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Example: If f = log, we have:

log(®)(65536) = 65536 log(®(65536) = 2
log(65536) = 16 log®)(65536) = 1
log(?)(65536) = 4 ~ log*(65536) = 4
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The Inverse Ackermann Function: a(n)
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Union-Find:
A Disjoint-Set Data Structure



Disjoint Set Operations

A disjoint-set data structure maintains a collection of disjoint

dynamic sets. Each set is identified by a representative which must
be a member of the set.

The collection is maintained under the following operations:

MAKE-SET( x ): create a new set {x} containing only element x.

Element x becomes the representative of the set.

FIND( x ): returns a pointer to the representative of the set
containing x

UNION( x, y ): replace the dynamic sets S, and S,, containing

x and y, respectively, with the set 5, U §,,



Union-Find Data Structure
with Union by Rank and Find with Path Compression

MAKE-SET ( x )

1. w(x) « x

2. rank(x) « 0

LINK (x,v )
1. if rank(x) > rank(y) then n(y) <« x

2. else m(x) «y
3. if rank(x) = rank(y) then rank(y) « rank(y) + 1
UNION ( x,y )

1. LINK (FIND (x ), FIND (y ) )

FIND ( x )
1. if x # m(x) then m(x) « FIND ( m(x) )

2. return m(x)




Some Useful Properties of Rank

If x is not a root then rank(x) < rank(n(x))

Node ranks strictly increase along any simple path towards a root
Once a node becomes a non-root its rank never changes

If m(x) changes from y to z then rank(z) > rank(y)

If the root of x’s tree changes from y to z then rank(z) > rank(y)
If x is the root of a tree then size(x) > 27ank()

If there are only n nodes the highest possible rank is |log, n|

There are at most zn—r nodes with rankr = 0



Some Useful Properties of Rank

— We will analyze the total running time of m’ MAKE-SET, UNION
and FIND operations of which exactly n (< m’) are MAKE-SET

— But each UNION can be replaced with two FIND and one LINK

— Hence, we can simply analyze the total running time of m
MAKE-SET, LINK and FIND operations of which exactly n (< m)
are MAKe-SET and wherem’ <m < 3m’



Compress

COMPRESS ( x,V ) { y is an ancestor of x }
1. if x #y then m(x) « COMPRESS ( m(x),y )
2. return m(x)

— We will analyze the total running time of m MAKE-SET, UNION
and FIND operations of which exactly n (< m) are MAKE-SET

— But FIND(x) is nothing but ComPRESS(X, ), where y is the root
of the tree containing x

— Hence, we can analyze the total running time of m MAKE-SET,

LINK and COMPRESS operations of which exactly n (< m) are
MAKE-SET



Compress

COMPRESS ( x,V ) { y is an ancestor of x }
1. if x #y then m(x) « COMPRESS ( m(x),y )
2. return m(x)

We can reorder the sequence of LINK and COMPRESS operations so
that all LINK’s are performed before all COMPRESS operations
without changing the number of parent pointer reassignments!
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Shatter

SHATTER ( x )

1. if x # w(x) then SHATTER ( m(x) )

2.

m(x) « x




Bound 0

Let T(m, n,r) = worst-case number of parent pointer assignments
— during any sequence of at most m COMPRESS operations
— on a forest of n nodes

— with maximum rank r

Bound 0: T(m,n,r) < nr.

Proof: Since there are at most r distinct ranks, and each new parent
of a node has a higher rank than its previous parent, any node can

change parents fewer than r times.



Bound 1

Bound 1: T(m,n,r) < m+ 2nlog™r.

Proof: Let I be the forest, and C be the sequence of COMPRESS
operations performed on F.

Let T (F, C) be the number of parent pointer assignments by C in F.

Let s be an arbitrary rank. We partition F into two subforests:
F, containing all nodes with rank < s, and

F; containing all nodes with rank > s.

rank > s

rank <s




Bound 1

Bound 1: T(m,n,r) < m+ 2nlog™r.

Proof: Let s be an arbitrary rank. We partition F into two subforests:
F, containing all nodes with rank < s, and
F; containing all nodes with rank > s.

rank > s

rank > s l
rank <s rank <s

Let n; = #nodes in F;, and n, = #nodes in F;

Let m; = #COMPRESS operations with at least one node in F;, and

my, =m—m;



Bound 1
Bound 1: T(m,n,r) < m+ 2nlog™r.

Proof: The sequence C on F can be decomposed into
— asequence of COMPRESS operations in F¢, and
— a sequence of COMPRESS and SHATTER operations in Fj,

é}@ = Booo f = /5

c b awzy«x

Suppose, this decomposition partitions C into two subsequences
- (¢ in F¢, and
— Cb in Fb



Bound 1

Bound 1: T(m,n,r) < m+ 2nlog™r.

Proof: We get the following recurrence:

T(F, C) < T(Ft, Ct) + T(Fb, Cb) + mg + ny

Cost on Left Side

node € F; gets new parent € F;

node € F}, gets new parent € F),

node € F}, gets new parent € F;
( for the first time )

node € F}, gets new parent € F;
( again)

Corresponding Cost on Right Side

T(Ft' Ct)
T(Fb) Cb)

ny

mg



Bound 1

Bound 1: T(m,n,r) < m+ 2nlog™r.

Proof: We get the following recurrence:
T(F, C) < T(Ft, Ct) + T(Fb, Cb) + mg + Ny

n n

Nowny < Qyss; = o5 and e =7 —s <.

Hence, using bound 0: T (F, C;) < nyry < %
Let s = logr. Then T (F;, C;) < n.

Hence, T(F,C) <T(F,, Cpy)+m;+ 2n
ﬁT(F,C)—mST(Fb,Cb)—mb + 2n



Bound 1

Bound 1: T(m,n,r) < m+ 2nlog™r.

Proof:
We got T(F,C) —m < T(Fp,Cp) —my + 2n
let Ty(m,n,vr) =T(m,n,r) —m

Then Ty(m,n,r) < Ty(mp,ny, 1) + 2n
=>Ti(m,n,r) <Tiy(m,nlogr) + 2n

Solving, T; (m,n,r) < 2nlog*r

Hence, T(m,n,r) < m+ 2nlog*r



Bound 2
Bound 2: T(m,n,r) < 2m + 3nlog™ r.

Proof: Similar to the proof of bound 1.
But we solve T (F;, C;) using bound 1, instead of bound 0!
We fix s = log™ r ( instead of log r for bound 1)

Then using bound 1: T(F;, C;) < my + 2n;log* r;

n

<m;+2n

log™r

Then from T(F,C) < T(F;,Cy) + T(F,, Cp) + my + ny, we get

T(F, C) < T(Fb,Cb) + th + 3le



Bound 2
Bound 2: T(m,n,r) < 2m + 3nlog™ r.

Proof: Our recurrence:
T(F,C) <T(Fp,Cp) +2m; + 3n,
= T(F,C) —2m < T(F,,Cp) — 2my + 3n,
let T,(m,n,r) =T(m,n,r) —2m
Then T,(m,n,r) < T,(my,np, 1) + 3n
= T,(m,n,r) <T,(m,n,log*r) + 3n

Solving, T,(m,n,r) < 3nlog™ r

Hence, T(m,n,r) < 2m + 3nlog™ r



Bound k

k

—~
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Bound k: T(m,n,r) < km+ (k+ 1)nlog™ ™.

Observation: As we increase k:

— the dependency on m increases

— the dependency on r decreases

k

[

When k = a(r), we have log™ ™" r < 3!

Bound a: T(m,n,r) < ma(r) + 3(a(r) + 1)n.



The a Bound

Bound a: T(m,n,r) < ma(r) + 3(a(r) + 1)n.
Observing that r < n, we have:

Bound a: T(m,n,r) < (m+ 3n)a(n) + 3n = O((m + n)a(n)).

Assuming m = n, we have:

Bound a: T(m,n,r) = O(ma(n)).

So, amortized complexity of each operation is only O(a(n))!



The Partial Sums
Data Structure



Semigroups

Semigroup (II, @ ): A set II together with an associative binary
operation @: II X I1 — II.

Examples:
(R, max )
({ true, false },logical OR )
( k X k matrices, matrix multiplication )



Partial Semigroup Sums

Given (i) a semigroup (I, ), and
(ii) an array A[1 ...n] with each entry A[i] € II

Goal: Preprocess A using as little space as possible so that for all
1 <1i<j<n,queriesofthe form A[i] @ Ali + 1] & --- D Alj]
can be answered efficiently.

Space Complexity: #values from II stored in the data structure

Query Complexity: #times the € operation is applied

S (n): #values from I1 to be stored so that every partial sum query
can be answered using at most k applictions of the € operation

k-op structure: A data structure with query complexity k



Bound 0

Bound 0: S; (n) < nlogn.

Construction of a 1-op structure:

A
(NN EEEEEEEEEEEEEEEEEEE

Input array A of size n

Split A into A; and A, of size % each A A

Compute: all suffix-sums of 4;, and

all prefix-sums of A, %

HEEEENEEEEEE EEEEEEEEEEEN
Al Ar

Recurse: 1-op structure for A;, and
1-op structure for A,

Query: Either crosses A’s midpoint ( return suffix-sum & prefix-sum ),
or lies completely inside A; ( recurse ) or A, ( recurse )



Bound 0

Bound 0: S; (n) < nlogn.
Construction of a 1-op structure:
Input array A of size n

Split A into 4; and A,. of size % each

Compute: all suffix-sums of 4;, and
all prefix-sums of A,

Recurse: 1-op structure for A;, and
1-op structure for A,

Space: S;(n) <n+ 2S5, (2)

< nlogn

A
(NN EEEEEEEEEEEEEEEEEEE

A A,
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%
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Al Ar




Bound 1
Bound 1: S;(n) < 3nlog™ n.

Construction of a 3-op structure:

Split A into - subarrays of
logn
] OTT
size < logn each )

Compute: all suffix- and prefix- sums
within each subarray

Build: 1-op structure for subarray sums

logn

Recurse: 3-op structure for each subarray

3-op 3-0p 3-op

Query: Either completely inside a subarray ( recurse ),

or crosses subarray boundaries ( return

3-op 3-op

suffix-sum & answer from 1-op structure @ prefix-sum)



Bound 1
Bound 1: S;(n) < 3nlog™ n.

Construction of a 3-op structure:

Split A into subarrays of A

logn e

size < logn each —

Compute: all suffix- and prefix- sums éééﬂ‘ 5

within each subarray

subarray sums I e B

Build: 1-op structure for

logn
Recurse: 3-op structure for each subarray B ;;;iix::ml:”:':'m .
<
Space: S;(n) < 2n+ S, (log n) log - S3(logn)

< 3n+

S3(logn) < 3nlog™n

log n



Bound 1
Bound 1: S;(n) < 3nlog™ n.

Construction of a 3-op structure:

Split A into subarrays of A

logn e

size < logn each —

Compute: all suffix- and prefix- sums éééﬂ‘ 5

within each subarray

subarray sums I e B

Build: 1-op structure for

logn
Recurse: 3-op structure for each subarray B ;;;iix::ml:”:':'m .
<
Space: S;(n) < 2n+ S, (log n) log - S3(logn)

< 3n+

S3(logn) < 3nlog™n

log n



Bound k
k

Bound k: S, (n) < (2k + 1)nlogm n=Qk+ 1)nlog[[*(k)]] n.
Construction of a (2k + 1)-op structure:

Split A inton/ log[[*(’“l)” n subarrays of A

=111 1) anch i

size < log[[
Compute: all suffix- and prefix- sums % 5 5 ........ i 5
within each subarray

Build: (2k — 1)-op structure for - __

n/logll*®=DIl » subarray sums I il
Recurse: (2k + 1)-op structure for each T T
W S—— 2k+1  2k+1
subarray o o A

Query: Either completely inside a subarray ( recurse ),
or crosses subarray boundaries ( return suffix-sum
@ answer from (2k — 1)-op structure @ prefix-sum )



Bound k
k

Bound k: S, 1(n) < 2k + Dnlog* *n = (2k + 1)nlog[[*(k)]] n.

Construction of a (2k + 1)-op structure:

Split A inton/ log[[*(’“l)” n subarrays of A

=D1] 1) anch i

size < log[[

Compute: all suffix- and prefix- sums ééé ........ iﬁ

within each subarray

Build: (2k — 1)-op structure for -
n/logll*¢=Dll 5 subarray sums o i
Recurse: (2k + 1)-op structure for each T T

subarray Y Ww

. n n [x(k—1)]
Space: Sy 1(n) < 2n+ Sy_q (log[[*(k—l)]] n) + logl- 0 D] n52k+1(108[ In)

< (2k+1n+

n [x(k—1)] [(k)]
oD n52k+1(log[ ]n) < 2k + 1)nlog[ I'n



The a Bound
k

—~
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Bound k: S5, .1 (n) < (2k + 1)nlog™ " n.

Putting k = a(n), we have:
Bound a: Sy, ()+1(n) < 3(2a(n) + 1)n = O(na(n)).

Linear Space: Use the a-bound to show that the space complexity
of the data structure can be reduced to O(n) while still supporting

range queries in O(a(n)) time.



