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Figure 1: Fairing a spherical triangular B-spline. (a) shows the spherical domain with 682 triangles. (b), (c) and (d) shows a degree 5 (C4 continuous)
spherical spline and its mean curvature plot (red, H < 0, cyan, H > 0, green, H ≈ 0). Note that the spline surface has high curvature concentration along
the image of edges of the spherical triangles. (e), (f) and (g) shows the spline generated by our automatic fairing method. The computational time
is only 8 seconds on a 3GHz Pentium IV PC. Compared to the surface in (b), the shape of the smooth spline (e) does not change too much, but the
curvature distribution improves significantly. The red curves in (c) and (f) correspond to the edges in the spherical triangulation.

ABSTRACT

Triangular B-splines are powerful and flexible in mod-
eling a broader class of geometric objects defined over
arbitrary, non-rectangular domains. Despite their great
potential and advantages in theory, practical techniques
and computational tools with triangular B-splines are
less-developed. This is mainly because users have to
handle a large number of irregularly distributed control
points over arbitrary triangulation. In this paper, we
propose an automatic and efficient method to generate
visually pleasing, high-quality triangular B-splines of
arbitrary topology. Our experimental results on several
real datasets show that triangular B-splines are power-
ful and effective in both theory and practice.
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1 INTRODUCTION AND M OTIVATION

Triangular B-splines, introduced by Dahmen, Micchelli,
and Seidel [5], are emerging as a novel and powerful
tool for shape modeling and interactive graphics, be-
cause they can represent, without any degeneracy, com-
plex geometric surfaces defined on open and irregular
parametric domains. Using triangularB-splines, or tri-
angular NURBS (the rational generalization of triangu-
lar B-splines), users can represent shapes over triangu-
lated planar domains with lower-degree piecewise poly-
nomials (rather than frequently-used tensor-product sur-

face construction over regular domains) that nonetheless
maintain higher-order continuity across the boundary of
their piecewise patchwork. Prior results have proved that
any piecewise polynomial surface over a planar trian-
gulation can be accurately represented in triangularB-
splines. TriangularB-splines are even more powerful
when being extended and generalized to spherical do-
main [32, 22] and manifold of arbitrary topology [17].
Therefore, triangularB-splines can potentially serve as a
geometric standard for product data representation and
model conversion in shape design and geometric pro-
cessing.

Despite their aforementioned geometric advantages and
modeling potential over popular tensor-product splines,
triangularB-splines have not been widely used in re-
search community and CAD industry. This is mainly
because 1) users must deal with a large number of
irregularly-distributed control points and their compan-
ion knots to make certain non-intuitive decisions on
their placements; 2) TriangularB-splines have the so-
called knot lines, where the surface curvature distribu-
tion along the curved triangular boundaries (correspond-
ing to the edges in the domain triangulation) is much
worse than other regions. There exist no effective ap-
proaches to control the overall curvature distribution and
improve the shape quality via automatic control-point
adjustment.

To overcome these shortcomings of triangularB-splines,
this paper develops an automatic algorithm to gener-
ate visually pleasing triangularB-splines without the



need of any tedious manual operation on control points.
Moreover, unlike the existing, classical fairing algo-
rithms, which usually involve the expensive computa-
tion of physics-based fair functionals (such as membrane
or thin-plate energy), our method solves a simple least
square with linear constraints. Therefore, our approach
is both fast and robust. Furthermore, our approach works
for planar, spherical, and manifold triangularB-splines
without any theoretical difficulties. Figure 1 shows an
example generated using our automatic shape-fairing al-
gorithm. The input is aC4 spherical triangularB-spline
(shown in (b)) with 682 domain triangles (shown in
(a)). Pay attention to the spline surface marked with red
curves which correspond to the edges of spherical tri-
angulation (shown in (c)), and the mean curvature plot
(shown in (d)), the spline surface have high curvature
concentrations along the image of edges of the under-
lying domain triangulation. After automatic fairing, the
overall shape only undergos a small variation (in fact, the
shape deviation from the original one is minimized), but
the curvature distribution improves significantly (shown
in (e),(f),(g)).

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work on simplex splines and
triangularB-splines. Section 3 documents the theoreti-
cal background for planar, spherical, and manifold tri-
angularB-splines. Section 4 presents the algorithm to
construct smooth triangularB-splines. Section 5 shows
our experimental results. Finally, we conclude the paper
in Section 6.

2 PREVIOUS WORK

This section briefly surveys some related work in sim-
plex splines and triangularB-splines.

The theoretical foundation of triangularB-splines lies in
the multivariateB-spline, or simplex spline, introduced
by de Boor [8] in 1976. Since then, many researchers
have tried to produce useful linear combinations of sim-
plex splines sharing some of the properties of the uni-
variateB-splines, in particular, the polynomial or piece-
wise polynomial reproduction property (see [4] for a sur-
vey of simplex splines). Dahmen and Micchelli [6, 7]
and Ḧollig [24], using combinatorial arguments, pro-
posed convenient basis of simplex splines that reproduce
polynomials of degreen. But the reproduction ofCn−1

piecewise polynomial functions on a given triangulation
could not be settled.

Based on the blossom or polar form [33] andB-
patch [34], Dahmen, Micchelli and Seidel [5] proposed
a general spline scheme ins-dimensional space, which

constructs a collection of multivariateB-splines whose
linear span comprises all polynomials of degree no more
thann. The bivariate case is called triangularB-spline
or DMS spline. Due to its elegant construction and
many attractive properties for geometric modeling, tri-
angularB-spline has received much attention since its
inception. Fong and Seidel [11] presented the first pro-
totype implementation of triangularB-splines and show
several useful properties, such as affine invariance, con-
vex hull, locality, and smoothness. Greiner and Seidel
[16] showed the practical feasibility of multivariateB-
spline algorithms in graphics and shape design. Pfeifle
and Seidel [31] demonstrated the fitting of a triangular
B-spline surface to scattered functional data through the
use of least squares and optimization techniques. Gor-
maz and Laurent studied the piecewise polynomial re-
production of triangularB-spline and give a direct and
intuitive proof [15]. Franssenet al. [12] proposed an ef-
ficient evaluation algorithm, which works for triangular
B-spline surfaces of arbitrary degree. He and Qin [23]
presented a method of surface reconstruction using trian-
gular B-splines with free knots. Recently, Neamtu [30]
described a new paradigm of bivariate simplex splines
based on the higher degree Delaunay configurations.

Traditional triangularB-splines are defined on the pla-
nar domains. Many researchers have explored the fea-
sible ways to generalize them to be defined on sphere
and manifold with arbitrary topology. Alfeld, Neamtu
and Schumaker [1] presented spherical barycentric co-
ordinates which naturally lead to the theory of Spheri-
cal Bernstein-B́ezier polynomials (SBB). They showed
fitting scattered data on sphere-like surfaces with SBB
in [2]. Pfeifle and Seidel [32] presented scalar spher-
ical triangularB-splines and demonstrated the use of
these splines for approximating spherical scattered data.
Neamtu [29] constructed a functional space of homoge-
neous simplex splines and showed that restricting the ho-
mogeneous splines to a sphere gives rise to the space of
spherical simplex splines. Heet al. [22] presented the
rational spherical spline for genus zero shape modeling.

Recently, Gu, He and Qin [17] developed a general the-
oretical framework of manifold splines in which the ex-
isting spline schemes defined over planar domains can
be systematically generalized to any manifold domain
of arbitrary topology (with or without boundaries) using
affine structures. They demonstrated the idea of mani-
fold spline using triangularB-splines because of the at-
tractive properties of triangularB-splines, such as ar-
bitrary triangulation, parametric affine invariance, and
piecewise polynomial reproduction [17].

All the existing literatures of triangularB-splines focus
on either theoretical foundation or evaluation/data fitting



algorithms. No previous work has been done in the sur-
face quality analysis of triangularB-splines. This paper
aims at providing such tools for automatic shape control
and analysis of triangularB-splines.

3 TRIANGULAR B-SPLINES

This section presents the construction of planar triangu-
lar B-splines, spherical triangularB-splines and mani-
fold triangularB-splines, and summaries their properties
in geometric design.

3.1 Planar triangular B-spline

The planar triangularB-spline is proposed by Dahmen,
Micchelli and Seidel [5]. Their construction is as fol-
lows: let pointst i ∈ R

2, i ∈ N, be given and define a
triangulation

T = {∆(I) = [t i0, t i1, t i2] : I = (i0, i1, i2) ∈ I ⊂ N
2}

of a bounded regionD ⊆ R
2. Next, with every vertext i

of T, we associate a cloud of knotst i,0, . . . , t i,n such that
t i,0 = t i . To clarify our explanation, we call{t i,0|i ∈ N}
the primary knots and{t i, j |i ∈ N,1 ≤ j ≤ n} the sub-
knots. For every triangleI = [t i0, t i1, t i2] ∈ T, we require

1. all the triangles [t i0,β0
, t i1,β1

, t i2,β2
] with β =

(β0,β1,β2) and |β | = ∑2
i=0 βi ≤ n are non-

degenerate.

2. the set
interior(∩|β |≤nXI

β ) 6= /0 (1)

whereXI
β = [t i0,β0

, t i1,β1
, t i2,β2

]

3. if I has a boundary edge, say,(t i0, t i1), then the en-
tire area[t i0,0, . . . , t i0,n, t i1,0, . . . , t i1,n) must lie out-
side of the domain.

Then triangularB-spline basis functionNI
β , |β | = n, is

defined by means of simplex splinesM(u|V I
β ) as

N(u|V I
β ) = |dI

β |M(u|V I
β )

whereV I
β = {t i0,0, . . . , t i0,β0

, . . . , t i2,0, . . . , t i2,β2
} and

dI
β = d(XI

β ) = det

(

1 1 1
t i0,β0

t i1,β1
t i2,β2

)

Assuming (1), theseB-spline basis functions can be
shown to be all non-negative and to form a partition of
unity. Then, the planar triangularB-spline is defined as

F(u) = ∑
I∈T

∑
|β |=n

cI ,β N(u|V I
β ),u ∈ R

2 (2)

wherecI ,β ∈ R
3 are the control points. This spline is

globally Cn−1 if all the setsXI
β , |β | ≤ n are affinely in-

dependent.

3.2 Spherical triangular B-spline

Pfeifle and Seidel successfully generalized the planar tri-
angularB-splines to the spherical domain [32]. The con-
struction procedure is similar to its planar counterpart.

Denote byS2 = {x|x ∈ R
3,‖x‖ = 1} a unit sphere. Let

pointst i ∈ S
2, i ∈ N, be given and define a spherical tri-

angulationT. We associate the sub-knotst i,1, . . . , t i,n ∈
S

2 for each vertext i of T. Then the spherical triangular
B-spline basis functionNI

β , |β | = n, is defined by means

of spherical simplex splinesM(u|V I
β ) as N(u|V I

β ) =

|det(XI
β )|M(u|V I

β ). A degreen spherical triangularB-
spline surfaceF overT is then defined as

F(u) = ∑
I∈T

∑
|β |=n

cI ,β N(u|V I
β ),u ∈ S

2. (3)

wherecI ,β ∈ R
3 are the control points.

The differences between the spherical triangularB-
spline and planar triangularB-spline are 1) the domain
is a unit sphere and the edges of triangulation are great
circles; 2) the basis functionsN(u|V I

β ) are spherical sim-
plex splines which are defined using spherical barycen-
tric coordinates [1]; 3) because the domain is closed, we
don’t need to worry about the boundary knots; 4) the
affine invariance and convex hull property do not hold
for spherical triangularB-splines. However, therational
spherical triangularB-spline has the convex hull prop-
erty due to the partition of unity of rational basis func-
tions (see [22]).

3.3 Manifold triangular B-spline

In [17], Gu, He and Qin systematically built the theo-
retical framework of manifold spline, which locally is a
traditional spline patch, but globally defined on the man-
ifold. First, the manifold is covered by a special atlas,
such that the transition functions are affine. Then, the
knots are defined on the manifold and the evaluation of
polar form is carried out on the charts. Although on dif-
ferent charts, the knots are different, the evaluation value
is consistent and independent of the choice of charts.
Furthermore, the existence of such atlas depends on the
domain topology. This new paradigm unifies traditional
subdivision surfaces and splines. The followings are the
theoretical background manifold splines.



Definition [Manifold] A 2-dimensional manifold is a
connected Hausdorff space M for which every point has
a neighborhood U that is homeomorphic to an open set
V ofR2. Such a homeomorphismφ : U → V is called a
coordinate chart. An atlas is a family of charts{Uα ,φα}
for which Uα constitutes an open covering of M.

The central issue of constructing manifold splines is that
the atlas must satisfy some special properties in order
to meet all the requirements for the evaluation indepen-
dence of chart selection. In [17], Guet al. showed that
for a local spline patch, the only admissable parameteri-
zations differ by an affine transformation. This requires
that all the chart transition functions are affine.

Definition [Affine atlas] A 2-dimensional manifold M
with an atlas{Uα ,φα}, if all chart transition functions

φαβ := φβ ◦φ−1
α : φα(Uα

⋂

Uβ ) → φβ (Uα
⋂

Uβ )

are affine, then the atlas is called an affine atlas, M is
called an affine manifold.

Two affine atlases arecompatibleif their union is still
an affine atlas. All the compatible affine atlases form an
affine structureof the manifold (see Figure 2).

Ui U j

φi φ j

φi j = φ j ◦φ−1
i

φi(Ui) φ j(U j)

Figure 2: Affine manifold: The manifold is covered by a set of charts
(Ui ,φi), where φi : Ui → R

2. If two charts (Ui ,φi) and (U j ,φ j ) overlap,

the transition function φi j : R
2 → R

2 is defined as φi j = φ j ◦ φ−1
i . If all

transition functions are affine, then the manifold is an affine manifold.

Definition [Manifold Spline] A manifold spline is a
triple (M,C,F), where M is the domain manifold with
an atlasA = {(Uα ,φα)}. C is the set of control points.
F is a map F: M → R

3 representing the entire spline
surface, such that

1. For each chart (Uα ,φα), the restriction of F
on Uα is denoted as Fα = F ◦ φ−1

α , a subset
of control points Cα can be selected, such that
(φα(Uα),Cα ,Fα) form a planar spline patch.

2. The evaluation of F is independent of the choice of
the local chart, namely, if Uα intersects Uβ , then

Fα = Fβ ◦ φαβ , whereφαβ is the chart transition
function.

The geometric intuition of the above formal definition
is that first we replace a planar domain by the atlas of
the domain manifold, and then all the constituent spline
patches naturally span across each other without any
gap.

Theorem 1. The sufficient and necessary condition for
a manifold M to admit manifold spline is that M must be
an affine manifold.

This theorem implies that the existence of manifold
splines solely depends on the existence of affine atlas.
If the domain manifoldM is an affine manifold, we will
be able to directly generalize the local spline patches to
a global spline defined onM.

Theorem 2.The only closed surface admitting affine at-
las is of genus one. All oriented open 2-manifolds admit
affine atlas.

Theorem 2 points out that not all surfaces admit the
affine atlas. For closed surfaces, only genus-one surfaces
have affine structures, but all surfaces with boundaries
have affine structures. The topological obstruction of a
global affine atlas is the Euler class. In fact, by remov-
ing one point from the closed domain manifold, we can
convert it to an affine manifold.

Theorem 3 (Affine atlas deduced from conformal
structure). Given a closed genus g surface M, and a
holomorphic 1-formω. Denote by Z= {zeros o fω}
the zero points ofω. Then the size of Z is no more than
2g−2, and there exists an affine atlas on M/Z deduced
by ω.

Essentially, Theorem 3 indicates that an affine atlas of a
manifoldM can be deduced from its conformal structure
in a straightforward fashion.

Given a domain manifoldM, a manifold triangularB-
spline defined onM can be constructed as follows:

1. Compute the holomorphic 1-form basis for the do-
main meshM using Gu-Yau’s method [18].

2. Optimize the holomorphic 1-formω to satisfy the
uniformity criteria (see [26]).

3. Locate zero pointsZ of the holomorphic 1-formω.

4. Compute the affine atlas ofM \Z by integrating the
holomorphic 1-formω.

5. For each vertexvi ∈ M ⊂ R
3, assign the sub-knots

t i, j ∈ M, j = 1, . . . ,n to vi .



Similar to planar and spherical triangularB-spline
(Equation (2) and (3)), the manifold triangularB-spline
can be written in a similar fashion

F(u) = ∑
I

∑
|β |=n

cI ,β N(u|V I
β ),u ∈ M (4)

wherecI ,β ∈ R
3 are the control points. Given a parame-

ter u ∈ M, the evaluation can be carried out on arbitrary
charts coveringu.

3.4 Properties of triangular B-splines

Triangular B-splines have many valuable properties
which are critical for geometric and solid modeling.
For examples, triangularB-splines are piecewise poly-
nomial defined on the planar, spherical and manifold
domain of arbitrary triangulation. Therefore, the com-
putation of various differential properties, such as nor-
mals, curvatures, principal directions, are robust and ef-
ficient. The splines have local support, i.e., the move-
ment of a single control pointcI ,β only influences the
surface on the triangleI and on the triangles directly
surroundingI . The planar and manifold triangularB-
splines are completely inside the convex hull of the con-
trol points. The rational spherical triangularB-splines
also have convex hull property (see [22]). The degree
n planar/spherical/manifold triangularB-splines are of
Cn−1-continuous if there are no degenerate knots. Fur-
thermore, by intentionally placing knots along the edges
of the domain triangulation, we can model sharp features
easily. The manifold spline of genusg(≥ 1) has 2g−2
singular points while planar and spherical spline do not.
Table 1 summaries the properties of triangularB-splines
for geometric modeling.

4 FAIRING TRIANGULAR B-SPLINES

The problem of fairness is of central importance dur-
ing the design process of free form surfaces. A fair
surface is usually obtained by two different ways. The
first one consists of modeling surfaces with fairness con-
straints: a physical based fairness criterion, such as thin-
plate energy, is incorporated in the interpolation or ap-
proximation method. Another way to obtain fair sur-
faces is to apply a post-processing fairing method to a
given surface. Most of the existing methods apply to
meshes [36, 9, 10, 27], subdivision surfaces [21, 13],
implicit surfaces [3], parametric surfaces, such as tensor-
productB-splines [37, 28, 19, 20, 25]. However, no ex-
isting literature deals with fairing triangularB-spline sur-
faces. The goal of this paper is to present an efficient

post-processing fairing method for planar, spherical and
manifold triangularB-splines.

Conventional methods for local and global fairing usu-
ally involve a physics based fairness criterion. Several
frequently used examples are,

∫∫

Ω
F2

u +F2
vdudv,

∫∫

Ω
F2

uu+2F2
uv+F2

vvdudv.

All of the above fairness functionals involve the inte-
gration of the derivatives ofF over the parametric do-
main. Calculating the exact value of the fairness func-
tional is challenging for triangularB-splines, since there
is no restriction on the domain triangulation and the sub-
knots are also distributed irregularly. A straightforward
method is by domain clipping. For each domain tri-
angle, we draw line segments by connecting any two
knots. This line graph partitions the parametric domain
into many regions, some of which may have very small
angles. Note that on each region, the triangularB-spline
is a single polynomial. Thus, the integration on each re-
gion can be computed by the quadrature-based methods.
By adding the integral of all pieces, we get the value
for the fairness functional of the whole parametric do-
main. This method works well for quadratic triangu-
lar B-spline [31], since the number of regions is small
and its second order derivatives are constant. However,
this method can not be directly applied to triangularB-
splines with higher degree mainly because the number
of integral regions increases dramatically and there ex-
ists many skinny regions which could cause serious nu-
merical problems.

In this paper, we propose a new post-processing fair-
ing method which does not need the computation of the
complicated double integral. Instead, it only relies on a
set of constraints which are linear of the control points.

Our method is inspired by the seminal work of Gormaz
et al. [15, 14] who studied the intrinsic property of tri-
angularB-spline. Although triangularB-spline hasCn−1

continuity if there are no degenerate knots, the spline
surfaces may not as smooth as one expected. The cur-
vature of the images of the edges in the parametric do-
main is larger than vicinity. Figure 4 shows a degree 4
triangularB-spline, which isC3-continuous everywhere.
However, the surface is not smooth, because the high
curvature concentrates along the edges of adjacent spline
patches. This phenomenon is called “knot-line” of trian-
gularB-splines.

In the following, we consider planar triangularB-spline.
The same idea can be applied to spherical triangularB-
spline and manifold triangularB-spline directly.



Table 1: Properties of triangular B-splines

Arbitrary
triangulation

Local
control

Convex
hull

Affine
invariance

Smoothness
Singular
points

Applications

Planar
spline

yes yes yes yes C0 ∼Cn−1 no
open surfaces,
disk-topology

Spherical
spline

yes yes no no C0 ∼Cn−1 no
sphere-like, genus

zero, closed surfaces
Manifold

spline
yes yes yes yes C0 ∼Cn−1 yes

surfaces of com-
plicated topology

Given a degreen triangularB-spline surfaceF(u) de-
fined on a planar triangulationT. Consider two domain
triangles∆(I) = [tI

0, t
I
1, t

I
2] ∈ T and∆(J) = [tJ

0, t
J
1, t

J
2] ∈ T

such that∆(I) and∆(J) are adjacent. For example, sup-
posetI

0 = tJ
0 andtI

1 = tJ
1 (see Fig. 3). Therefore, the sub-

knots satisfytI
0,i = tJ

0,i and tI
1,i = tJ

1,i , i = 1, . . . ,n. Let
FI = ∑|β |=ncI ,β N(u|V I

β ) be the polynomial on triangleI

and similarly forFJ. Let f I and f J be the polar forms of
FI andFJ, respectively (see [35] for the details of polar
form). Then, Gormaz proved the following result [14] :

Figure 3: Illustration of Equation (5) for r = 1. Left, parametric domain;
Right, control points.

The spline surfaceF(u) has no discontinuity of its nth

derivative along the lines

[tI
0,β0

, tI
1,β1

],∀β , |β | = n,β2 ≤ r

if and only if

cI ,β = f J(Ṽ I
β ),∀β , |β | = n,β2 ≤ r, (5)

where r∈ Z, 0≤ r ≤ n−1, and
Ṽ I

β = {tI
0,0, . . . , t

I
0,β0−1, t

I
1,0, . . . , t

I
1,β1−1, t

I
2,0, . . . , t

I
2,β2−1}.

Equation (5) defines the affine relations between the con-
trol points ofFI (u) andFJ(u). Given ar ∈ [0,n), let the
control points satisfying Equation (5), then the discon-
tinuity along certain knot lines disappear, and the cur-
vature distribution along those lines improves. Figure 3
illustrates the caser = 1. Forβ = (β0,β1,1), Equation

(5) is written as

cI
(β0,β1,1) =

d(t2,0, t1,β1
, t3,0)

d(t0,β0
, t1,β1

, t3,0)
cJ
(β0+1,β1,0)

+
d(t0,β0

, t2,0, t3,0)

d(t0,β0
, t1,β1

, t3,0)
cJ
(β0,β1+1,0)

+
d(t0,β0

, t1,β1
, t2,0)

d(t0,β0
, t1,β1

, t3,0)
cJ
(β0,β1,1),

whered(·, ·, ·) is the determinant function. It is easy to
verify that Equation (5) is just a linear combination of
the control points for 0≤ r ≤ n−1.

In the following, we consider the global fairing prob-
lem for triangularB-splines. Given a (planar, spher-
ical or manifold) triangularB-spline surfaceF(u) =

∑I ∑|β |=ncI ,β NI ,β (u). We want to find a smooth surface
F̃(u) = ∑I ∑|β |=n c̃I ,β NI ,β (u) such thatF̃ approximates
the original surfaceF as much as possible. This leads to
the following least square problem:

min
c̃

∑
I

∑
|β |=n

‖c̃I ,β −cI ,β‖
2 (6)

subject tõcI ,β = f J(Ṽ I
β ),∀I ,∀β , |β | = n,β2 ≤ r

In the objective function, we minimize the squared dis-
tance between the control points of the original and
the new spline surface, which implies that the minimal
change of the shape. In the constraints, we use an in-
tegerr, 0≤ r ≤ n−1, to control the smoothness of the
spline surface.r = 0 implies that the control points along
common edges of two adjacent triangles in the paramet-
ric triangulation are identical. The bigger valuer, the
smoother surface we will obtain. In our experiments, we
can get visually pleasing surfaces withr = 1 or 2.

Since Equation (5) corresponds to affine relations be-
tween the control points ofFI and FJ, the constraints
in Equation (6) are just linear equations of the control
points. Therefore, Equation (6) is a linear constrained
quadratic programming problem which has the follow-
ing format:

min
x

1
2

xTQx+cTx+ f

subject toAx= b



Our problem is very special in thatQ is an identity ma-
trix. Therefore, it is very efficient to solve Equation (6)
using Lagrange multiplier approach.

(a) (b)

(c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 4: Illustration of our fairing algorithm to a degree 4 planar tri-
angular B-spline: (a) shows the parametric domain. (Due to the shared
control points of the spline surface, only three sub-knots have contribu-
tion to the shape.) (b) and (c) show the spline surface and the control
net respectively. (d) shows the mean curvature of the spline surface.
Note that the curvature along the image of the edges on the domain
triangulation is significantly larger than the vicinity. (e)-(g) show fairing
the spline surface with r = 1. (h)-(j) show fairing the spline surface with
r = 2. Although the control points are not changed too much, the surface
quality improves significantly.

5 EXPERIMENTAL RESULTS

We have implemented a prototype system on a 3GHz
Pentium IV PC with 1GB RAM. We perform experi-
ments on several models ranging from planar triangu-
lar B-splines to manifold triangularB-splines. Table 2
shows the spline configurations and execution times of
our test cases.

Figure 4 illustrates the fairing algorithm to a planar tri-
angularB-spline. Figure 5 shows example for fairing
a spherical triangularB-spline. Compared to the shapes
before and after fairing, the curvature concentration phe-
nomena disappear, i.e., the knot-lines are eliminated.

Figure 6 shows examples of smooth triangularB-spline
surfaces generated by our fairing algorithm. As shown in
Figure 6, we can achieve highly smooth, e.g.,C3 andC4,

Table 2: Statistics of test cases. n, degree of spline surface; Nt , # of
domain triangles; Nc, # of control points; r, smoothness factor. The
execution time measures in seconds.

Object Type n Nt Nc r Time

Cap planar 4 13 123 2 < 1s
Face planar 5 251 3181 2 2s

Venus spherical 5 682 8527 2 8s
Skull spherical 5 948 11852 2 16s
Dog spherical 5 656 8202 2 7s
Foot manifold 5 259 2139 2 1s

Bottle manifold 3 1889 8513 1 6s

triangularB-spline surfaces of various topological types.
These results demonstrate that triangularB-splines are
both theoretic rigorous and feasible in practice.

6 CONCLUSION

In this paper, we have proposed an automatic and effi-
cient method to generate visually pleasing, high-quality
triangular B-splines of arbitrary topology. Our shape
fairing technique works for planar, spherical, and man-
ifold triangularB-splines. Our method is both fast and
robust, as only a system of linear equations is solved.
Furthermore, the shape deviation is minimized while the
overall curvature distribution is significantly improved.
Our experimental results on several real datasets have
demonstrated that triangularB-splines are powerful and
effective in both theory and practice.
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Figure 6: Examples of faired triangular B-splines. Row 1: a C4 planar spline; Row 2: a C4 spherical spline; Row 3: a C2 manifold spline of genus 2 (The
other handle is inside the bottle); Row 4: a C4 manifold spline of genus 0 with boundaries. (a) shows the parametric domain. The red curves on the
spline surfaces (b) correspond to the edges in the domain triangulation (a). (c) and (d) show the spline surfaces and mean curvature plots respectively.
Note that there is no restriction on the triangulation of the parametric domain. Those knot-lines (curvature concentration on the image of the edges of
domain triangulation) are completely eliminated.


