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Figure 1: Prioritized incremental surface fitting. Red stands for the already fitted surface areas, green for the growing front and white for the
untouched regions. The already fitted surface grows along an easier way, that is, along surface regions with smaller curvature and less noise.

Abstract

This paper addresses the problem of surface reconstruction of
highly noisy point clouds. The surfaces to be reconstructed are as-
sumed to be 2-manifolds of piecewise C1 continuity, with isolated
small irregular regions of high curvature, sophisticated local topol-
ogy or abrupt burst of noise. At each sample point, a quadric field
is locally fitted via a modified moving least squares method. These
locally fitted quadric fields are then blended together to produce a
pseudo-signed distance field using Shepard’s method. We introduce
a prioritized front growing scheme in the process of local quadrics
fitting. Flatter surface areas tend to grow faster. The already fitted
regions will subsequently guide the fitting of those irregular regions
in their neighborhood.
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1 Introduction
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The problem of reconstructing a surface from a large set of scat-
tered sample points arises in a variety of applications in the fields
of reverse engineering, computer graphics, computer vision, med-
ical image segmentation, etc. Generally speaking, surface recon-
struction from scattered samples is an ill-posed problem, i.e., there
is no unique solution. Constraints on both the original surface and
the sample points are required to guarantee a faithful and unique
solution. In the last decade, a number of surface reconstruction
techniques have been proposed. Despite of the versatility of these
large amount of algorithms at present, however, most existing al-
gorithms make certain strong assumptions on the original surface
and its sample points. For example, many algorithms necessitate a
very dense sampling to be able to capture drastic topological or ge-
ometric change in a small region; some approaches need additional
knowledge such as surface normal or interior/exterior information;
some algorithms are not tolerant of noise and corrupted data.

The goal of this paper is to develop a robust surface reconstruc-
tion algorithm that can handle noisy data sets and tolerate critical
situations, such as abrupt bursts of high noise and topological am-
biguity where two objects come too close together. These problems
arise frequently for 3D data acquisition techniques such as those in
stereo photogrammetry.

2 Problem Statement and Constributions

Before proceeding with our algorithm, an explanation may be de-
sirable of our major concerns in our algorithm design, that is, the
problems we intend to solve.

A correct reconstruction of a surface is possible only if it is
“properly” sampled, i.e., there are enough sample points in ar-
eas of high curvature or great topological complexity. One rep-
resentative criteria of an adequate sampling rate was suggested by
Amenta [2001], the r-sampling criteria. Generally, higher sampling
rates are required where two parts of the surface come close or the
local curvature is high. Noise can also inflict trouble for topological
recognition.



(a) Sharp corner needs higher
sampling rate even with little
noise.

(b) Noise results in topologi-
cal ambiguity when two faces
come too close.

(c) Abrupt burst of high noise. (d) Incorrect orientation align-
ment around an acute angle.

Figure 2: Reconstruction difficulties due to sharp edges and noise.

In Fig. 2(a), we observe that on both sides of the acute sharp cor-
ner are surfaces of low curvature, but a sampling rate of infinity is
needed for a correct reconstruction of this sharp feature in most al-
gorithms. In Fig. 2(b), the topology of the actual surface is obscured
where the standard deviation of noise is larger than the local feature
size. In Fig. 2(c), the noise rate in a small region is abruptly high.
In Fig. 2(d), many front propagation-based normal alignment algo-
rithms can not correctly identify the orientation abnormality near
an acute sharp edge.

Most existing algorithms can only partially solve these problems
under certain strong assumptions on either the sampling rate, the
smoothness of the underlying surface, or the noise power. But vi-
sually, our human eyes are able to capture the shape of a noisy
and under-sampled model with ease. This kind of ability can be
attributed to several assumptions on the underlying surface in our
brain: (1) The major part of a surface is absent of abrupt curvature
change and burst of noise; (2) Abrupt changes of curvature or topol-
ogy do not cluster in a small region. (3) The underlying surface is
a 2-manifold.

Based on these assumptions, we have designed a prioritized sur-
face growing algorithm. In this prioritized front propagation algo-
rithm, the system first fits the “good” parts of the surface, then use
the already built parts to guide the fitting of “bad” parts of the sur-
face. We also use implicit quadrics instead of parametric surfaces
as basic models in the local fitting. The use of implicit surfaces is
mainly for better sharp feature representation and easier blending
of locally fitted surface patches via Shepard’s method. The com-
bination of these two techniques would allow for a reliable surface
reconstruction from noisy data points with surface reconstruction
hazards mentioned above. In addition, we propose a robust ori-
entation alignment algorithm and several techniques for efficient
evaluation of surface properties such as variation of curvature.

3 Previous Work

Generally, the existing approaches to constructing a surface model
from a set of scattered points fall into two categories. One is the
optimal triangulation of a discrete set of spatial points. The other
is function reconstruction from a set of samples, or, data fitting.
In essence, the problem of surface reconstruction has two aspects:
topology recovery and geometry recovery. Triangulation-based al-
gorithms mainly focus on faithful recovery of a flawless topology
from relatively accurate but possibly incomplete data sets. On the
contrary, data fitting based algorithms concentrate much more on
regression analysis of inaccurate data samples, and try to recon-

struct the underlying function even in existence of random noise.

� Piecewise-linear surface reconstruction
Algorithms falling into this category include the α-shape [Edels-
brunner and Mcke 1994], Power Crust [Amenta et al. 2001] and the
ball pivoting algorithms [Bernardini et al. 1999]. Some algorithms
from this group can provide provable topological correctness, such
as the Power Crust. Although some variants are proposed, most of
these algorithms assume the availability of a noise-free data set.

� Surface reconstruction through the building of a signed-
distance field
The application of implicit models in the field of surface reconstruc-
tion are primarily due to two reasons: (1) In contrast to piecewise
surface patches, an implicit surface involves no specific topology-
sensitive parametric domain and thus avoids any complicated pro-
cedures such as surface trimming and patching; (2) An implicit
function defines a simulated signed distance field in the 3D space.
A weighted sum of two distance fields intuitively averages the two
underlying surfaces. This intrinsic averaging property allows for
both multiple data sets registration and sample denoising, which in
many algorithms rely on a preprocessing or postprocessing stage.

Hoppe, DeRose, et al. [1994] first introduced the signed distance
field as a basic tool for reconstructing surfaces from a set of range
images. Curless and Lovoy [1996] soon proposed an algorithm
based on constructing a distance field on volumetric grid. Bajaj,
Bernardini and Xu [1995] combined the piecewise algebraic sur-
face with α-shape. Carr, et al. [2001] explored the use of radial
basis functions for uncomplete data set. Zhao, Osher, et al. [2000]
proposed a level set method driven by dynamic PDEs. All these
methods have displayed the merits of using implicit surfaces, that
is, noise tolerable, topology flexible, and easy to convert to other
representations.

� Moving least squares and Shepard’s method
The moving least squares method and Shepard’s method can date
back to McLain and many other’s work [McLain 1974; Shepard
1968; Renka 1988; Lancaster and Salkauskas 1981]. In the mean-
time, in the computational statistics community, the local regression
method (similar to the moving least squares) was extensively stud-
ied for noisy data smoothing. Many issues on the choice of the local
fitting functions, the selection of the bandwidth (the support of the
local weight function) are discussed in depth. We refer readers to
[Cleveland and Loader 1995] for details. The early moving least
squares method was dedicated to function fitting, where a para-
metric domain is innate. Levin [1998] proposed the moving least
squares surfaces by introducing local reference frames. Based on
Levin’s approach, Lee [2000] implemented a curve reconstruction
method which was capable of automatically selecting local band-
width. The recent point set surfaces [Alexa et al. 2001] are also
based on moving least squares fitting. In this paper, we further ex-
tend the local function family to implicit quadrics. This extension
to local quadric fitting allows more accurate discovery of the local
topology and geometry under high noise. Ohtake, et al. [2003] also
developed a hierarchical surface fitting system based on Shepard’s
blending to handle accurate data set with prescribed normals.

4 Moving Least Squares and Shepard’s

Method

Both the moving least squares method of Levin’s type and Shep-
ard’s method are employed in our paper. Strictly speaking, this pa-
per only borrows from moving least squares the technique of local
quadratic function fitting by introducing a local frame. The “mov-
ing” in moving least squares has been replaced by Shepard’s meth-
ods.



4.1 Moving Least Squares Method

R


H


r

q


x,y


z


g


R

q


(a) Local reference frame and fitting. (b) Sharp edge hazard.

Figure 3: Standard moving least squares fitting.

The standard moving least squares method is illustrated in Fig. 3.
Let points { pi ∈ R

3, i = 1, · · · ,N} be sampled from a surface S
with possible measurement noise. For an arbitrary test point r ∈ R

3

(not necessarily from {pi}) near the surface, we first find a local
reference domain (plane) H for r. The local plane H = {x|〈n,x〉−
D = 0,x ∈ R

3},n ∈ R
3, ||n|| = 1 is defined so as to minimize

N

∑
i=1

(〈pi,n〉−D)2θ(||pi −q||), (1)

where θ is a nonnegative, smooth, radial, monotonously decreasing
function, usually with finite support R as shown in Fig. 3(a), q is
the perpendicular foot of r on plane H and 〈,〉 denotes dot product.
When r is close enough to the surface, we can just use q = r to lead
the minimization of (1) to a linear system. The reference domain
for r is subsequently used to compute a local bivariate polynomial
approximation g(x,y) in a neighborhood of r. This process is car-
ried out through minimizing a weighted least squares error

N

∑
i=1

(g(xi,yi)− zi)
2θ(||pi −q||), (2)

where (xi,yi,zi) are the coordinates of pi in the local coordinate sys-
tem induced by H, see Fig. 3(a). Levin defines Sp(r) = q+g(0,0)n,
i.e., the intersection of axis z with the local fitting polynomial g.
We refer readers to [Alexa et al. 2001] for details. Levin’s mar-
velous result on this projection function Sp(r) is that under certain
conditions, all the fixed points, that is, {r ∈ R

3 : Sp(r) = r}, de-
fine a 2-manifold [Levin 1999]. Practically, these conditions may
not always be well-satisfied. An acute angle may generate a non-
manifold surface as shown in Fig. 3(b) (blue curves). The reference
planes for all r’s near the apex go across the axis of the cone. Taking
q = r may make this situation better, but a much thinner pinnacle is
inevitable. Our new solutions to this problem will be discussed in
the following sections.

4.2 Shepard’s Method

With the moving least squares method, every surface point evalua-
tion will invoke two stages of minimization, one for the calculation
of a reference plane, another for a local polynomial fitting. This
can be prohibitively expensive for practical applications. One way
to reduce the amount of computation is by just evaluating a set of
representative test points and then figuring out the position of in-
between points by locally blending its neighboring representative
points.

We first take as an example the case for approximating a function
R

2 → R. In Fig. 4, the approximated function values f̂ (ci) at a set
of representative points ci are known (either were given or evalu-
ated at a surface locally fitted to a set of neighboring samples), and

we want to figure out the function value at p by a linear combina-
tion of the values f̂ (ci) at all p’s neighboring representative points.
We associate with each representative point ci a smooth, positive
and monotonously decreasing function wi(‖p− ci‖), which is the
weight function associated with ci. Note that it is not necessary for
the weight functions associated to each representative point to be
the same. Now we define the value f (p) to be (see Fig. 4):

f (p) =
∑n

i=1 f̂ (ci)wi(‖p− ci‖)
∑n

i=1 wi(‖p− ci‖)
. (3)

To obtain computational efficiency, the weight functions wi(‖p−
ci‖) are mostly compactly defined, that is, there exists a set of Ri,
wi(‖p−ci|) = 0, if ‖p−ci‖> Ri. Interpolation can be achieved by
letting wi(‖p− ci‖) → +∞, when ‖p− ci‖ → 0. We observe that
f (ci) in (3) are a set of constants. Blending function values at a
set of representative points ci may result in an unappealing flat spot
at ci, and a steep interim in the middle of a pair of representative
points [Shepard 1968; Franke and Nielsen 1980]. Normally, f̂ (ci)

is obtained by evaluating at ci a locally fitted function f̂i(p) of a
set of nearby sample points. Instead of blending sample function
values, we can blend local representative functions. We replacing
the term f̂ (ci) by f̂i(p), which is the local approximation of f (p)
around ci. This leads to the modified Shepard’s method,

f (p) =
∑n

i=1 f̂i(p)wi(‖p− ci‖)
∑n

i=1 wi(‖p− ci‖)
. (4)
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Figure 4: Shepard’s local blending method. In the middle are a set
of representative functions with their centers ci and local support
Ri marked. To the left are the projections of each weighted rep-
resentative functions. To the right we show two classical weight
functions.

The result function f (p) would be of C∞ continuity when
wi(‖p− pi‖) are C∞ continuous. We refer readers to [Shepard 1968;
Franke and Nielsen 1980; Renka 1988] for a background of the ori-
gin of this method, and some nice properties accompany this ap-
proach. In comparison to other blending methods such as splines,
NURBS (we can see they share similar formulations), the modified
Shepard’s method imposes no limitations on the local connectivity
and number of local blending kernels, and thus can be easily fitted
to a large variety of applications.

All the above addresses the blending of a real-valued function.
To blend 3D surface patches, it would be rather challenging. One
possible approach is by following the spirit of Levin’s local ref-
erence frame. But this may lead to many subtle questions such
as how to blend local frames, how to deal with multi-sheeted sur-
face patches resulting from coordinates transformation, etc. In this
paper, we utilize the intrinsic surface “averaging” behavior when
summing up several signed distance fields. In our algorithm, each
surface is represented implicitly as the zero-level set of a trivari-
ate real-valued function f (x,y,z). Thus, surface blending through
Shepard’s method is a direct application of this method to the case
of 3D functions.



5 Incremental Local Fitting and Denoising

In this section, we introduce our prioritized incremental local re-
gression algorithm. Along with the local model selection to be dis-
cussed in the next section, this algorithm can provide an appealing
smoothing effect with great robustness.

R


Figure 5: The already fitted points are subsequently used to guile
the local fitting of its neighboring points by being assigned with a
heavier weight.

The basic idea behind this algorithm is that the majority of real
world models are comprised of well-sampled surface regions of low
curvature and of low noise (hereinafter, “regular regions”) sparsely
interspersed with small regions of sharp edges, peaks, bulges, and
regions subject to high measurement noise (hereinafter, “irregu-
lar regions”), and a natural extension of these regular regions can
present a very good prediction to the surface behavior in irregular
areas.

In our new incremental surface construction system, multiple ac-
tive seeds iteratively traverse “regular regions” of the samples be-
fore “irregular regions”. In Fig. 5, a seed is propagating from left to
right. The current active point is shifted to a more smooth-looking
position via the local least squares fitting just mentioned. The al-
ready fitted points are subsequently used to guide the local fitting
of their neighboring points by being assigned with heavier weights,
see Fig. 5.

The untraversed neighboring points of the current seed are then
activated, each associated with a weight based on the irregularity of
the current seed. This irregularity metric comes as a combination
of the local normal/gradient variation and the local fitting error I =
α1κ +α2ε . The next current point would go to the active point with
the lowest irregularity.

Open List


Active List


Closed List


Priority 0
 Priority 1
 Priority 2
 Priority 3
 Priority 4


Figure 6: The data structure for the front propagation algorithm.

As in most region growing methods, our algorithm maintains
three doubly linked lists of data points, the open list, the active list
and the closed list. We further partition our active list into several
prioritized segments. The sample points can only be moved down-
ward and rightward (from higher to lower priority). The prioritized
segmentation of the active list avoids a rigorous sorting of the points
in the active list based on their irregularity.

This prioritized front propagation method as outlined in Fig. 7
always follows the easiest way of proceeding. As a result, the in-
terspersed “irregular” areas will be first besieged before they are
attacked. The accumulation of more fitted points in the local region
around the “irregular” points can provide clues on what the local
shape looks like.

Line 14—16 in Fig. 7 provides a seed jumping mechanism.
When some part of the surface is confined by a barrier of irregu-
lar regions, this mechanism allows a new seed to be “airdropped”
into that area.

1. OPEN ⇐ all sample points
2. ACTIVE ⇐ Ø; CLOSED ⇐ Ø
3. WHILE ACTIVE 6= Ø OR OPEN 6= Ø
4. IF ACTIVE = Ø, ACTIVE ⇐=pri. P∈OPEN of smaller Irr.
5. CUR = first point in ACTIVE
6. local fitting around CUR
7. new Irr.(CUR) = Curvature(CUR) + FitError(CUR)
8. calculate new Priority(CUR) based on new Irr.(CUR)
9. IF new Priority(CUR) > old Priority(CUR)
10. ACTIVE ⇐=pri. CUR; GOTO 19 // back into active list
11. create successors of CUR
12. FOR each successor S
13. Priority(S)=Priority(CUR); ACTIVE ⇐=pri. S
14. IF ACTIVE|priority≤current priority = Ø
15. find T ∈ OPEN, such that Prior.(T) ≤ Prior.(CUR)
16. ACTIVE ⇐=pri. T, if there is such a T
17. END FOR 12.
18. CLOSED ⇐= CUR
19. END WHILE 3.

Figure 7: Prioritized front propagation algorithm. ⇐=pri. means in-
serting into the end of a segment of the active list based on priority.

P


Figure 8: “Irregular” areas will first be besieged before they are
attacked. The accumulation of already-fitted points around the “ir-
regular” regions provides clues on how the local shape looks like.

6 Local Bandwidth and Model Selection

An active research topic in the field of local regression is on how
to select a suitable smoothing window size(bandwidth) and on how
to choose an optimal degree of the local polynomial(model) [Fan
et al. 1996]. In Fig. 9(a), a local linear regression with different
bandwidth is used for fitting a set of data points. We can see that
the fitting curve with smaller bandwidth is much closer to the point
set (we say it is of low bias), but suffers greatly from the undulation
of noise (we say it is of high variance), larger window size is more
likely to produce a smooth curve, but fails to grasp the sharp feature
(peak). The same situation goes to local polynomial degree selec-
tion. In Fig. 9(b), polynomials with higher degrees are capable of
capturing local features, but the shape may fluctuate undesirably.

Many sophisticated algorithms have been propose to tradeoff
bias with variance by introducing a certain metric. We refer readers
to [Cleveland and Loader 1995] for a survey. One particular work in
the computer graphics community was done by Lee [2000] to offer
adaptive local bandwidth control in the process of curve smoothing.

6.1 Local bandwidth control

In this paper, we adopt a simple local bandwidth selection tech-
nique in which surface regions with larger irregularity tend to have
larger fitting bandwidth since it is desirable to accommodate more
already-fitted points. An initial feature size h0 is computed with an
algorithm similar to the one used in Lee’s curve smoothing system.
Each priority is associated with an empirical real number ci. The
local fitting bandwidth h is then computed as cih0. This method



works well when the sampling density does not change drastically.
More sophisticated bandwidth control algorithms borrowed from
the statistics community will be further accommodated.
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Figure 9: Selection of local polynomial degree and local fitting
bandwidth.

6.2 Local model selection

Because the implicit quadrics are capable of representing multi-
sheeted surfaces, extraneous parts may appear when using quadrics
to fit simple shapes. For example, in Fig.10(a), fitting a set of pla-
nar point with implicit quadrics results in a shape close to two inter-
secting planes. Similar to high degree polynomials, implicit surface
fitting is very sensitive to noise. In this section, we follow the spirit
of local model selection, that is, selecting local fitting models by
means of some error metric, to address these problems.

(a)

(b) (c)

Figure 10: Local implicit quadrics fitting and model selection.

We first partition all types of quadric surfaces into two groups.
Elliptic paraboloids, hyperbolic paraboloids, parabolic cylinders
and planes (pairs of planes are not included) fall into the first group,
and all other quadrics fall into the other group. Levin’s local least
squares fitting method only uses models from the first group. Our
new local fitting method will allow both groups of quadrics be uti-
lized for local surface fitting.

Fitting with quadrics from the first group can follow Levin’s lo-
cal least squares fitting as mentioned in section 4.1. A transfor-
mation of the function z− g(x,y) = 0 in its local coordinate sys-
tem back to the real world coordinate system is subsequently car-
ried out. Now we get an locally fitted implicit quadric surface
f1(x,y,z) = 0 from the first group.

Fitting with quadrics from the second group is by directly solv-
ing a linear system:

ax2
i +by2

i + cz2
i +dxiyi + eyizi + f zixi +gxi +hyi + izi + j = 0.

where i goes through all points pi = (xi,yi,zi)
>. A non-trivial solu-

tion can be obtained by singular value decomposition(SVD).

Now, we have two locally fitted models f1(x,y,z) = 0 and
f2(x,y,z) = 0 in hand. Our next step is to score the fidelity of these
two models to the original data points. Basically, three metrics are
used.
• The local gradient variation: Sharp features and multiple sheets
in a local area will result in larger local gradient variation. This
metric can be used to select models for cases like in Fig. 10(a).
Obviously, a single-sheeted plane will be favored by this metric.
• The fitting error: Mostly, this is defined as the average squared
distance of the sample points to the model. This metric can be
applied to situations as in Fig. 10(c).
• The normal orientation consistency: Normal orientation is the
most reliable metric for local model selection. In Fig 10(a), if two
seeds propagate from both sides carrying normals as illustrated.
The possibility of a multi-sheeted fitting as shown will certainly
be ruled out. In Fig 10(b), with the normal information shown, the
purple horizontal line will be ruled out.

These three metrics have ascending importance on the determi-
nation of local fitting model. A continuous real-valued fidelity met-
ric can be designed based on the above analysis. Similar to the
mixed degree local polynomial regression in [Cleveland and Loader
1995], a mixture of these two models with proper weights derived
from this metric can be formulated.

7 Orientation Alignment
Traditionally, the normal orientation of each point is aligned by
traversing a minimum spanning tree. But this approach may inflict
difficulties when seeds go through areas of high curvature with high
noise. For the case in Fig. 11(a), obviously, the most often used cri-
teria by aligning neighbor normals into acute angles will lead to the
normals in black. Even local curve fitting may not help, since the
fitting curve for a point p and its neighbor may vary much due to
fitting sensitivity in this kind of critical area (see green curve).
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(a) Alignment hazard
at corner.

(b) Our new orientation alignment
algorithm.

Figure 11: Normal orientation alignment.

In our system, our prioritized propagation rules guarantee a seed
must not penetrate an acute edge. The problem becomes how to
align orientation of patches where multiple seeds meet. As mea-
surement precision, image registration accuracy and such all suffer
from sharp corners and areas of high curvature, our top concern
in orientation alignment algorithm is robustness. Under certain as-
sumptions on feature size, we are able to design a robust algorithm.

Let us explain this algorithm with an example. In Fig. 11(b),
a seed has reached this region from the right hand side and hi-
bernates near Q∗. Another seed comes near and reaches P. At
this moment, all points with arrows(normals) are in CLOSED list.
Line 1–6 in Fig. 12 finds a nearest point Q∗ ∈ CLOSED in its
neighbor or radius R and on a different surface patch. We be-
lieve that for “opposite” points on the same surface, their nor-
mal would annihilate each other along the line linking them, i.e.
(Normal(P1)+Normal(P2))⊥(P2 −P1)). A local “opposite” point
for P is searched for through Line 8–15. In the figure, N’ is the
reflection of N along line PR∗. This algorithm favors those points



R whose normals agree with N’(R) or -N’(R). After the best R∗ is
found, the two patches are merged into one single patch. All point
normals in one of the two patches will be flipped if N’(R∗) agree
with -N(R∗).

for the current seed P DO // P has been put in CLOSED
1. NbP ⇐ all neighbor points in P’s vicinity of radius R
2. Q∗ = Ø, DistQ∗ = ∞
3. FOR each Q ∈ NbP DO // find a nearest “alien”
4. IF Q ∈ CLOSED AND Q on a different patch from P
5. IF Dist(P,Q) < DistQ∗, Q∗=Q and DistQ∗ = Dist(P,Q)
6. END FOR 2.
7. IF Q∗ = Ø GOTO 19.
8. NbQ ⇐ all neighbor points in Q∗’s vicinity of radius R
9. R∗ = Ø, AngleR∗ = 0
10.FOR each R ∈ NbQ DO // find the best opposite point in NbQ
11. IF R ∈ CLOSED AND R on the same patch as Q∗

12. N’=Reflect(Normal of P), NR = Normal or R∗

13. IF |〈N ′,NR〉| ≥ |AngleR∗|
14. AngleR∗ = 〈N′,NR〉 and R∗ = R
15. END FOR 10
16. IF |AngleR∗| <

√
3/2 GOTO 19

17. IF AngleR∗ < 0 flip all normals in the patch containing R∗

18. merge the two patches contain P and R∗

19. end procedure

Figure 12: Normal orientation alignment algorithm.

8 Numerical Techniques

In our work, many geometric properties on the local fitting quadrics
such as local curvature, fitting error, etc. are required to be calcu-
lated accurately and efficiently. In this section, we introduce some
algorithms we developed for local surface property evaluation.

8.1 Curvature at a surface point

The curvature of an implicit surface at a surface point p can be eval-
uated efficiently without introducing a local parametrization [Xie
and Qin 2002].

Let M = { ∂ f
∂xi∂x j

}i, j=0,1,2 be the Hessian matrix of f . Denote

M∗ = det(M) M−1, which is sometimes called adjoint matrix of
M, H = M− tr(M) I and g = ∇ f (p), we have,

Guassian curvature: K(p) = ‖g‖−4g> ·M∗ ·g (5)

Mean curvature: H(p) = 1
2‖g‖−3g> ·H ·g (6)

For a quadratic polynomial f , entries of M are just the coefficients
of its second degree terms. The total curvature at p is defined as
T = 4H2 −2K.

8.2 Variation of normal and gradient

The normal variation near a point p within a neighborhood of radius
R is important for sharp feature detection and local model selection.
Using the curvature at this point is not always a good estimation of
the local normal change. In Fig. 13(a), the curvature at point p
vanishes, but a sharp edge of infinite curvature is nearby. Ideally,
the local normal variation for a surface point p should be defined
as the maximum angle spanned by any two normals in its vicinity
of a given radius R, as shown in Fig. 13(a). This definition can also
capture the cases when two surfaces come close together as shown
in Fig. 13(b). But because normal is not a linear function of the

implicit function f , evaluation of normal change can be expensive,
let alone the calculation of the maximum normal angle spanned in
a region.

P


a


R


(a)

(b) (c)

Figure 13: Normal (gradient) variation near a point.

An alternative approach is to measure the local gradient change
instead of normal change. Prior to our derivation, we define:

Vgx = max(2|a|, |d|, | f |),
Vgy = max(2|b|, |d|, |e|),
Vgz = max(2|c|, |e|, | f |).

(7)

Var = ‖(Vgx,Vgy,Vgz)
>‖ (8)

Now consider a quadric surface

q = ax2 +by2 + cz2 +dxy+ eyz+ f zx+gx+hy+ iz+ j,

the gradient at a point p = (x,y,z)> is,

g = (g,h, i)> +(2ax+dy+ f z,2by+dx+ ez,2cz+ ey+ f x)>.

The variable part, that is, the second term, can only vary within a
cuboid

[−RVgx,RVgx]× [−RVgy,RVgy]× [−RVgz,RVgz], (9)

where, R is the radius of the neighborhood around p. Note that (8)
is constant with respect to p and invariant under translation of f 1.
By translating the origin of coordinate system to p, we can define
the gradient variance in p’s vicinity of radius R as:

V =
RVar

‖∇ f (p)‖ (10)

9 Experiments

In Fig.1 on the front page, we show the feature detecting capability
embedded in our prioritized incremental surface construction algo-
rithm. At the final stage of the shape growing, the remaining active
points (in green) outline the dragon as its feature lines. In Fig. 14,
we show the segmentation power of our incremental surface con-
struction algorithm. In Fig. 15, we show the normal propagation
algorithm. We can also see that with implicit quadrics, the normals
take abrupt changes at sharp edges as we expected. But quadrics
have a drawback that it can not express corners well where more
than two faces meet. This remains one of our future work. In
Fig. 16, we show the denoising process of our algorithm. Since
the noise rate is very high (about one fiftieth of the size of the ob-
ject), surface details are wiped out. But at the tail, which is a cusp-
like shape, our algorithm presents better results than many other
point-based denoising methods. Fig. 17 shows our work for accu-
rate models. We see that the Shepard’s method works well even for
low sampling rate point sets.

1A mathematically accurate version of Var is defined as the largest
eigenvalue of the Hessian matrix of f , which is invariant under translation
and rotation.



Figure 14: Ambiguous topology determination. In this figure, we
show the segmentation power of our incremental surface growing
algorithm. The sample points of the top two spheres are mixed
together due to noise. The bottom two spheres are thinned and
separated into two groups. Due to high sensitivity of the model
(two-sheeted quadrics) to local noise, we still see several points
between them. This needs a further process to discard outliers.

10 Conclusions and Future Work

In this paper, we have presented a new intelligent incremental sur-
face reconstruction system based on local fitting and blending of
implicit quadric surfaces. The incorporation of implicit quadrics
as basic local fitting models allows us to reconstruct local features
more accurately and to blend local fitted surface patches in a clean
and efficient manner. To deal with noisy data set and topological
ambiguity, we design a prioritized incremental algorithm, in which,
flatter areas are fitted prior to areas with features. The already fit-
ted areas can subsequently guide the local fitting of its neighboring
points. We also implement a method for automatic selection of lo-
cal bandwidth and local fitting models. Finally, we implement a
robust orientation alignment method as well as a set of algorithms
on efficient evaluation of local geometric information. Our sys-
tem has displayed the capability and flexibility of our novel algo-
rithms. Some potential applications include feature line extraction,
segmentation of close objects, etc.

Despite all the merits that our algorithms have displayed, they
still suffer from some limitations. The quadric surfaces can not
reconstruct the shapes well at sharp corners where more than two
faces meet or at places where more than two objects come close.
Extension of this method to a more flexible function set will defi-
nitely enhance its capability. Our system still has some empirical
parameters. Deep study of the regularity metric is also an open
issue.
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(a) (b) (c) (d)

(e) (f)

Figure 15: Normal propagation and alignment. Yellow points are not
traversed yet. Red samples point outside and blue ones point inside.
We see from (b) to (c), the two traversed patches get aligned. Note
that these two patches have not collided each other yet. In (d) we
show the resulting sample points with lowest priority. These points
constitute the so-called feature lines. In (e), we can see that the nor-
mals have the right directions even near a very acute edge. In (f) a
shaded result is shown with edges marked.

(a) (b) (c)

Figure 16: Denoising functionality of our algorithm. In (a) a dinosaur is sampled noisily (note that the dinosaur has a relatively cuspate tail
with noise rate close to its feature size). In (b) we show the resulting thinned point cloud. In (c), the thinned point cloud is rendered by
PointShop (by Zwicker, Pauly et al.).

(a) (b) (c)

Figure 17: Some models from accurate point clouds. The sampling rates for these models are lower than the previous models. The Shepard’s
method works well for blending implicit fields generated at each sample point together. All the resulting models are rendered in polygonal
meshes extracted by marching-cubes algorithm.


