Solutions to CSE303 Final Exam Sample Questions

1. Consider the Turing machine $M=\left(K, \Sigma, \delta, s,\{h\}\right.$, where $K=\left\{q_{0}, q_{1}, h\right\}, \Sigma=\{a, \sqcup, \triangleright\}, s=q_{0}$ and δ is given by the following table

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \sqcup\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{0}	\triangleright	$\left(q_{0}, \rightarrow\right)$
q_{1}	a	$\left(q_{0}, a\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$
q_{1}	\triangleright	$\left(q_{1}, \rightarrow\right)$

(a) What is the string " M "?

Solution: We have $|K|=3$ and $|\Sigma|+2=5$, so $i=2$ and $j=3$ (refer to page 248 in the book). This leads to the following representations of states and symbols:

state/symbol	representation
q_{0}	$q 00$
q_{1}	$q 01$
h	$q 10$
\sqcup	$a 000$
\triangleright	$a 001$
\leftarrow	$a 010$
\vec{a}	$a 011$
a	$a 100$

Thus the representation of M is $q 00, a 000, q 10, a 000),(q 00, a 001, q 00, a 011),(q 00, a 100, q 01, a 000)$, ($q 01, a 000, q 00, a 011$), ($a 01, a 001, a 01, a 011$), ($q 01, a 100, q 00, a 100$).
(b) What is the representation of the string aaa?

Solution: The encoding of aaa is $a 100 a 100 a 100$.
(c) Suppose that the universal (3-tape) Turing machine U^{\prime} simulates the operation of M on input aaa. What are the contents of the tapes of U^{\prime} at the beginning of the simulation? At the beginning of simulation of the third step of M ?
Solution: At the beginning of the simulation, the first tape contains $\triangleright \sqcup(q 00, a 000, q 10, a 000)$, $(q 00, a 001, a 00, a 011), \quad(q 00, a 100, q 01, a 000), \quad(q 01, a 000, q 00, a 011), \quad(q 01, a 001, q 01, a 011)$, ($q 01, a 100, q 00, a 100$) the second tape contains $\triangleright \sqcup a 001 a 000 a 100 a 100 a 100$, and the third tape contains $\triangleright \sqcup q 00$.
M never reaches the third step of its computation - it halts on its first step.
2. Show that the class of recursively enumerable languages are closed under union and intersection.

Solution: Suppose we have Turing machines M_{1} and M_{2}. Let M^{\prime} be the nondeterministic Turing machine which, on input w, non-deterministically chooses to simulate the action of either M_{1} or M_{2} on w, accepting if the chosen machine accepts. Then $L\left(M^{\prime}\right)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$. For if $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$ then one of M_{1} or M_{2} must accept w and M^{\prime}, by choosing that machine and machine and seeing that accepting computation, also accepts, so that $w \in L\left(m^{\prime \prime}\right)$. On the other hand, if $w \in L\left(M^{\prime}\right)$ then there must be an accepting computation of M^{\prime} on w, a computation which consists of a choice of M_{1} or M_{2} and then an accepting computation of that machine. In either case, one of M_{1}, M_{2} accepts w, so $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
Let L_{1} and L_{2} be semidecided by Turing machines M_{1} and M_{2}. Construct a new two-tape Turing machine M^{\prime} which does the following on input w. First, it copies w onto the second tape. It then
runs M_{1} on its first tape. If M_{1} halts, M^{\prime} runs M_{2} on the second tape, halting if M_{2} halts. Then $L\left(M^{\prime}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$. For let $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. In this case, both M_{1} and M_{2} will halt on input w, so that M^{\prime} on input w will see both simulations terminate and will itself halt, so that $w \in L\left(M^{\prime}\right)$. On the other hand, let $w \in L\left(M^{\prime}\right)$. In this case, M^{\prime} must have completed its algorithm on input w, in which it first saw M_{1} halt on input w and then saw M_{2} halt on w. Thus, since both M_{1} and M_{2} halt on input $w, w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$.
3. Which of the following problems about Turing machines are solvable, and which are undecidable. Explain your answers carefully.
(a) To determine, given a Turing machine M, a state q, and a string w whether M ever reaches state q when started with input w from its initial state.
Solution: This problem is undecidable. Suppose it were solvable; then some machine G would solve it. But given M and w, we could feed (M, w, h) ot G, where h is the halting state of M; if more than one, we can simply repeat our query several times, and return G's answer, and this would constitute an effective procedure for deciding the halting problem.
(b) To determine, given a Turing machine M, whether M ever moves its head to the left when started with input w.
Solution: The problem is solvable. Start by simulating M on input w and stop when either (1) M moves its head left, (2) M repeats a configuration, or (3) M moves its head to a position to the right of the end of the input and subsequently enters two distinct configurations C and C^{\prime} with the same state and same symbol being currently scanned. If M has not moved left at this point, it never will. If (2) applies, then M is caught in an infinite stationary loop. If (3) applies but not (2), then M must periodically move to the right, but then from configuration C^{\prime}, M will show the same sequence of transitions that led it from C to C^{\prime}, and has thus entered a rightwards moving infinite loop.

