Red-Black Trees

Part II: Details of the insertion algorithm
Inserting a new element

• For a red-black tree of \(n \) nodes, inserting a new node can be done in \(O(\log_2 n) \) time.

• First, we insert a new node \(x \) exactly as if it were an ordinary binary search tree.

• The new node \(x \) is then colored red.

• To guarantee the red-black tree rules are preserved, the new tree undergoes some node recoloring and tree rotations.

• Most of the actual (pseudo)code handles various cases that may arise in this process.
Inserting a new element

• The only rule that can get violated is that the new node is a red child of a red node.

• Our goal is to move this violation up along the tree while maintaining the second rule
 • Every path from a given node to one of its non-branching descendants contains the same number of black nodes.

\[
\text{RBInsert}(T, x) \\
\text{Insert } x \text{ into } T \text{ like a binary search tree; } \\
x.\text{color} = \text{red; } \\
\text{while } (T.\text{root} \neq x \&\& x.\text{parent}.\text{color} == \text{red}) \\
\quad \text{move the violation up along the tree}
\]

If this rule is broken, fixing it is quite complex! So we always take care to maintain it.

There are two possibilities in each iteration of the while loop:
 1. The node \(x \) moves up the tree
 2. Some rotations are done and the loop terminates.
Inserting a new element

• There are 6 possible cases to consider
 • 3 cases for when \(x \)’s parent is a left child of \(x \)’s grandparent
 • 3 cases for when \(x \)’s parent is a right child of \(x \)’s grandparent

• These are symmetric, so we will study only the code for when \(x \).parent is a left child.

```java
while (T.root != x && x.parent.color == red) {
    if (x.parent is a left child) {
        Case 1: x.parent and y are both red
        else { // i.e. y is black
            Case 2: x is a right child
            Case 3: x is a left child
        }
    }
}
```

We will need to do different things depending on the color of \(x \)’s parent’s sibling (a.k.a. the “uncle” node). So let’s just call it \(y \).
Case 1: Parent and “uncle” are colored red

• The tree was a valid red-black tree before insertion.
• That means \texttt{x.parent.parent.color = black;}
• So
 • We set both \texttt{x.parent.color} and \texttt{y.color} as black. This fixes the red-red problem between \texttt{x} and its parent.
 • And set \texttt{x.parent.parent.color = red;}
• Now, the only problem that may arise is that \texttt{x.parent.parent} may have a red parent!
 • So we set \texttt{x.parent.parent} as the new \texttt{x}!
 • And go to the next iteration of the while loop (... this is how we move the violation up along the tree)
Case 2 & 3: Parent is colored red, but “uncle” isn’t!

Case 2: \(x \) is a right child

- What happens if we do a left rotation on the node \(x \)?
- Well ...
 - The node \(x \) takes its parent’s place, and
 - The parent becomes the left child of \(x \).
 - Now, we have a tree where the two consecutive red-red nodes are parent and left-child.
- But this is just case 3!
 - So ... we just convert case 2 to case 3 😊

Case 3: \(x \) is a left child
Case 2 & 3: Parent is colored red, but “uncle” isn’t!

Case 2: x is a right child
- What happens if we do a left rotation on the node x?
 - Well …
 - The node x takes its parent’s place, and
 - The parent becomes the left child of x.
 - Now, we have a tree where the two consecutive red-red nodes are parent and left-child.
 - But this is just case 3!
 - So … we just convert case 2 to case 3 😊

Case 3: x is a left child
- We make some color changes and perform a right-rotation
 - Set x.parent.color = black;
 - Set x.parent.parent.color = red;
 - rightRotate(T, x.parent.parent);
 - Now there are no longer any two red-red parent-child nodes, so we stop.

WHY?
Case 1 example

The red-red problem is pushed “up”. If C’s parent is red, then we set C as the new x and go to the next iteration of the while loop.
Case 2 and 3 example

Left-rotation on B and then a right-rotation it’s grandparent, C.

Node that just got inserted or became red via a recoloring lower in the tree