CSE 548: Analysis of Algorithms

Lectures 16, 17 & 18
(The \(\alpha \) Technique)

Inspiration Comes from Lectures Given by
Jeff Erickson, Seth Pettie, Vijaya Ramachandran and Raimund Seidel

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2012
Iterated Functions

\[f^*(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
1 + f^*(f(n)) & \text{if } n > 1
\end{cases} \]

\[= \min \left\{ i \geq 0 : f \left(f \left(f (\ldots f(n) \ldots) \right) \right) \leq 1 \right\} \]

\[= \min \{ i \geq 0 : f^{(i)}(n) \leq 1 \}, \]

where \(f^{(i)}(n) = \begin{cases}
n & \text{if } i = 0 \\
f (f^{(i-1)}(n)) & \text{if } i > 0
\end{cases} \)

Example: If \(f = \log \), we have:

\[\log^{(0)}(65536) = 65536 \quad \log^{(3)}(65536) = 2 \]
\[\log^{(1)}(65536) = 16 \quad \log^{(4)}(65536) = 1 \]
\[\log^{(2)}(65536) = 4 \quad \therefore \log^*(65536) = 4 \]
<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$f^*(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n - 1$</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>$n - 2$</td>
<td>n</td>
</tr>
<tr>
<td>$n - c$</td>
<td>$\frac{n}{c}$</td>
</tr>
<tr>
<td>$\frac{n}{2}$</td>
<td>$\log_2 n$</td>
</tr>
<tr>
<td>$\frac{n}{c}$</td>
<td>$\log_c n$</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$\log \log n$</td>
</tr>
<tr>
<td>$\log n$</td>
<td>$\log^* n$</td>
</tr>
</tbody>
</table>
The Inverse Ackermann Function: $\alpha(n)$

$k = \alpha(n)$

\[
\begin{array}{ccc}
 f(n) & f^*(n) \\
 \log n & \log^* n & > 3 \\
 \log^* n & \log^{**} n & > 3 \\
 \log^{**} n & \log^{***} n & > 3 \\
 \end{array}
\]

\[
\begin{array}{ccc}
 \log^{**} n & \log^{**} n & > 3 \\
 \log^{***} n & \log^{****} n & \leq 3 \\
 \end{array}
\]

$$\alpha(n) = \min \left\{ k \geq 1 : \log^{\cdots \cdots \cdots} n \leq 3 \right\}$$
Union-Find:
A Disjoint-Set Data Structure
Disjoint Set Operations

A disjoint-set data structure maintains a collection of disjoint dynamic sets. Each set is identified by a representative which must be a member of the set.

The collection is maintained under the following operations:

MAKE-SET(x): create a new set \{x\} containing only element x. Element x becomes the representative of the set.

FIND(x): returns a pointer to the representative of the set containing x

UNION(x, y): replace the dynamic sets \(S_x\) and \(S_y\) containing \(x\) and \(y\), respectively, with the set \(S_x \cup S_y\)
Union-Find Data Structure with Union by Rank and Find with Path Compression

MAKE-SET (x)
1. \(\pi(x) \leftarrow x \)
2. \(\text{rank}(x) \leftarrow 0 \)

LINK (x, y)
1. \(\text{if } \text{rank}(x) > \text{rank}(y) \text{ then } \pi(y) \leftarrow x \)
2. \(\text{else } \pi(x) \leftarrow y \)
3. \(\text{if } \text{rank}(x) = \text{rank}(y) \text{ then } \text{rank}(y) \leftarrow \text{rank}(y) + 1 \)

UNION (x, y)
1. \(\text{LINK} \left(\text{FIND} (x), \text{FIND} (y) \right) \)

FIND (x)
1. \(\text{if } x \neq \pi(x) \text{ then } \pi(x) \leftarrow \text{FIND} (\pi(x)) \)
2. \(\text{return } \pi(x) \)
Some Useful Properties of Rank

- If x is not a root then $\text{rank}(x) < \text{rank}(\pi(x))$
- Node ranks strictly increase along any simple path towards a root
- Once a node becomes a non-root its rank never changes
- If $\pi(x)$ changes from y to z then $\text{rank}(z) > \text{rank}(y)$
- If the root of x's tree changes from y to z then $\text{rank}(z) > \text{rank}(y)$
- If x is the root of a tree then $\text{size}(x) \geq 2^{\text{rank}(x)}$
- If there are only n nodes the highest possible rank is $\lfloor \log_2 n \rfloor$
- There are at most $\frac{n}{2^r}$ nodes with rank $r \geq 0$
Some Useful Properties of Rank

- We will analyze the total running time of \(m' \) \textsc{make-set}, \textsc{union} and \textsc{find} operations of which exactly \(n (\leq m') \) are \textsc{make-set}
- But each \textsc{union} can be replaced with two \textsc{find} and one \textsc{link}
- Hence, we can simply analyze the total running time of \(m \) \textsc{make-set}, \textsc{link} and \textsc{find} operations of which exactly \(n (\leq m) \) are \textsc{make-set} and where \(m' \leq m \leq 3m' \)
We will analyze the total running time of \(m \) \textsc{Make-Set}, \textsc{Union} and \textsc{Find} operations of which exactly \(n \ (\leq m) \) are \textsc{Make-Set}.

But \textsc{Find}(x) is nothing but \textsc{Compress}(x, y), where \(y \) is the root of the tree containing \(x \).

Hence, we can analyze the total running time of \(m \) \textsc{Make-Set}, \textsc{Link} and \textsc{Compress} operations of which exactly \(n \ (\leq m) \) are \textsc{Make-Set}.
Compress

\[
\text{Compress}(x, y) \quad \{ \text{y is an ancestor of } x \}\]

1. \(\text{if } x \neq y \text{ then } \pi(x) \leftarrow \text{Compress}(\pi(x), y) \)
2. \(\text{return } \pi(x) \)

We can reorder the sequence of \text{LINK} and \text{COMPRESS} operations so that all \text{LINK}'s are performed before all \text{COMPRESS} operations without changing the number of parent pointer reassignments!
Shatter

\[\text{SHATTER}(x) \]

1. \(\text{if } x \neq \pi(x) \text{ then } \text{SHATTER}(\pi(x)) \)
2. \(\pi(x) \leftarrow x \)
Let $T(m, n, r) =$ worst-case number of parent pointer assignments

- during any sequence of at most m COMPRESS operations
- on a forest of n nodes
- with maximum rank r

Bound 0: $T(m, n, r) \leq nr$.

Proof: Since there are at most r distinct ranks, and each new parent of a node has a higher rank than its previous parent, any node can change parents fewer than r times.
Bound 1:

Bound 1: $T(m, n, r) \leq m + 2n \log^* r.$

Proof: Let F be the forest, and C be the sequence of `COMPRESS` operations performed on F.

Let $T(F, C)$ be the number of parent pointer assignments by C in F.

Let s be an arbitrary rank. We partition F into two subforests:

- F_b containing all nodes with rank $\leq s$, and
- F_t containing all nodes with rank $> s$.
Bound 1: \(T(m, n, r) \leq m + 2n \log^* r. \)

Proof: Let \(s \) be an arbitrary rank. We partition \(F \) into two subforests:

- \(F_b \) containing all nodes with rank \(\leq s \), and
- \(F_t \) containing all nodes with rank \(> s \).

Let \(n_t = \#\text{nodes in } F_t \), and \(n_b = \#\text{nodes in } F_b \)

Let \(m_t = \#\text{COMPRESS operations with at least one node in } F_t \), and

\[m_b = m - m_t \]
Bound 1

Bound 1: $T(m, n, r) \leq m + 2n \log^* r$.

Proof: The sequence C on F can be decomposed into

- a sequence of COMPRESS operations in F_t, and
- a sequence of COMPRESS and SHATTER operations in F_b

Suppose, this decomposition partitions C into two subsequences

- C_t in F_t, and
- C_b in F_b
Bound 1

Bound 1: \(T(m, n, r) \leq m + 2n \log^* r. \)

Proof: We get the following recurrence:

\[
T(F, C) \leq T(F_t, C_t) + T(F_b, C_b) + m_t + n_b
\]

<table>
<thead>
<tr>
<th>Cost on Left Side</th>
<th>Corresponding Cost on Right Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>node (\in F_t) gets new parent (\in F_t)</td>
<td>(T(F_t, C_t))</td>
</tr>
<tr>
<td>node (\in F_b) gets new parent (\in F_b)</td>
<td>(T(F_b, C_b))</td>
</tr>
<tr>
<td>node (\in F_b) gets new parent (\in F_t) (for the first time)</td>
<td>(n_b)</td>
</tr>
<tr>
<td>node (\in F_b) gets new parent (\in F_t) (again)</td>
<td>(m_t)</td>
</tr>
</tbody>
</table>
Bound 1

Bound 1: \(T(m, n, r) \leq m + 2n \log^* r \).

Proof: We get the following recurrence:

\[
T(F, C) \leq T(F_t, C_t) + T(F_b, C_b) + m_t + n_b
\]

Now \(n_t \leq \sum_{i>s} \frac{n}{2^i} = \frac{n}{2^s} \), and \(r_t = r - s < r \).

Hence, using bound 0: \(T(F_t, C_t) \leq n_t r_t < \frac{nr}{2^s} \).

Let \(s = \log r \). Then \(T(F_t, C_t) < n \).

Hence, \(T(F, C) \leq T(F_b, C_b) + m_t + 2n \)

\[\Rightarrow T(F, C) - m \leq T(F_b, C_b) - m_b + 2n\]
Bound 1

Bound 1: $T(m, n, r) \leq m + 2n \log^* r$.

Proof:

We got $T(F, C) - m \leq T(F_b, C_b) - m_b + 2n$

Let $T_1(m, n, r) = T(m, n, r) - m$

Then $T_1(m, n, r) \leq T_1(m_b, n_b, r_b) + 2n$

$\Rightarrow T_1(m, n, r) \leq T_1(m, n, \log r) + 2n$

Solving, $T_1(m, n, r) \leq 2n \log^* r$

Hence, $T(m, n, r) \leq m + 2n \log^* r$
Bound 2: $T(m, n, r) \leq 2m + 3n \log** r$.

Proof: Similar to the proof of bound 1.

But we solve $T(F_t, C_t)$ using bound 1, instead of bound 0!

We fix $s = \log^* r$ (instead of $\log r$ for bound 1)

Then using bound 1: $T(F_t, C_t) \leq m_t + 2n_t \log^* r_t$

$$\leq m_t + 2 \frac{n}{2 \log^* r} \log^* r$$

$$\leq m_t + 2n$$

Then from $T(F, C) \leq T(F_t, C_t) + T(F_b, C_b) + m_t + n_b$, we get

$$T(F, C) \leq T(F_b, C_b) + 2m_t + 3n_b$$
Bound 2

Bound 2: \(T(m, n, r) \leq 2m + 3n \log^* r \).

Proof: Our recurrence:

\[
T(F, C) \leq T(F_b, C_b) + 2m_t + 3n_b
\]

\[
\Rightarrow T(F, C) - 2m \leq T(F_b, C_b) - 2m_b + 3n_b
\]

Let \(T_2(m, n, r) = T(m, n, r) - 2m \)

Then \(T_2(m, n, r) \leq T_2(m_b, n_b, r_b) + 3n \)

\[
\Rightarrow T_2(m, n, r) \leq T_2(m, n, \log^* r) + 3n
\]

Solving, \(T_2(m, n, r) \leq 3n \log^* r \)

Hence, \(T(m, n, r) \leq 2m + 3n \log^* r \)
Bound k: $T(m, n, r) \leq km + (k + 1)n \log^k r$.

Observation: As we increase k:
- the dependency on m increases
- the dependency on r decreases

When $k = \alpha(r)$, we have $\log^k r \leq 3!$

Bound α: $T(m, n, r) \leq m\alpha(r) + 3(\alpha(r) + 1)n$.
The α Bound

Bound α: $T(m, n, r) \leq m\alpha(r) + 3(\alpha(r) + 1)n$.

Observing that $r < n$, we have:

Bound α: $T(m, n, r) \leq (m + 3n)\alpha(n) + 3n = O((m + n)\alpha(n))$.

Assuming $m \geq n$, we have:

Bound α: $T(m, n, r) = O(m\alpha(n))$.

So, amortized complexity of each operation is only $O(\alpha(n))$!
The Partial Sums Data Structure
Semigroups

Semigroup \((\Pi, \oplus)\): A set \(\Pi\) together with an associative binary operation \(\oplus: \Pi \times \Pi \rightarrow \Pi\).

Examples:

\((\mathbb{R}, \max)\)

\((\{true, false\}, \text{logical OR})\)

\((k \times k \text{ matrices, matrix multiplication})\)
Partial Semigroup Sums

Given (i) a semigroup \((\Pi, \oplus)\), and
(ii) an array \(A[1 \ldots n]\) with each entry \(A[i] \in \Pi\)

Goal: Preprocess \(A\) using as little space as possible so that for all \(1 \leq i \leq j \leq n\), queries of the form \(A[i] \oplus A[i + 1] \oplus \ldots \oplus A[j]\) can be answered efficiently.

Space Complexity: \#values from \(\Pi\) stored in the data structure

Query Complexity: \#times the \(\oplus\) operation is applied

\(S_k(n)\): \#values from \(\Pi\) to be stored so that every partial sum query can be answered using at most \(k\) applications of the \(\oplus\) operation

\(k\)-op structure: A data structure with query complexity \(k\)
Bound 0

Bound 0: \(S_1(n) \leq n \log n \).

Construction of a 1-op structure:

Input array \(A \) of size \(n \)

Split \(A \) into \(A_l \) and \(A_r \) of size \(\frac{n}{2} \) each

Compute: all suffix-sums of \(A_l \), and
all prefix-sums of \(A_r \).

Recurse: 1-op structure for \(A_l \), and
1-op structure for \(A_r \).

Query: Either crosses \(A \)'s midpoint (return suffix-sum \(\oplus \) prefix-sum),
or lies completely inside \(A_l \) (recurse) or \(A_r \) (recurse)
Bound 0

Bound 0: $S_1(n) \leq n \log n$.

Construction of a 1-op structure:

Input array A of size n

Split A into A_l and A_r of size $\frac{n}{2}$ each

Compute: all suffix-sums of A_l, and
all prefix-sums of A_r

Recurse: 1-op structure for A_l, and
1-op structure for A_r

Space: $S_1(n) \leq n + 2S_1\left(\frac{n}{2}\right) \\ \leq n \log n$
Bound 1: $S_3(n) \leq 3n \log^* n$.

Construction of a 3-op structure:

Split A into $\frac{n}{\log n}$ subarrays of size $\leq \log n$ each.

Compute: all suffix- and prefix- sums within each subarray.

Build: 1-op structure for $\frac{n}{\log n}$ subarray sums.

Recurse: 3-op structure for each subarray.

Query: Either completely inside a subarray (recurse), or crosses subarray boundaries (return suffix-sum \oplus answer from 1-op structure \oplus prefix-sum).
Bound 1

Bound 1: $S_3(n) \leq 3n \log^* n$.

Construction of a 3-op structure:

Split A into $\frac{n}{\log n}$ subarrays of size $\leq \log n$ each.

Compute: all suffix- and prefix- sums within each subarray.

Build: 1-op structure for $\frac{n}{\log n}$ subarray sums.

Recurse: 3-op structure for each subarray.

Space: $S_3(n) \leq 2n + S_1\left(\frac{n}{\log n}\right) + \frac{n}{\log n} S_3(\log n) \\
\leq 3n + \frac{n}{\log n} S_3(\log n) \leq 3n \log^* n$
Bound 1

Bound 1: $S_3(n) \leq 3n \log^* n$.

Construction of a 3-op structure:

Split A into $\frac{n}{\log n}$ subarrays of size $\leq \log n$ each.

Compute: all suffix- and prefix-sums within each subarray.

Build: 1-op structure for $\frac{n}{\log n}$ subarray sums.

Recurse: 3-op structure for each subarray.

Space:

$S_3(n) \leq 2n + S_1 \left(\frac{n}{\log n} \right) + \frac{n}{\log n} S_3(\log n)$

$\leq 3n + \frac{n}{\log n} S_3(\log n) \leq 3n \log^* n$
Bound k

Bound k: $S_{2k+1}(n) \leq (2k + 1)n \log^{k} n = (2k + 1)n \log^{[*(k)]} n$.

Construction of a $(2k + 1)$-op structure:

Split A into $n/\log^{[*(k-1)]} n$ subarrays of size $\leq \log^{[*(k-1)]} n$ each.

Compute: all suffix- and prefix- sums within each subarray.

Build: $(2k - 1)$-op structure for $n/\log^{[*(k-1)]} n$ subarray sums.

Recurse: $(2k + 1)$-op structure for each subarray.

Query: Either completely inside a subarray (recurse), or crosses subarray boundaries (return suffix-sum \oplus answer from $(2k - 1)$-op structure \oplus prefix-sum).
Bound k

Bound k: $S_{2k+1}(n) \leq (2k + 1)n \log^{\ast \ldots \ast} n = (2k + 1)n \log[\ast(\#)] n$.

Construction of a $(2k + 1)$-op structure:

Split A into $n/\log[\ast(\#)] n$ subarrays of size $\leq \log[\ast(\#)] n$ each.

Compute: all suffix- and prefix- sums within each subarray.

Build: $(2k - 1)$-op structure for $n/\log[\ast(\#)] n$ subarray sums.

Recurse: $(2k + 1)$-op structure for each subarray.

Space: $S_{2k+1}(n) \leq 2n + S_{2k-1} \left(\frac{n}{\log[\ast(\#)] n} \right) + \frac{n}{\log[\ast(\#)] n} S_{2k+1} \left(\log[\ast(\#)] n \right) \leq (2k + 1)n + \frac{n}{\log[\ast(\#)] n} S_{2k+1} \left(\log[\ast(\#)] n \right) \leq (2k + 1)n \log[\ast(\#)] n$.
The α Bound

Bound k: $S_{2k+1}(n) \leq (2k + 1)n \log^k n$.

Putting $k = \alpha(n)$, we have:

Bound α: $S_{2\alpha(n)+1}(n) \leq 3(2\alpha(n) + 1)n = O(n\alpha(n))$.

Linear Space: Use the α-bound to show that the space complexity of the data structure can be reduced to $O(n)$ while still supporting range queries in $O(\alpha(n))$ time.