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Abstract

Constructing splines whose parametric domain is an arbitrary manifold and effectively computing such splines in real-
world applications are of fundamental importance in solid and shape modeling, geometric design, graphics, etc. This paper
presents a general theoretical and computational framework, in which spline surfaces defined over planar domains can be
systematically extended to manifold domains with arbitrary topology with or without boundaries. We study the affine
structure of domain manifolds in depth and prove that the existence of manifold splines is equivalent to the existence
of a manifold’s affine atlas. Based on our theoretical breakthrough, we also develop a set of practical algorithms to gen-
eralize triangular B-spline surfaces from planar domains to manifold domains. We choose triangular B-splines mainly
because of its generality and many of its attractive properties. As a result, our new spline surface defined over any manifold
is a piecewise polynomial surface with high parametric continuity without the need for any patching and/or trimming oper-
ations. Through our experiments, we hope to demonstrate that our novel manifold splines are both powerful and efficient
in modeling arbitrarily complicated geometry and representing continuously varying physical quantities defined over
shapes of arbitrary topology.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction and motivation

Real-world volumetric objects are oftentimes of
complex geometry and arbitrary topology. One fun-
damental goal of solid and physical modeling is to
seek accurate and effective techniques for the com-
pact representation of smooth shapes with applica-
tions in both scientific research and industrial
practice. Towards this goal, subdivision surfaces
have been extensively investigated during the recent

past. Despite their modeling advantages for arbi-
trarily complicated geometry and topology, subdivi-
sion surfaces have two drawbacks: (1) accurate
surface evaluation is frequently conducted via
explicit, recursive subdivision since most subdivi-
sion schemes (especially those interpolatory
schemes) do not allow closed-form analytic formu-
lation for their basis functions; (2) extraordinary
points depend on the connectivity of the control
mesh and need special care, as their behaviors and
smoothness properties differ significantly from other
regular regions nearby. This paper aims to tackle
the aforementioned technical challenges associated
with popular subdivision surfaces by articulating
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the new theory for manifold splines and developing
novel algorithms for constructing such splines in
practice.

Aside from subdivision surfaces, this research is
equally motivated by the rigorous mathematics of
spline theory. Spline surfaces have demonstrated
their significance in shape modeling, finite element
analysis, scientific computation, visualization,manu-
facturing, etc. Most popular examples include Bézier
surfaces, tensor-productB-spline surfaces, and trian-
gular B-spline surfaces. Essentially, all of them are
piecewise polynomials defined over planar paramet-
ric domains for efficient evaluation. While these
spline surfaces are ideal for modeling open surfaces
with curved boundaries, they are cumbersome to rep-
resent smooth surfaces with arbitrarily complex
topology. The feasible way is to trim parametric
spline surfaces defined over open planar domains,
stitch them along their trimmed edges with care,
and enforce the continuity requirements of certain
degree across their shared boundaries as shown in
[1]. It is challenging tomaintain high order continuity
across patches in both theory andpractice. Therefore,
there is a pressing need to introduce the new spline
concept and develop the new spline theory that define
polynomial splines over arbitrary manifold without
trimming and stitching operations.

In essence, constructing splines defined over arbi-
trary manifolds is of fundamental significance in
geometric design, and interactive graphics. This
paper presents a general theoretical framework that
can systematically generalize spline surfaces with
planar domains to manifold domains with arbitrary
topology with or without boundaries. The specific
contributions of this paper include:

• While motivated by the above observations, it
also significantly advances the state-of-the-art
of both subdivision surfaces and splines surfaces.

• This paper gives a theoretical proof for the exis-
tence of manifold splines, i.e., it is equivalent to
the existence of the affine structure of the under-
lying manifold serving as a parametric domain.

• Classical characteristic class theory has conclud-
ed that no closed surface admits an affine atlas
except tori, so it provides evidence that the exis-
tence of extraordinary points depends only on
topology.

• Besides the theoretical advances, this paper also
devises a set of practical algorithms that enable
the effective modeling of triangular B-spline
surfaces over manifold domains. The resulting

surface is a piecewise polynomial surface with
high parametric continuity without any patching
or trimming operations.

• Due to the intrinsic topological obstructions asso-
ciated with domain manifolds, the manifold trian-
gular B-spline still admits singular points (which
can not be evaluated by the new spline scheme).
However, our modeling algorithms are able to
construct the manifold spline based on triangular
B-splines with the minimum number of singular
points. This lower bound results from Riemann
surface theory (e.g., conformal structure).

In this paper, we choose to work on triangular
B-splines and their manifold generalization, mainly
because triangular B-splines have many important
properties:

• Triangular B-spline surfaces are defined over
arbitrary planar triangulations, and they general-
ize tensor-product B-splines. Unlike tensor-prod-
uct B-splines, it has no strict requirements for
connectivity of the underlying mesh domain.

• Local support, parametric affine invariance, the
completeness of basis functions, and polynomial
reproduction are attractive properties for trian-
gular B-splines, and they still hold when general-
izing to manifold splines.

• Triangular B-splines exhibit the maximal order of
continuity with the lowest possible degree of their
basis functions. For example, they achieve C2

continuity when using only cubic polynomials.
Furthermore, spatially varying smoothness
requirements and sharp features can easily be
achieved via different knot placements in the
parametric domain.

With our new results shown in this paper, it is
rather straightforward to generalize other popular
splines to their manifold counterparts by adopting
our techniques on triangular B-splines. It may be
noted that the new triangular B-splines defined
over arbitrary manifolds may still have special,
singular points which must require separate, addi-
tional care (Note that singular points for manifold
splines differ from extraordinary points of subdivi-
sion surfaces, where the vertex valence is the only
criterion). The intrinsic reason for the existence of
singular points (when using manifold splines) is
due to the topological obstruction of the underly-
ing domain. In principle, an arbitrary domain can
not offer a special atlas such that all transition
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functions are affine. In practice, however, by
removing a finite number of points, the domain
will then admit the affine atlas and subsequently
allow the meaningful generalization of triangular
B-splines to arbitrary manifolds.

After the problem statement and its motivation,
the remainder of this paper is organized as follows.
Section 2 briefly reviews the prior work. Section 3
presents the necessary mathematical tools for man-
ifold splines. Section 4 documents the theoretical
foundation of our novel manifold splines. Section
5 explains the algorithmic details for constructing
triangular B-splines over arbitrary manifold. Sec-
tion 6 discusses the implementation issues and pre-
sents our experimental results. Finally, we
conclude the paper and briefly discuss the future
research in Section 7.

2. Prior work

This section briefly surveys some related work in
triangular B-splines and surfaces defined on
manifolds.

2.1. Triangular B-splines

The theoretical foundation of triangular B-
splines lies in the multivariate B-spline, or simplex
spline, introduced by de Boor [2]. It has received
much attention since its inception. Dahmen et al.
[3] propose triangular B-splines from the point of
view of blossoming, which offers a general scheme
for constructing a collection of multivariate B-
splines (with n � 1 continuous derivatives) whose
linear span comprises all polynomials of degree at
most n. Fong and Seidel [4] present the first proto-
type implementation of triangular B-splines and
show several useful properties, such as affine invari-
ance, convex hull, locality, and smoothness. Greiner
and Seidel [5] show the practical feasibility of multi-
variate B-spline algorithms in graphics and shape
design. Pfeifle and Seidel [6] demonstrate the fitting
of a triangular B-spline surface to scattered func-
tional data through the use of least squares and
optimization techniques. Franssen et al. [7] propose
an efficient evaluation algorithm, which works for
triangular B-spline surfaces of arbitrary degree.
Neamtu [8] describes a new paradigm of bivariate
simplex splines based on the higher degree Dela-
unay configurations. He et al. [9] present an efficient
method to fair triangular B-spline surfaces of arbi-
trary topology.

2.2. Spherical splines

Traditional B-splines are defined on planar
domains. Many researchers have explored the feasi-
ble ways to generalize splines to be defined on sphere
andmanifolds with arbitrary topology.We only doc-
ument a few of them in the interest of space.

Defining splines over a sphere has been studied
during the past decade. Alfeld et al. [10] present
spherical barycentric coordinates which naturally
lead to the theory of Spherical Bernstein–Bézier
polynomials (SBB). They show fitting scattered data
on sphere-like surfaces with SBB in [11]. Pfeifle and
Seidel [12] present scalar spherical triangular splines
and demonstrate the use of these splines for approx-
imating spherical scattered data. Neamtu [13] con-
structs a functional space of homogeneous simplex
splines and shows that restricting the homogeneous
splines to a sphere gives rise to the space of spherical
simplex splines. He et al. [14] present rational spher-
ical spline for genus zero shape modeling.

2.3. Surfaces defined on manifolds

There are some related work on defining func-
tions on manifold, such as [15–19]. These methods
share similar construction procedures which can
be summarized as follows:

(1) Find an atlas {Ui,/i} to cover the domain
manifold M, with transition functions
/ij ¼ /j � /�1

i . All transition functions are
required to be smooth, especially, analytical
functions are used in [19].

(2) Define functional basis on each chart
fi:/i (Ui) ! R.

(3) For each point p 2M, normalize these func-
tions and define the basis functions Bi as

BiðpÞ ¼
fiðpÞP
j
fjðpÞ

.

(4) Define the functions as F ðpÞ ¼
P

iCiBiðpÞ
where Ci are the control points.

It is obvious that, even when Bi is a polynomial on
chart (Ui,/i), Bi is not a polynomial on a different
overlapping chart (Uj,/j), because in general /ij is
NOT algebraic and /ij � Bi is not a polynomial.

Our work is completely different from the above
work in that: (1) The transition functions of our
method must be affine. Therefore, the requirement
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of our method is much stronger. That is why topo-
logical obstruction plays an important role in our
construction. (2) Our method produces the polyno-
mial or rational polynomials. On any chart, the
basis functions are always polynomials or rationals,
and represented as B-splines or rational B-splines.

A different approach using the concept of orbifold
is introduced in [20]. Suppose S is the domain mani-
fold with genus g and without boundaries. Then,
the universal covering space ~S can be embedded in
either a sphere, a plane or hyperbolic space. If the
transformation group H of ~S maps a fundamental
domain to a fundamental domain, then the spline sur-
face is defined on ~S with the unique requirement that
the spline is invariant under H. They embed the
sphere and the hyperbolic space in R3 and define the
spline on R3 directly. Our method is fundamentally
different. First, we define the splines on the atlas of
S, not on the universal covering space ~S. Second, each
local parameter is only 2D instead of 3D. Third, our
construction is intrinsic to the surface S; namely, we
do not need any embedding information. Fourth,
their method can also be considered as building an
atlas, where each chart is a subset in R3 and the tran-
sition functions are non-linear. In contrast, our
method constructs an atlas where each chart is an
open set in R2 and all transition functions are affine.

In summary, we believe manifold splines have
two fundamental criteria:

(1) Manifold: the splines are defined on the
domain manifold, namely, the evaluation of
the splines is independent of the choice of the
chart.

(2) Algebraic: locally, on any chart, the splines
should be either polynomials or rational
polynomials.

All previous manifold constructions focus on the
first point but can not satisfy the second one. Most
spline schemes emphasize the algebraic aspect, but
only are defined on planar domains. Our work is
the first one that satisfies both criteria, and discovers
the intrinsic relation between manifold splines and
affine structures.

3. Theoretical background

To define splines on manifolds, we must fully
understand the intrinsic properties of splines and the
special structures inherent to the domain manifold.
This section presents the relevant theoretical tools.

Essentially, splines have local support, so we
shall define spline patches locally on the manifold
and glue the locally defined spline patches to cover
the entire domain manifold. Furthermore, since
splines are invariant under parametric affine trans-
formations, we seek to glue the patches using affine
transition functions. Therefore, if the domain sur-
face admits an atlas on which all transition func-
tions are affine, then we can glue the patches
coherently. However, the existence of such an atlas
is solely determined by the topology. In principle,
we can glue the patches to cover the entire surface
except a finite number of points, which are singular
points and can not be evaluated by the global
splines on the manifold. These singular points repre-
sent the topological obstruction for the existence of
the affine atlas.

3.1. Spline theory and properties

The most popular spline schemes, such as tensor
product Bézier surfaces, tensor product B-spline
surfaces, triangular Bézier surfaces and B-patches,
can be unified as the different variations of polar
forms [21–23]. We shall briefly explain the concept
of polar forms, and then, we concentrate on B-
patches and triangular B-spline surfaces, because
of their flexibility and generality.

3.1.1. Polar form

In essence, a polar form is a multivariate polyno-
mial that is symmetric and multi-affine.

Definition 1 (Affine map). A map f : R2 ! Rn is
affine, if and only if it preserves affine combinations,
i.e., if and only if f ð

Pm
i¼0aiuiÞ ¼

Pm
i¼0aif ðuiÞ when-

ever
Pm

i¼0ai ¼ 1.

Definition 2 (Symmetric, multi-affine). Let F be an
n-variable map. F is symmetric if and only

F ðu1; u2; . . . ; unÞ ¼ F ðupð1Þ; upð2Þ; . . . ; upðnÞÞ

for all permutations p 2
P

n. The map F is multi-af-
fine if and only if F is affine in each argument if the
others are held fixed.

The well-known blossoming principle indicates
that any polynomial is equivalent to its polar
form.

Proposition 3. Polynomials F : R2 ! Rt of degree n,

and a symmetric multi-affine map f : ðR2Þn ! Rt are

equivalent. Given a map of either type, unique map of
the other type exists that satisfies the identity
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F ðuÞ ¼ f ðu; . . . ; u|fflfflfflffl{zfflfflfflffl}
n

Þ. The map f is called the multi-

affine polar form or blossom of F.

3.1.2. B-patches and triangular B-splines
Triangular B-spline surfaces can be defined on

planar domains with arbitrary triangulations. In
particular regions, triangular B-splines are B-patch-
es. For the convenience, we introduce notations
which are similar to those employed in [3,24]. Essen-
tially, we formulate B-patches through the use of a
polar form. Let DI :¼ ½tI0; tI1; tI2� be the triangle ‘‘I’’
of our triangulation T of R2. For each vertex tIi
we assign a list of k + 1 distinct additional knots

tIi :¼ ftIi;0; tIi;1; . . . ; tIi;kg. ð1Þ
The rule proposed in [3] consists of producing a sub-
set V I

b, where b = (b0,b1,b2) are three non-negative
integers, as follows:

V I
b :¼ ftI0;0; tI0;1; . . . ; tI0;b0 ; t

I
1;0; t

I
1;1; . . . ; t

I
1;b1

; tI2;0; t
I
2;1; . . . ; t

I
2;b2

g.

If we want to define a degree k simplex splines, we
must impose that

jbj :¼ b0 þ b1 þ b2 ¼ k.

V I
b is the set of all knots associated with one vertex

in T.
We further define DI

b :¼ ½tI0;b0 ; t
I
1;b1

; tI2;b2 � and
X I

b :

¼ ðtI0;0; . . . ; tI0;b0�1; t
I
1;0; . . . ; t

I
1;b1�1; t

I
2;0; . . . ; t

I
2;b2�1Þ

2 ðR2Þjbj. ð2Þ

X I
b is the set of knots associated with one control

point f ðX I
bÞ.

If DI
b is non-degenerate, it is possible to define the

barycentric coordinates of u 2 R2 with respect to
this triangle

u ¼
X2

i¼0

kIb;iðuÞtIi;bi and
X2

i¼0

kIb;iðuÞ ¼ 1. ð3Þ

The generalized algorithm computes F (u) starting
from the values f ðX I

bÞ, |b| = k. Those values are
called the poles of F. Let us define

X I
bu

v :¼ X I
b � ðu; u; . . . ; u|fflfflfflfflfflffl{zfflfflfflfflfflffl}

v

Þ 2 ðR2Þjbjþv

and assign Cv
bðuÞ :¼ f ðX I

bu
vÞ with |b| = k � v, the

algorithm uses the k-affinity of f stating the recur-
rence relation:

C0
bðuÞ :¼ f ðX I

bÞ; jbj ¼ k;

Cvþ1
b ðuÞ :¼

X2

i¼0

kIb;iðuÞCv
bþeiðuÞ; ð4Þ

where ei denotes the canonical basis vector. Then
F ðuÞ ¼ Ck

0ðuÞ. If the basis function for the pole
f ðX I

bÞ is denoted as BI
bð�Þ, then we obtain

F ðuÞ ¼
X
jbj¼k

f ðX I
bÞBI

bðuÞ.

3.1.3. Triangular B-spline properties

Triangular B-splines have the following valuable
properties which are critical for geometric and solid
modeling:

(1) Local support. The spline surface has local
support. To evaluate the image F (u) of a point
u 2 DI, we only need control points cJb (associ-
ated with knot set V J

b on triangle J), where tri-
angle J belongs to the 1-ring neighborhood of
triangle I.

(2) Convex hull. The polynomial surface is com-
pletely inside the convex hull of the control
points.

(3) Completeness. The B-spline basis is com-
plete, namely, a set of degree n B-spline
basis can represent any polynomial with
degree no greater than n via a linear
combination.

(4) Parametric affine invariance. The choice of
parameter is not unique: if one transforms
the parameter affinely and the corresponding
knots of control points are transformed
accordingly, then the polynomial surface
remains unchanged (see Fig. 1).

(5) Affine invariance. If the control net is trans-
formed affinely, the polynomial surface will
be consistently transformed affinely.

Note that parametric affine invariance is different
from affine invariance. The diagrams below illus-
trate the radical difference.
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The left one above represents parametric affine
invariance, which refers to the property that, under
a transformation between parameter domains, the
shape of the polynomial surface remains the same;
the right one above indicates affine invariance,
which refers to the property that under a transfor-
mation of the control points, the polynomial surface
will change accordingly.

The aforementioned properties are extremely
important for geometric and solid modeling appli-
cations. For example, the local support will allow
designers to adjust the surface by moving nearby
control points without affecting the global shape.
Therefore, it is crucial to preserve these properties
when we generalize the planar domain B-splines to
manifold B-splines. We will prove that such a gener-
alization does exist, and these desirable properties
can be preserved. The generalization completely
depends on the so-called affine structure of the
domain manifold. The local support and parametric
affine invariance are crucial for constructing mani-
fold splines.

3.2. Manifold and geometric structures

Our manifold splines are defined over manifolds
with arbitrary topology with or without bound-
aries. An n dimensional manifold can be treated
as a set of open sets in Rn glued coherently (see
Fig. 2).

Definition 4 (Manifold). A manifold of dimension
n is a connected Hausdorfff space M for which
every point has a neighborhood U that is homeo-
morphic to an open subset V of Rn. Such a
homeomorphism

/ : U ! V

is called a coordinate chart. An atlas is a family of
charts {(Ua,/a)} for which Ua constitute an open
covering of M.

Transition function plays a vital role in the theory
of manifold splines.

Definition 5 (Transition function). Suppose {(Ua,/a)}
and {(Ub,/b)} are two overlapping charts on a

manifold M, Ua \ Ub 5 ;, the chart transition is

/ab : /aðU a \ UbÞ ! /bðU a \ UbÞ

Transition functions satisfy the cocycle condition
(see Fig. 3)

/ab � /bc ¼ /ac; 8x 2 U ab \ Ubc.

Atlas can be classified by transition functions.

Definition 6 (Geometric structure). Suppose M is a
manifold, X is a topological space, G is a transfor-
mation group on X, a (G,X) atlas is an atlas
{(Ua,/a)}, such that

Fig. 2. Manifold: the manifold is covered by a set of charts
(Ua,/a), where /a : U a ! R2. If two charts (Ua,/a) and (Ub,/b)
overlap, the transition function /ab : R

2 ! R2 is defined as
/ab ¼ /b � /�1

a .

Fig. 1. Parametric affine invariance: (A and B) are two triangular B-splines sharing the same control net, the two parametric domains
differ only by an affine transformation. The same control nets result in the same polynomial surfaces shown in (A and B). (Spline model
courtesy of M. Franssen.)
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(1) Local coordinates are in X

/a : U a ! X .

(2) Transition functions are in group G

/ab 2 G.

Two (G,X) atlas are equivalent, if their union
is still a (G,X) atlas. Each equivalent class of
(G,X) atlas is a (G,X) structure.

Genus zero closed surfaces have spherical struc-
ture. Genus one surfaces have Euclidean structure.
Surfaces with high genus have hyperbolic struc-
ture. Surfaces have general geometric structures,
such as conformal structure, projective structure.
Table 1 illustrates the common geometric struc-
tures (Fig. 4).

3.3. Affine structure

An affine manifold is a manifold with special
transition functions.

Definition 7. A two-dimensional manifold M with
an atlas {(Ua,/a)}, if all chart transition functions

/ab :¼ /b � /�1
a : /aðU a

\
UbÞ ! /bðU a

\
UbÞ

are affine, then the atlas is called an affine atlas, M is
called an affine manifold.

Two affine atlases are equivalent if their union is
still an affine atlas. All the equivalent affine atlases
form an affine structure of the manifold.

For closed surfaces, only genus-one surfaces have
affine structures (see Fig. 2), but all surfaces with
boundaries have affine structures. Next, in order
to construct affine atlas for general surfaces in prac-
tice, we need certain theoretical tools which are
induced from the conformal structure of the domain
manifold.

3.4. Conformal structure

Similar to affine structure, conformal structure is
also an intrinsic structure of the surface. A confor-
mal atlas is an atlas such that all transition

Table 1
General geometric structures

Structure X G Surfaces

Topology R2 Homeomorphisms Surfaces of arbitrary topology
Differential R2 Diffeomorphisms Surfaces of arbitrary topology
Spherical S2 Rotation Closed, genus zero surfaces
Euclidean E2 Rigid motion Closed, genus one surfaces
Hyperbolic H2 Möbius Transformation High genus surfaces
Affine R2 Affine transformation Zero Euler class surfaces
Conformal C Holomorphic functions Oriented surfaces of arbitrary topology
Projective RP2 Projective Transformation Oriented surfaces of arbitrary topology

Fig. 4. Geometric structures. (A) Spherical structure: X is the unit sphere S2, G is the rotation group; (B) Euclidean structure: X is the
Euclidean plane R2, G is the translation group; (C) hyperbolic structure: X is the hyperbolic space H2, G is the Möbius transformation
group.

Fig. 3. Cocycle condition for transition functions.
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functions are conformal (analytic). Two conformal
atlases are compatible if their union is still a confor-
mal atlas. All compatible conformal atlases form
conformal structure. All surfaces have conformal
structure and are called Riemann surfaces [25].
Conformal structure is closely related to affine
structure. In particular, an affine atlas can be com-
puted by using special differential complex forms
defined on the conformal atlas.

3.4.1. Riemann surface

The Riemann surface is a surface with a confor-
mal atlas, such that all transition functions are
analytic.

Definition 8 (Analytic function). A function
f : C ! C; ðx; yÞ ! ðu; vÞ is analytic, if it satisfies
the following Riemann–Cauchy equation:

ou
ox

¼ ov
oy

;
ou
oy

¼ � ov
ox

Definition 9 (Riemann surface). A Riemann surface
M is a 2-manifold with an atlas A ¼ fðU a;/aÞg,
such that all transition functions /ab : C ! C are
analytic. All compatible affine atlas forms a confor-
mal structure of M.

Analytic functions are conformal, which intuitive-
ly means angle preserving. It is well known that all
oriented metric 2 manifolds are Riemann surfaces
and have a unique conformal structure, such that
on each chart Ua,/a, the first fundamental form
can be represented as ds2 = k (u,v)(du2 + dv2). Gu
and Yau [26,27] introduce practical algorithms to
compute this conformal structure on general trian-
gular meshes.

3.4.2. Holomorphic 1-form

To find an affine atlas, we need special differential
forms defined on the conformal structure.

Definition 10 (Holomorphic 1-form). Given a
Riemann surface M with a conformal structure A,
a holomorphic 1-form x is a complex differential
form, such that on each local chart ðU ;/Þ 2 A

x ¼ f ðzÞdz; ð5Þ

where f (z) is an analytic function, z = u + iv is the
local parameter in the complex form.

Genus zero surface has no holomorphic 1-forms.
The holomorphic 1-forms of closed genus g surface
form a g complex dimensional linear space, denoted

as X (M). A conformal atlas can be constructed by
using a basis of X (M). This is the method derived
in [26,27]. Considering its geometric intuition, a
holomorphic 1-form can be visualized as two vector
fields x = (xx,xy), such that the curlex of xx and xy

equals zero. Furthermore, one can rotate xx about
the normal by a right angle to arrive at xy

r� xx ¼ 0; r� xy ¼ 0; xy ¼ n� xx.

By integrating a holomorphic 1-form, an affine atlas
can be easily constructed. Figs. 11A and 8A illus-
trate holomorphic 1-forms on surfaces. The texture
coordinates are obtained by integrating the 1-form
on the surface (see [27] for the details).

3.4.3. Singular points

According to Poicaré–Hopf theorem, any vector
field on a surface with nonzero Euler number must
have singularities where the vector field is zero. Such
singularities of x = (xx,xy) are called zero points.

Definition 11 (Zero point). Given a Riemann sur-
face M with a conformal structure A, a holomor-
phic one-form x, x = f (z)dz, where f (z) is an
analytic function and z = u + iv is the local param-
eter. If at point p, f (z) equals zero, p is a zero point
of x.

In fact, it can be proven that zero points do not
depend on the choice of the local chart at all. For
a Riemann surface M with genus g, a holomorphic
1-form x has 2g � 2 zero points in principle. Zero
points are singular points for our manifold splines
(to be constructed later). Fig. 8A demonstrates the
zero points (singular points) on the 1-form. The cen-
ters of regions with octagons are the zero points
(Fig. 5).

4. Manifold spline theory

In this section, we will systematically define
manifold splines using our theoretical results on
affine structure and triangular B-splines and show
their existence is equivalent to that of affine
structure. We first discuss the existence of affine
structure for general manifolds, and then we
compute the affine structure through the use of
conformal structure for any manifold. For the
consistency of our manifold spline theory, we
shall utilize the parametric affine invariance and
polynomial reproduction properties of general
spline schemes (triangular B-splines in particular
for this paper).
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4.1. Definition and concept

A manifold spline is geometrically constructed by
gluing spline patches in a coherent way, such that
the patches cover the entire manifold. The knots
and control points are also defined consistently
across the patches and the surface evaluation is
independent of the choice of chart. First of all, we
define the local spline patch. After that, we define
a global manifold spline which can be decomposed
into a collection of local spline patches.

Definition 12 (Spline surface patch). A degree k

spline surface patch is a triple S = (U,C,F), where
U � R2 is a planar simply connected parametric
domain. F : U ! R3 is a piecewise polynomial
surface and C is the set of control points,
C :¼ fcIb;X I

b 2 ðR2Þjbj; jbj ¼ kg. F can be evaluated
from C by polar form.

Definition 13 (Manifold spline). A manifold spline
of degree k is a triple (M,C,F), where M is the
domain manifold with an atlas A ¼ fðU a;/aÞg. F
is a map F : M ! R3 representing the entire spline
surface. C is the control points set, each control
point cIb is associated with a set of knots X I

b which
are defined on the domain manifold M directly

C :¼ fcIb;X I
b 2 M jbj; jbj ¼ kg

such that

(1) For each chart (Ua,/a), the restriction of F on
Ua is denoted as F a ¼ F � /�1

a , a subset of con-
trol points Ca can be selected from C, such
that (/a (Ua),Ca,Fa) form a spline patch of
degree k, where Ca :¼ fcIb;/aðX I

bÞ 2 ðR2Þjbj;
jbj ¼ kg.

(2) The evaluation of F is independent of the
choice of the local chart, namely, if Ua inter-
sects Ub, then Fa = Fb � /ab, where /ab is the
chart transition function.

The technical essence of the above definition is to
replace a planar domain by the atlas of the domain
manifold, and the surface evaluation of the spline
patches is independent of the choice of charts (see
Fig. 6). After the formal definition, we use one sim-
ple example to further illustrate the concept of our
manifold splines (see Fig. 7).

Fig. 6. Key elements of manifold splines: the parametric domain
M is a triangular mesh with arbitrary topology as shown at the
bottom. The polynomial spline surface F is shown at the top. Two
overlapping spline patches (/a (Ua),Ca,Fa) and (/b (Ub),Cb,Fb)
are magnified and highlighted in the middle. On each parameter
chart (Ua,/a), (Ub,/b), the surface is a triangular B-spline
surface. For the overlapping part, its two planar domains
differ only by an affine transformation /ab. The zero point
neighbor is Z.

Fig. 5. All oriented metric surfaces are Riemann surfaces which admit conformal structure.
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One Dimensional Example. Here the domain
manifold is a unit circle S1. There are n distinct
points t0, t1, . . . , tn�1 distributed on the circle in a
counterclockwise way. All the summation and sub-
traction on indices are modular n. The intervals
between points are arbitrary. The control net is a
planar n-gon, the control points are denoted as
c0,c1, . . . ,cn�1 also in a counterclockwise way, and
the knots for ci are ti�2, ti�1, ti, ti+1, ti+2.

The affine atlas of S1 is constructed in the follow-
ing way: the arc segment Ui ¼ ðti�2 � e; ti�1; ti; tiþ1;
tiþ2 þ eÞ; e 2 Rþ is mapped to an interval in R1 by
/i : S

1 ! R1, such that

/iðtiÞ ¼ a;/iðtÞ ¼ aþ b
Z t

ti

ds; a 2 R; b 2 Rþ. ð6Þ

where a, b are arbitrarily chosen. The union of all
local charts (Ui,/i) form an affine atlas
A ¼ fðUi;/iÞg. Note that by choosing different a,
b, there might be infinite local charts in A.

The control net corresponding to local chart
(Ui,/i) is the line segments Ci = {ci�2,ci�1,ci,ci+1,
ci+2}. The piecewise polynomial curve is formed
by n pieces of polynomials, the ith piece
F i : ½ti; tiþ1� ! R2 is evaluated on (Ui,/i) with con-
trol polygon Ci using cubic B-spline.

Then we define the cubic B-spline curve on the
unit circle consistently. It is C2 continuous every-
where. The B-spline patches are {/i (Ui),Ci,Fi}.

The above example can be trivially extended to
construct a two-dimensional surface in a similar
way. The key step is to find an affine atlas for the
domain manifold. The next section will discuss the
existence of such an atlas for general 2-manifolds
in detail.

4.2. Equivalence to affine atlas

The central issue of constructing manifold splines
is that the atlas must satisfy some special properties

to meet all the requirements for the evaluation inde-
pendence of chart selection. We will show that for a
local spline patch, the only admissible parameteriza-
tions differ by an affine transformation. This
requires that all the chart transition functions are
affine.

4.2.1. Admissible parameterizations

From the evaluation process in (4), it is obvi-
ous that the only information used there are bary-
centric coordinates (3) of the parameter with
respect to the knots of the control points. If we
change the parameter by an affine transformation,
the evaluation is invariant and the final shape of
the spline surface will not be modified. On the
other hand, an affine transformation is the only
parametric transformation that will keep the con-
sistency between the spline surface and its param-
eters. In other words, affine transformations are
the only admissible parametric transformations
for a spline patch. Note that we present four
major theorems as our theoretical results in this
section. However, in the interest of technical flow,
we defer their proof to Appendix A at the end of
this paper.

Theorem 1. The sufficient and necessary condition

for a manifold M to admit manifold spline is that M is

an affine manifold.

This theorem indicates that the existence of
manifold splines depends on the existence of affine
atlas. If the domain manifold M is an affine man-
ifold, we can easily generalize the planar triangu-
lar B-spline surfaces to be defined on M directly.
We use the same symbols for manifold spline as
in Section 3.1.2. The major differences are as
follows:

(1) The knots associated with each vertex tIi in (1)
are defined on the manifold directly.

Fig. 7. Manifold splines on S1: (A) the domain manifold is a unit circle S1 with n distinct knots t0, . . . , tn�1; (B) the ith spline patch
Ui = (ti�2 � e, . . . , ti+2 + e); (C) the i + 1th spline patch Ui+1 = (ti�1 � e, . . . , ti+3 + e).
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(2) The knots associated with each pole X I
b in (2)

are defined on M directly.
(3) The barycentric coordinates kIb;i used in the

evaluation process (3) are defined on any chart
of A. Because A is affine, the value of the
barycentric coordinates is independent of the
choice of the chart.

4.3. Existence

From the previous discussion, it is clear that in
order to define a manifold spline, an affine atlas of
the domain manifold must be found first. According
to characteristic class theory [28], general closed
2-manifolds do not have an affine atlas. On the
other hand, all open surfaces admit an affine atlas.
To define manifold splines, the domain manifold
has to be modified to admit an atlas by removing
a finite number of points. This offers a theoretical
evidence to the existence of singular points due to
the topological obstruction.

A classical result from characteristic class theory
claims that the only closed surface admitting affine
atlas is of genus one.

Theorem 2 (Benzécri). Let S be a closed two dimen-

sional affine manifold, then v (S) = 0.

This result is first proven by Benzécri [29].
Shortly after his proof, J. Milnor presented a
much more broader result using vector bundle
theories [30]. In this framework, the topological
obstruction of a global affine atlas is the Euler
class. In fact, by removing one point from the
closed domain manifold, we can convert it to an
affine manifold.

Theorem 3 (Open surfaces are affine manifold).
Let M be an orientable open 2-manifold, then M is

affine manifold.

4.4. Spline construction

The existence theorem gives rise to the possibility
of generalizing triangular B-splines to manifold
domains. Next, we shall present an explicit way to
construct affine atlas by utilizing the holomorphic
1-forms of M.

Given a holomorphic 1-form x on a surface
M, assume its zero point set is Z; then, an
affine atlas A for MnZ can be constructed
straightforwardly.

Theorem 4 (Affine atlas induced from conformal
structure). Given a closed genus g surface M, and a

holomorphic 1-form x, the zero set of x is Z, then the

size of Z is no more than 2g � 2 and there exists an
affine atlas on MnZ deduced by x.

4.5. Singular points

Traditional subdivision surfaces, such as Cat-
mull and Clark [31], Doo and Sabin [32], and
Loop subdivision [33] surfaces can be considered
special cases of manifold splines. The existence
of extraordinary points in all subdivision schemes
results from their intrinsic topological obstruc-
tions. No matter how the domain manifold is
remeshed, the extraordinary points can not be
entirely removed unless the domain manifold is
a torus. Similarly, we can define triangular
B-splines on any triangular mesh. If the Euler
number of the domain mesh is non-zero, there
must be singular points.

Corollary 1 (Existence of singular points). The

manifold splines must have singular points if the

domain manifold is closed and not a torus.

In addition, based on the above discussion, we
conclude that the minimal number of extraordinary
points is one for all kinds of closed 2-manifolds.

Corollary 2 (Minimal number of singular points).
Given a closed domain 2-manifold, if its Euler

number is not zero, a manifold spline can be

constructed such that the spline has only one

singular point.

The theoretic results in this section naturally
guide us to design practical algorithms to compute
affine atlases for arbitrary triangular meshes and
subsequently define manifold splines on them.

5. Manifold spline algorithm

This section presents a set of practical algorithms
for constructing manifold splines based on triangu-
lar B-spline scheme. It is straightforward to define
manifold NURBS using similar algorithms.

5.1. Algorithm overview

The major procedures can be summarized as the
following main control flow:
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Algorithm: construction of manifold splines

(1) Compute a holomorphic 1-form basis for the
domain mesh M (Section 5.2).

(2) Select one holomorphic 1-form which optimiz-
es a specified criteria, such as uniformity (see
[34]).

(3) Locate zero points of the 1-form (Section 5.3).
Remove zero-point neighborhoods, denote the
union of zero-point neighborhoods as Z.

(4) Compute the affine atlas for MnZ (Section
5.4).

(5) Assign knots for each control point (Section
5.5).

(6) Evaluate the spline surface (Section 5.6).

5.2. Holomorphic 1-form

The algorithm for computing the holomorphic
1-form for a triangular mesh is as follows:

Algorithm: compute holomorphic one form

(1) Compute the first homology group basis of the
domain manifold M, H 1ðM ;ZÞ.

(2) Compute the first cohomology group basis of
the domain manifold M, H 1ðM ;RÞ.

(3) Compute harmonic 1-form basis from
H 1ðM ;RÞ using heat flow method.

(4) For each harmonic 1-form basis xx, locally
rotate by a right angle about the normal to
get xy (Hodge star operator), pair (xx,xy) to
form a holomorphic 1-form basis.

The computation process is equivalent to solving
an elliptic partial differential equation on the surface
using finite element method. The details for comput-
ing holomorphic 1-form are thoroughly explained in
[26,27].

5.3. Locating singular points

If the resolution of a mesh is high enough, the
holomorphic 1-form is accurate enough to locate
the zero points automatically.

Using the holomorphic 1-form, the neighbor-
hood of the zero point will be mapped to a planar
region. The behavior of the map is similar to the
map z ! z2; z 2 C in the neighborhood of the ori-
gin. More rigorously, a circle around the zero point
will be mapped to a curve which passes around the

origin at least twice. (The winding number of the
image curve about the origin is no less than 2.)

The following algorithm aims to locate zero
points:

Algorithm: locate zero points

(1) Given a vertex v 2M, a holomorphic 1-form
x, find all the vertices connecting to vertex v

sorted counterclock-wisely, denoted as
w0,w1, . . . ,wn�1.

(2) Map wi to the plane using x, /ðwiÞ ¼
R wi

v x.
(3) The points / (w0),/ (w1), . . . ,/ (wn�1) form a

planar polygon and the point / (v) is inside
this polygon. Compute the summation of the
angles

Xn�1

i¼0

\/ðwiÞ/ðvÞ/ðwiþ1Þ;

where wn = w0. If this summation is 2p, then v

is a regular point; if summation is no less than
4p, then v is a zero point.

5.4. Constructing affine atlas

An affine atlas can be constructed in the follow-
ing way:

Algorithm: construct affine atlas

(1) Locate zero points of x, denote the zero
points Z.

(2) Remove zero points and the faces attaching to
them.

(3) Construct an open covering for MnZ. For
each vertex, take the union of all faces within
its k-ring neighbor as an open set U.

(4) Test if the union of any two Ua, Ub is a topo-
logical disk by checking the Euler number of
Ua ¨ Ub. If not, subdivide Ua.

(5) Pick one vertex pa 2 Ua, for any vertex p 2 Ua,
define /aðpÞ ¼

R p
pa
x.

(6) Compute coordinate transition functions,
/ab ¼

R pb
pa

x.

5.5. Assigning knots

The connectivity of the control net can be easily
determined by the uniform subdivision of the
domain mesh. For example, if the desired spline

248 X. Gu et al. / Graphical Models 68 (2006) 237–254



surface is quadratic, each face on M will be subdi-
vided to four faces on the control net. Therefore,
each face on the control mesh is covered by one face
on M. Each control point will then associate with a
group of knots. The knots are defined in the follow-
ing way:

Algorithm: assign knots

(1) Given a control point c 2 C and a face f

attached to c. Suppose f is covered by
F 2 M. Choose one local chart (Ua,/a) cover-
ing F, and assign knots XF

b to c in this local
chart.

(2) Record the chart id a, the knots XF
b for c.

5.6. Surface evaluation

As explained above, the evaluation process is
independent of the choice of the chart. The chart
can be chosen arbitrarily, and all associated knots
must then be converted to the selected chart.

Algorithm: spline evaluation

(1) Choose a face F on M, choose a coordinate
chart (Ua,/a) covering F.

(2) Locate all control points associate with F.
(3) If the knots of a control point c is define

on coordinate chart b, then convert the
knots to chart (Ua,/a) using transition
function /ba.

(4) Evaluate the polynomial surface using the
evaluation algorithm for B-spline surface with
planar domain on (Ua,/a).

6. Implementation and experimental results

In our implementation, we consider domain
manifolds represented as triangular meshes M. We
use vk to denote the vertices of M, [vi,vj] denote
the oriented edge from vi to vj [vi,vj,vk] to denote
an oriented face of M.

6.1. Data structure

The primary data structures in our prototype sys-
tem for constructing manifold splines are domain

mesh M, control net C, affine atlas A, and holomor-

phic 1-form x.

Domain mesh M. The domain mesh in general is a
triangular mesh, represented by a half-edge data
structure. Each face is covered by several coordinate
charts.

Control net C. The control net is also a triangular
mesh, represented by half edge data structure. The
connectivity of the control net is deduced from that
of the domain mesh by uniform subdivision and the
degree of the manifold spline. Each face on the con-
trol net corresponds to one covering face in the
domain mesh.

Atlas A. The atlas is set of charts and all the
transition functions among them. The transition
functions are translations on the plane; if the ath
chart and the bth chart intersect, there is a transi-
tion function /ab, represented as a translation vec-
tor in R2. Each chart is a set of adjacent faces,
which form a topological disk. We ensure that the
union of two intersecting charts is still a topological
disk. The local coordinates are not recorded, but
computed in real-time by integrating holomorphic
1-form x.

Holomorphic 1-form x. A holomorphic 1-form
is represented by a map from the oriented edge
(half-edge) set of M to R2, x : E ! R2, such that
for any face [v0,v1,v2]

x½v0; v1� þ x½v1; v2� þ x½v2; v0� ¼ 0.

6.2. Experimental results

Our prototype system is implemented in C++ on
Windows platform. We build a complete system for
computing topological structure, conformal struc-
ture, and affine structure. The system is based on
a half-edge data structure, and uses the finite ele-
ment method to solve elliptic partial differential
equations on surfaces. The system includes tradi-
tional mesh processing functionalities, such as mesh
simplification, subdivision, smoothing, and progres-
sive mesh algorithms. But the main functionalities of
the system are computing the homology group, coho-
mology group, harmonic 1-forms, holomorphic
1-forms, global conformal parameterizations, mani-
fold spline construction, and surface evaluation.

Table 2 summarizes our experiment results. Fig. 8
illustrates the process of our manifold spline by con-
structing a manifold spline on a genus 2 surface.
Fig. 11 shows several examples of manifold splines
of various topological type. The results prove both
the theoretic rigor and feasibility in practice.
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Table 2
Spline configurations: g, genus; n, degree; Nb, No. of boundaries; Ns, No. of singular points; Nt, No. of domain triangles; Nc, No. of
control points

Object Figure g Nb Ns n Nt Nc

Bunny Fig. 9 0 3 1 3 293 1348
Knot Fig. 11, row 1 1 0 0 3 400 1800
Rockerarm Fig. 11, row 2 1 0 0 3 2125 9676
Two-hole torus Fig. 8 2 0 2 3 502 2270
Sculpture Fig. 11, rows 3 and 4 3 0 4 3 1458 6583

Fig. 8. Construction of manifold spline: (A) Holomorphic 1-form x, the octagonal region indicates a singular point; (B) Domain manifold
M; (C) singular point removalMnZ; (D) Manifold spline F; (E) spline surface F covered by control net C; (F) the regions of singular points
are filled.

Fig. 9. Genus zero manifold spline: (A and B) the topological modification by introducing three boundaries marked as red curves. The
genus of the double covered surface is two. (C) The holomorphic 1-form x. By projecting the holomorphic 1-form of the double covered
mesh to the original surface, there is only one singular point, which is on the top of the bunny head. (D) The domain manifold M; (E and
F) the front view of polynomial surface F and control net C; (G and H) show the back view of polynomial surface F and control net C.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this paper.)
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7. Conclusion

We have proved in this paper that defining trian-
gular B-splines over arbitrary manifolds is equiva-
lent to the existence of an affine atlas of the
underlying manifold. In addition, we have articulat-
ed a systematic way to construct an affine atlas for
general manifolds and developed a suite of algo-
rithms that enable the definition and computation
of triangular B-splines over any manifold domain
(consisting of general meshes). Our theoretical and
algorithmic contribution to the field of solid and
physical modeling is a general framework that
extends spline surfaces with planar domains to man-
ifold splines, which are piecewise polynomials
defined over arbitrary manifold. Because of the
intrinsic topological obstruction for any manifold,
singular points are unavoidable. We utilize the con-
cept and computational techniques of Riemann sur-
face theory (especially the holomorphic 1-forms) to
obtain the affine atlas and minimize the number of
singular points for our manifold splines simulta-
neously. The prototype software and experimental
results have demonstrated the great potential of
our manifold splines in shape modeling, geometric
design, graphics, and engineering applications.

At present, we are planning to pursue several
directions as future work. First, the behavior of sin-
gular points is not yet known. We shall seek new
mathematical tools for the rigorous analysis of sin-
gular points. Second, we shall investigate other new
spline schemes and explore their manifold
generalizations.
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Appendix A

We present the detailed proof of our major theo-
retic results in the Appendix.

Lemma 1.1. Assume there are two spline surface

patches of Ck continuity, k > 0

S ¼ ðU ;C; F Þ and ~S ¼ ð ~U ; ~C; ~F Þ.
The parametric transformation

/ : U ! ~U

is invertible. Suppose S; ~S share the same knot config-

uration, namely, the triangulation ~T is induced from

T by /, and the knots ~tIi;j are induced from tIi;j by /

~tIi;j ¼ /ðtIi;jÞ; ð7Þ

the control points with corresponding knots coincide

cIb ¼ ~cIb, then

(1) if / is affine, then F ¼ ~F � / holds for arbi-
trary control nets.

(2) if F ¼ ~F � / holds for arbitrary control nets,
then / is affine.

In other words, the following diagram commutes for

arbitrary control nets

if and only if / is affine.

Fig. 10. Open surfaces are affine manifolds: An genus 2 surface M with one boundary in (A) is isomorphic to an octagon with a hole in
(B), then the octagon is immersed in R2 as the ribbon figure in (C). The colored disks indicate the open sets Ua ofM. There is another open
set U, which coversMn ¨ Ua. U and Ua are mapped to R2 as shown in (D). All transitions are rotation and translation. This illustrates the
affine atlas for the open surface of M. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this paper.)
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Proof. The sufficient condition part is obvious,
because the evaluation of the splines only involves
barycentric coordinates. Affine transformations pre-
serve the barycentric coordinates; therefore the dia-
gram is commutative.

The proof for the necessary condition requires the
completeness of the spline scheme 3.We set all control

points ofC to be zero except the one corresponding to
knotsX I

b. Correspondingly,we set all control points of
~C to be zero except one corresponding to knots ~X I

b.
Then we get the basis functions F ðuÞ ¼ NI

bðuÞ,
~F ¼ ~NI

bð~uÞ, by F ¼ ~F � /, we get

NI
bðuÞ ¼ ~NI

bð~uÞ.

Fig. 11. Manifold spline examples: (A) Holomorphic 1-form x which induces the affine atlas A; (B) parametric domain manifold M with
singular points Z marked; (C) Polynomial spline F defined on the manifold M in (A); (D) the red curves on spline F correspond to the
edges in the domain manifold M; (E) spline F covered by control net C. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this paper.)
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Therefore, all basis functions of S equal the corre-
sponding basis functions of ~S. Suppose u = (u1,u2),
then u1 is a polynomial of (u1,u2). By completeness
of the spline scheme, u1 can be represented as the
linear combination of NI

bðuÞ, therefore it can be rep-
resented as the linear combination of ~NI

bð~uÞ. As a re-
sult, u1 and u2 can be represented as piecewise
polynomials of ~u of Ck continuity. Because S and
~S are symmetric, ~u are also piecewise polynomials
of u of Ck continuity. Therefore, u and ~u can linearly
represent each other piecewisely with Ck continuity.
So, because the parameter transition / is piecewise
linear and Ck continuous, / must be a global linear
map over all pieces. In other words, / is affine. h

Theorem 1. The sufficient and necessary condition

for a manifold M to admit manifold spline is that M
is an affine manifold.

Proof. Consider two intersecting local charts
(Ua,/a) and (Ub,/b), where the manifold spline F

restricted on them are Fa and Fb, respectively. We
select a subset of control points C whose knots are
contained in Ua ˙ Ub. The spline patches
(/a(Ua ˙ Ub),C,Fa) and (/b(Ua ˙ Ub),C,Fb) satisfy
the condition in Lemma 1, therefore, the chart tran-
sition function /ab must be affine. h

Theorem 2 (Benzécri). Let S be a closed two dimen-

sional affine manifold, then v (S) = 0.

The proof for this classical result can be found in
Benzécri’s work [29,35]. Milnor used vector bundle
theories to prove it in [30,36].

Theorem 3 (Open surfaces are affine manifold). Let
M be an orientable open 2-manifold, then M is an

affine manifold.

Proof. Fig. 10 illustrates the proof by constructing
an affine atlas for the open surface M in (a). One
boundary may be a closed curve or a single point as
shown in (a) by a dark spot. We deform (a) continu-
ously to generate (b) by gradually enlarging the hole.
(b) is homeomorphic to the ribbon figure in (c), which
is immersed inR2. Then we cut each annulus of (c) to
get a fundamental domain as shown in (d).

The colored disks Ua are open sets of M, another
open set U can be defined to cover Mn ¨ Ua. (d)
The way U and Ua’s are mapped to R2. It is obvious
that all chart transition functions are combinations
of translations and rotations.

For surfaces with multiple boundaries, we can fill
all of the boundaries with disks except one, and the
proof is similar.

Theorem 4 (Affine atlas induced from conformal
structure). Given a closed genus g surface M, a holo-

morphic 1-form x. The zero set of x is Z, then the

size of Z is no more than 2g � 2 and there exists an
affine atlas on MnZ deduced by x.

Proof. The existence and the number of zero points
Z of the holomorphic 1-form x can be proved using
Riemann–Roch theorem [25] or Poicaré–Hopf the-
orem. Because x = xx + ixy is holomorphic, xx is a
harmonic 1-form. Since we treat xx as a vector field,
the singularities can only have negative indices, and
the summation of their indices equals the Euler
number 2 � 2g. Hence, the geometric number of
zero points is no more than 2g � 2.

Suppose an open covering of MnZ is a collection
of open sets {U0,U1, . . . ,}. We require that if two
open sets Ua,Ub intersect each other, Ua ˙ Ub 5 /,
then their union Ua ¨ Ub is a topological disk (see
Fig. 7). If this requirement can not be satisfied, we
can subdivide the open sets until the requirement is
met. Then we select one point in each Ua, denoted as
pa 2 Ua, for any point p 2 Ua, we define the coor-
dinate of p as

/aðpÞ ¼
Z p

pa

x;

where the path from pa to p is arbitrarily chosen.
Then we claim A ¼ fðU a;/aÞg is an affine atlas
for MnZ.

We want to show for any p 2 Ua ˙ Ub,
/b(p) = /a (p) + const, namely, the coordinate tran-
sition function /ab : R2 ! R2 is a translation. Sup-
pose p,q 2 Ua ˙ Ub as shown in the above figure

ð/bðpÞ � /aðpÞÞ � ð/bðqÞ � /aðqÞÞ

¼
Z p

pb

x�
Z p

pa

x�
Z q

pb

xþ
Z q

pa

x; ð9Þ

Because Ua ¨ Ub is a topological disk, the closed
curve r = pb ! p ! pa ! q ! pb is homotopic to
zero. Because the curlex of both xx and xy are
zeros, the above integration is zero, »rx = 0. There-
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fore /b(p) � /a (p) � const for arbitrary
p 2 Ua ˙ Ub, the transition function /ab is a
translation. h

References

[1] M. Eck, H. Hoppe, Automatic reconstruction of B-spline
surfaces of arbitrary topological type, in: Proceedings of
SIGGRAPH ’96, 1996, pp. 325–334.

[2] C. de Boor, Splines as linear combinations of B-splines. A
surveyApproximation Theory II, Academic Press, New
York, 1976, pp. 1–47.

[3] W. Dahmen, C.A. Micchelli, H.-P. Seidel, Blossoming begets
B-spline bases built better by B-patches, Math. Comput. 5
(199) (1992) 97–115.

[4] P. Fong, H.-P. Seidel, Control points for multivariate B-
spline surfaces over arbitrary triangulations, Comput.
Graphics Forum 1 (4) (1991) 309–317.

[5] G. Greiner, H.-P. Seidel, Modeling with triangular B-splines,
IEEE Comput. Graph. Appl. 1 (2) (1994) 56–60.

[6] R. Pfeifle, H.-P. Seidel, Fitting triangular B-splines to
functional scattered data, in: Graphics Interface ’95, 1995,
pp. 26–33.

[7] M. Franssen, R.C. Veltkamp, W. Wesselink, Efficient
evaluation of triangular B-spline surfaces, Computer-Aided
Geom. Design 1 (9) (2000) 863–877.

[8] M. Neamtu, Bivariate simplex B-splines: a new paradigm, in:
SCCG ’01: Proceedings of the 17th Spring conference on
Computer graphics, 2001, pp. 71–78.

[9] Y. He, X. Gu, H. Qin, Fairing triangular B-splines of
arbitrary topology, in: Proceedings of Pacific Graphics ’05
(short paper), 2005, pp. 153–156.

[10] P. Alfeld, M. Neamtu, L.L. Schumaker, Bernstein–Bezier
polynomials on spheres and sphere-like surfaces, Computer-
Aided Geom. Design 1 (4) (1996) 333–349.

[11] P. Alfeld, M. Neamtu, L.L. Schumaker, Fitting scattered
data on sphere-like surfaces using spherical splines, J.
Comput. Appl. Math. 7 (1–2) (1996) 5–43.

[12] R. Pfeifle, H.-P. Seidel, Spherical triangular B-splines with
application to data fitting, Comput. Graph. Forum 1 (3)
(1995) 89–96.

[13] M. Neamtu, Homogeneous simplex splines, J. Comput.
Appl. Math. 7 (1-2) (1996) 173–189.

[14] Y. He, X. Gu, H. Qin, Rational spherical splines for genus
zero shape modeling, in: Proceedings of Shape Modeling
International ’05, 2005, pp. 82–91.

[15] C.M. Grimm, J.F. Hughes, Modeling surfaces of arbitrary
topology using manifoldsProceedings of ACM SIGGRAPH
’95, ACM Press, 1995, pp. 359–368.

[16] Yu. K. Demjanovich, Finite-element approximation on
manifolds, in: Proceedings of the International Conference
on the Optimization of the Finite Element Approximations
(St. Petersburg, 1995), vol. 8, 1996, pp. 25–30.

[17] J. Cotrina, N. Pla, Modeling surfaces from meshes of
arbitrary topology, Computer-Aided Geom. Design 1 (7)
(2000) 643–671.

[18] J. Cotrina, N. Pla, M. Vigo, A generic approach to free form
surface generation, in: Proceedings of the Seventh ACM
Symposium on Solid Modeling and Applications, 2002, pp.
35–44.

[19] Lexing Ying, D. Zorin, A simple manifold-based construc-
tion of surfaces of arbitrary smoothness, ACM Trans.
Graph. 2 (3) (2004) 271–275.

[20] J. Wallner, H. Pottmann, Spline orbifolds, Curves Surfaces
Appl. CAGD (1997) 445–464.

[21] L. Ramshaw, Blossoming: a connected-the-dots approach to
splines, Technical Report, Digital Systems Research Center,
Palo Alto, 1987.

[22] L. Ramshaw, Blossom are polar forms, Computer-Aided
Geom. Design 6 (4) (1989) 323–358.

[23] H.-P. Seidel, Polar forms and triangular B-spline surfaces, in:
D.-Z. Du, F. Hwang (Eds.), second ed., Euclidean Geometry
and Computers, World Scientific Publishing, Singapore,
1994, pp. 235–286.
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