO
.) 2
2 ——1 a
Aeven(x"/4—1) 1 x121/4—1 (x121/4—1) (xn/4 1)2 -4
Aeven(xn/4+0) 1 —Xg (xO)Z (x0)7_1 .
Aeven(xn/4+1) n_ .
: 1 —xf (—xf)? (= x1)2 ' @y s
Aeven(xn/4+(n/4—1)) 5 n_,
1 _x121/4—1 (_x121/2—1) (xn/4 1)2

This means setting X, /44+; = ixj, where i = v—1 (imaginary)!

This also allows us to apply the same trickon A,4,4.

Coefficient Form = Point-Value Form

We can apply the trick once if we set:

Xnja+j = —xfor0<j<n/2-1

We can apply the trick (recursively) 2 times if we also set:
(%/2247)" = —(x)" for0 < j <n/22 -1

We can apply the trick (recursively) 3 times if we also set:

(xn/23+j)22 = —(Xj)zz for O S] < n/23 —1

We can apply the trick (recursively) k times if we also set:

(xn/2k+j)

2k—1

= —(xj)2k for0<j<n/2F-1

Coefficient Form = Point-Value Form

Consider the tt" primitive root of unity:

27Tl

Wy =et = coszTn+ i-sinzTn (i = V—l)

Then
2 _ 2 _
22 22
(xn/23+j) = —(xj) — Xpy234j = W3 " Xj
2k-1 2k—1

(xn/2k+j) = _(xf) = xn/2k+j = Wyk " Xj

Coefficient Form = Point-Value Form

If n = 2% we would like to apply the trick k times recursively.

What values should we choose for {xy, X1, ..., X;,_1}?

Example: Forn = 23 we need to choose {x;, x4, ..., X7 }.

Choose: x5 =1 = wg
2
Wg| 1
k=3:x =wys3-x, = wg % 1
w3 wg
k=2:x,=wy xy = Wi
_ _ 3
X3 = W2 X1 = Wg 1 w3 = ws
&€ >
4 1
k=1:x, = =wf
=1: x4 = wy1 " Xg Wg
X5 = Wo1 " Xq w3 ,
6 w3 Vs
X = Wyt * Xy Wg | v
; —i |w§

complex 8" roots of unity

Coefficient Form = Point-Value Form

For a polynomial of degree bound n = 2%, we need to apply the
trick recursively at most logn = k times.

We choose xy = 1=w3andsetxj =w,€for1 <j<n-—-1

Then we compute the following product:

“yo1 [A 1 11 1 1 1 17 a 1
V1 A((Un) 1 Wn ((‘)n)z ((‘)n)n_l a
Yo | _ A(a),zl) _|1 i (a),%)2 v (2] az

L Vn—1- A(a) Bl 1 ot (wf 1)2 o (ol Hn1]lan o]

The vector y = (v, V1, ', Vn—1) is called the discrete Fourier
transform (DFT) of (ag, aq, -, ay_1).

This method of computing DFT is called the fast Fourier transform
(FFT) method.

Coefficient Form = Point-Value Form

Rec-FFT ((@, Gy, -, @y.1)) {n=2forinteger k 20}
. ifn=1then

return (ay)

1

2

3. @, <« e¥/n
4. w1

5. yeven « Rec-FFT ((ay, ay, ..., G,.5))
6. y°dd <« Rec-FFT ((aq, A3y vy Gy.1))
7. forj«<0ton/2-1do

8 Vi< Y+ @ yjodd

9 yn/2+j «— yjeven_) ijdd

10. w— 0w,

11. returny

Running time:

O(1), ifn=1,
T =y, (g) +0©(n), otherwise.

= O(nlogn)

Faster Polynomial Multiplication?
(in Coefficient Form)

ordinary

_ n—1 | multiplication
A(x) = ag + ayx + -+ ap_ x| HPHESALS)I 00 = - 5 o b

B(x) = by + bix + -+ by_1x" " | Time ©(n?) y Y

interpolation
Time?

forward FFT
Time ®(nlogn)

\ 4
A(w3), B(w2y) pf!”f.W'S? C (w9,
A@3n), B(w}y) multiplication C(@hn)

Time ®(n)

A(win), B(wiz ™) C(win 1)

Given:

Point-Value Form = Coefficient Form

=V(wy) a=y

We want to solve: a = [V(w,,)]”

1 1
It turns out that: [V(w,)]™" = EV <_>

1_y

1 1 1 1

1w, (wy)? (W)™

1 w; (07)? (wp)™?

1 wn 1 (wn 1)2 (wn 1)n 1J
V(wn)

Vandermonde Matrix

Wn

That means [V (w,,)]~1 looks almost similar to V (w,,)!

Yo -

V1
Y2

L Vn-1

Point-Value Form = Coefficient Form

1 1
Show that: [V(w,)] ™t ==V <—>
n \w,

n \wy

1 1
Let U(w,) =—-V (—)

We want to show that U(w,,)V(w,,) = I,
where [, is the n X n identity matrix.

Observe that for 0 < j,k < n — 1, the (j, k)*"* entries are:

. 1 _;
V@)l = and [V =0,

Then entry (p, q) of U(w,)V (w,,),

n—1 n—1

1
V(@)Y @0ag = Y V(@) [V (@n)liq = » @k
k=0 k=0

Point-Value Form = Coefficient Form

n-—1
U@V (@n)]pg =~ 9 @@
k=0
CASEp = q:
1C 1C
[U(@n)V (@n)]pg = HZ az
CASEp # q:

q—p
[U(0n)V (@n)lpg Z(w" =Ll 1) - —
1 (wn)q P_1 1 (1)q—P —1

= —X = — X —=
n P -1 n wl™f -1

Hence U(w,)V(wy,) =1,

=0

Point-Value Form = Coefficient Form

We need to compute the following matrix-vector product:

1 1 1 1 :
1 1 1 2 1 n-—1
B ao T le a)n a)n i yO]
a _
a; 1 1 1\? 1\" ! i;
=0 @z \a 02 .
n n n n
P o
wd 1 1 2 1 n—1 ‘_/3_/
_1 w;}—l w;}—l w;}—l |
[V(wn)] 1

This inverse problem is almost similar to the forward problem,
and can be solved in ®(nlogn) time using the same algorithm as
the forward FFT with only minor modifications!

Faster Polynomial Multiplication?
(in Coefficient Form)

ordinary

_ n—1 | multiplication
A(x) = ag + ayx + -+ ap_ x| HPHESALS)I 00 = - 5 o b

B(x) = by + byx + -+ bp_1x™ " | Time ®(n?)

y Y
_ e 0
o I S
2l1& il
© —
2[5 o
C
2| E £ £
= =
v . .
A(w3y), B(wdy) pf!nrw'sfe C(w3y)
A(wl), B(wl,) multiplication S C(wl)
- : - Time ®(n) 2)
A((Uz?rzl_),B(wzll‘) C(wzﬁ‘)

Two polynomials of degree bound n given in the coefficient form
can be multiplied in ®(nlogn) time!

