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Haptic Rendering—Touch-Enabled Interfaces

Over the past several years, point-sampled
geometry has gained popularity in

graphics and related visual computing areas. Point set
surfaces, in particular, have enjoyed a major renais-
sance in both modeling and rendering. Points have clear
advantages over traditional primitives such as triangle
meshes—for example, points can be rendered and
updated efficiently with no connectivity concerns, espe-
cially in large-scale, scanned models from laser range
and image-based scanning devices. Many recent efforts
have focused on direct rendering techniques and effec-
tive modeling mechanisms (see the “Related Work”
sidebar) for point-sampled geometry without connec-
tivity. However, such achievements are inadequate for
interactive shape control of the point-based geometry
when objects’ dynamic behavior and user interactivity
are of prime significance to graphical modelers and ani-
mators. Among the remaining challenges, perhaps most
important for point-based modeling techniques is the
ability to perform fast, interactive modeling tasks,
allowing users to manipulate and sculpt point clouds
intuitively and efficiently.

Unlike pure point-based modeling, implicit modeling
can not only handle arbitrary topology and complicat-
ed geometry, but also affords powerful physics-based
modeling.1 Hence, integrating point-based geometry
with implicit functions and introducing physics-based
modeling and haptics into this under-explored field is
both appealing and important. 

We propose a point-based geometry representation
that we initially designed for dynamic physics-based
sculpting, but can easily generalize to other relevant
applications such as data modeling and human–com-
puter interaction. By extending the idea of the local ref-
erence domain in the moving least square (MLS) surface
model2 to the construction of a local and global surface
distance field, we naturally incorporate Hua and Qin’s
dynamic implicit volumetric model1 into our deforma-
tion of the point-based geometry, which not only facil-
itates topology change but also affords dynamic
sculpting and deformation. 

To exploit this unified scheme, we further integrate
haptics-based dynamic sculpting and Boolean operations
into our surface-modeling framework and use haptics
painting to enhance the appearance of the point set sur-
face. Our sculpting system offers virtual sculpting tools
with various types of haptic interaction and supports real-
time manipulation of the dynamic
point set surface. Our long-term goal
is to bring haptics, dynamics, and
physics into the realm of point-based
modeling and advance knowledge in
this underdeveloped area. 

Dynamic point set surface
Our point-based geometry repre-

sentation bears some similarity to
Pauly et al.’s hybrid surface repre-
sentation (see the “Related Work”
sidebar on the next page), which
combines explicit point samples with
implicit surface functions. In our rep-
resentation, we acquire the global
surface distance field by blending the local trivariate dis-
tance function associated with each point sample. Our
basic assumption is that the point samples always reside
on the global surface distance field’s zero-level set. Thus,
manipulating the global scalar field, which we model as
a global mass-spring system (described later), updates
the point samples’ positions, resulting in the deforma-
tion of the point-sampled surfaces. The difference
between our system and Pauly et al.’s free-form shape-
modeling system is that ours is designed for dynamic
physics-based sculpting and deformation, and thus
depends on real-world physical laws to govern the inter-
action of dynamic objects and their realistic simulation.

Local and global surface distance fields
The MLS surface model2 stimulated our idea of the

local surface scalar field, in which the input data is an
unstructured point cloud, P = {pi|1 ≤ i ≤ N}, describing
an underlying manifold surface S. Each point sample
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stores a geometric position as well as a set of other
attributes, such as normal or color. Whereas a contin-
uous MLS surface consists of points projected onto the
MLS surface, our model representation defines a set of
local surface scalar fields associated with each point
sample. 

In MLS, given a point set P, a projection operator Ψ
defines the MLS surface SMLS(P) as the points projecting
onto themselves—that is,  SMLS(P) = {x ∈ ℜ3|Ψ (P, x)
= x}. A two-step procedure defines the projection Ψ (P,
r) of any point r near the surface. First, we compute a
local reference plane, H = {x〈n, x〉 − D = 0, x ∈ �3}, n
∈ ℜ3, ||n||=1, by locally minimizing 

(1)

where q is the projection of r onto H; and θ is a smooth,
monotone-decreasing function—for example, a Gauss-
ian function θ(d )=e − d 2/h2 with anticipated spacing h
between neighboring points.

We then fit a bivariate polynomial g(u, v) to the points
projected onto the reference plane H using a similar
weighted-least-squares optimization. To perform this
process, we minimize

where (ui, vi, hi) are the coordinates of pi in the local
coordinate system induced by H. We can obtain the nor-
mals at the points from the reference plane, or by eval-
uating the gradient of the polynomial g and then using
the minimal spanning-tree method to achieve a consis-
tent normal orientation.

Further details on MLS point set surfaces are avail-
able elsewhere.2

In our model, instead of locally fitting a bivariate poly-
nomial g(u, v) to the height function in the reference
plane H, we fit a volumetric implicit function to the local
distance field in the neighborhood of the point sample pi. 

Throughout this article, we use scalar trivariate B-
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Related Work
Since Levoy and Whitted’s1 pioneering report,

considerable research has been devoted to the efficient
representation, modeling, processing, and rendering of
point-sampled geometry. 

Rusinkiewicz and Levoy2 introduced QSplat, a technique
that uses a hierarchy of spheres of different radii to render a
high-resolution model. Zwicker et al.3 introduced a surface-
splatting technique that directly renders opaque and
transparent surfaces from point clouds without connectivity.
Later, they presented Pointshop 3D,4 a system for
interactive shape and appearance editing of 3D point-
sampled geometry. Alexa et al.5 used the moving least
square (MLS) projection framework to approximate a
smooth surface defined by a set of points and introduced
associated techniques for resampling the surface to
generate an adequate surface representation. 

Most recently, Pauly et al.6 presented a freeform shape-
modeling framework for point-sampled geometry to handle
both Boolean operations and freeform deformations.

As for haptics-based computing, Salisbury and his
colleagues developed the Phantom haptic interface, which
has resulted in many haptic-rendering algorithms. Salisbury
and Tarr7 presented research on haptic rendering of simple
implicit surfaces. Kim et al.8 presented a rather different
implicit-based haptic-rendering technique. 

Implicit functions are well suited for both scientific
visualization and graphics modeling tasks. Igarashi and
Hughes,9 for example, describe a framework for introducing
visually smooth surfaces into sketch-based freeform
modeling systems. They compute a smooth interpolative
surface via implicit quadratic surfaces that best fit the mesh
locally in a least-squares sense. Ohtake et al.10 present the
multilevel partition of unity (MPU) implicit surface for
constructing surface models from very large point sets. 

Our construction method of a global surface distance field
by blending local trivariate implicits is fundamentally similar

to Igarashi and Hughes’9 and Ohtake et al.’s10 approaches.
Hua and Qin developed a haptic interface that permits
direct manipulation of volumetric objects (see the main
article). Our current work is a direct extension of that work.
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spline functions as the underlying shape primitives.3

These trivariate functions are of the form:

(2)

where Bi,r(u), Cj,s(v), and Dk,t(w) are the uniform B-
spline basis functions of degrees r − 1, s − 1, and t − 1,
respectively. Pijk are the scalar coefficients in a volu-
metric mesh of size l × m × n, and s(u, v, w) is a scalar
function at position (u, v, w) in the parametric domain.
In this case, the scalar function defines the distance of
position (u, v, w) to the surface. We choose the local ref-
erence parameter domain size to enclose all the K-
nearest neighbors of pi. We use the K-nearest neighbors
method to accelerate the weighted-least-square fitting
process and simplify the local reference domain.

In our distance field fitting process, we generate two
off-surface points associated with each point sample pi,
one outside and another inside. We then use the weight-
ed-least-square fitting to get the volumetric implicit
function, whose zero-level set fits the given point sam-
ples. We compute the scalar coefficients Pijk to minimize
the weighted-least-squares error:

Here we focus on pi; pj is one of its K-nearest neighbors.
The local parameter coordinate (uj, vj, wj) of pj has a dis-
tance value dj to the surface. θ is a smooth, monotone
decreasing weighting function, such as in Equation 1.

To achieve the global continuous distance field, we
blend the local implicit primitive associated with each
point sample using established implicit blending tech-
niques. In fact, we can use a weighting function with
finite support that blends individual implicit primitives:

(3)

If (x, y, z) is inside the local region of point sample pi,
we evaluate the distance value si(x, y, z) using the trivari-
ate implicit function associated with pi; otherwise, we
simply set it to zero. We associate φi (x, y, z), a smooth,
positive, and monotonously decreasing weighting func-
tion with local support, with pi (for example, to approx-
imate the distance field, we use the quadratic B-spline to
generate weight functions φi). In our representation,
support of φi (x, y, z) shouldn’t exceed the local refer-
ence region of pi. We can interpolate the distance value
by letting φi (x, y, z) → ∞ , when (x, y, z) → pi.

In our surface-editing system, user manipulation
locally sculpts or deforms a point-sampled surface,
including the points’ local shapes. This can cause some
of the original surface’s point samples to move from
their original positions. Therefore, after user manipu-
lations, the system must update the local distance fields

for those points undergoing local shape deformations.
To quickly reconstruct the local distance field, we sam-
ple the trivariate function (see Equation 2) at fixed local
grids G = {(ui, vi, wi)|i ∈ [0, g]}, where g is the number
of sampling grid positions (ui, vi, wi). This lets us sim-
plify Equation 2 as the matrix form3:

s = (B ⊗ C ⊗ D)p (4)

where ⊗ denotes the Kronecker Product, s is the vector
of the distance values at the grid positions, and p is the
control coefficients vector. If we modify the distance
field, we can easily reconstruct the trivariate function
(see Equation 4) using

p = [(B ⊗ C ⊗ D)T(B ⊗ C ⊗ D)]–1(B ⊗ C ⊗ D)Td (5)

where d is the vector of the new distance values at
the G grids. Because the grid positions (ui, vi, wi) are
fixed in the local domain during our simulation, we
can improve performance by precomputing the
matrix (B ⊗ C ⊗ D).

Dynamic models
To introduce physics into our point-based local dis-

tance field, we use Hua and Qin’s dynamic volumetric
models approach.1 We resample the distance field
defined by Equation 3 in a region of our interest, which
we denote as a global region, as compared to the point-
based local region. We then discretize the global dis-
tance field into a voxel raster. Every voxel contains a
scalar value, in our case a distance value, which we sam-
ple at each grid position using Equation 3. (Note that
we define Equation 3 only around the surface region’s
thin shell.) To evaluate a location (x, y, z) outside any
point sample’s local definition domain, we simply
approximate the implicit value as its distance to the
nearest point in the point set. When users perform
sculpting operations, we simulate the dynamics in this
global region. After user manipulations (such as push-
ing or dragging the point-sampled surfaces locally), the
user deforms the global distance field based on the
Lagrangian dynamics (described in the following sec-
tion). Assuming the points always rely on the global dis-
tance field zero-level set, we can deform the underlying
point-sampled surfaces.

After deformation, the scalar value associated with
each voxel might not strictly be the distance value to the
isosurface. We therefore call the scalar value a density
value.1 However, to be consistent with our implicit con-
struction method, we call it a distance value in the fol-
lowing section.

Dynamic global volumetric model. We chose
the mass spring model to simulate the model’s dynam-
ics1 because of its simplicity. We assign the discretized
global distance field material quantities such as mass,
damping, and a stiffness distribution, which are often
considered constant. However, users can modify these
material distributions interactively or directly. We model
the discretized distance field as a collection of mass
points connected by a network of springs across nearest-
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neighbor voxels. Mass points are located at the sampled
grid points over the entire global scalar field working
space. The special springs for our implicit function don’t
change the geometric positions of the voxel mass points.
Instead, they only change the magnitude of the densities
located at the mass points. Essentially, this new type of
spring will only attract or repel neighbors’ density val-
ues. When users manipulate the implicit solids, the
mass-spring system changes the density values, pro-
ducing the deformable behavior of the object’s shape
modeled by the zero-level set of the discretized global
distance field. We’ve therefore introduced elasticity into
our volumetric implicit objects, which can thus be con-
sidered deformable models.

We formulate the discretized distance field’s motion
equation as a discrete simulation of Lagrangian
dynamics: 

where Mg is the mass matrix, Dg is the damping matrix,
Kg is the stiffness matrix, and fd is the external force
vector. We use the notion dg to denote the global grids’
value compared with the local grid value. The connect-
ing springs generate the internal forces, with each spring
having force f = k(I - I0) according to Hooke’s law. Hua
And Qin’s force-mapping mechanism1 is another inter-
esting method for computing the applied sculpting force
according to the global distance field deformation:

f = −∫c s (u, v, w)dC

where C is any force vector and s(u, v, w) is the distance
distribution function in 3D space. 

Figure 1 shows the point-sampled surface (in red)
residing in the mass-spring grids of the global distance
field (in black). The blue grids are the local sampling
grids G of one point sample, which we use to reconstruct

the local trivariate function (see Equation 5) after
deforming the point-sampled surface.

Simulating the behavior of dynamic implicit solids in
the haptics-based environment requires less costly yet
stable time-integration methods that take modest time
steps. Our current implementation uses the forward
Euler method to compute the modified distance values
and their velocity: 

Although the more robust, implicit Euler solver is read-
ily available in our system, we chose a simpler, forward
method for real-time haptic interaction. Adaptively
reducing the integration time step size or increasing the
damping coefficients can mitigate instability due to large
transient applied forces. For example, if d̈gi is greater
than a specified threshold, we use half of the previous
time step as the current simulation time step.

In our implementation, users select any sculpting
region of the object and perform the deformation just
inside this specified global region. This region is inde-
pendent of the surface definition, and limiting the defor-
mation to the region can help achieve interactive
performance.

Dynamic update of point samples. After user
interaction alters the global distance field, we change
the points’ locations because we assume the point sam-
ples are on the implicit function’s zero-level set. When
we deform the distance-field space, we represent the
point sample’s trajectory as {x(t)|s(x(t), p(t)) = 0}.
Here, x(t) is the point’s parameter position in its local
reference domain, and p(t) is the control coefficients
vector. The derivative of s(x(t), p(t)) with respect to
time yields

(6)

To simplify the notation, we use ∇xs to represent the
gradient ∂s(x(t), p(t))/∂x, and ∇ps to represent ∂s(x(t),
p(t))/∂p. We can then rewrite Equation 6 as 

(7)

Because ∇xs and 
.
x are both vectors, no unique solu-

tion for the point velocity exists. We divide
.
x into (vn, vt,

vw), where n = −∇xs/||∇xs|| represents the unit princi-
ple normal vector of the distance field isosurface, t rep-
resents the unit tangent vector, and w represents the
unit binormal vector. The dot product in Equation 7 then
retains only the item containing vn. Therefore, if we
assume that the points are only moving in their normal
direction, we can get their normal velocity:
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Point-sampled surface
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domain, and
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point’s local
domain.



We use this velocity to update the point position by
advancing to the next time step through the forward
Euler method.

Because we’re approximating the surface at each
point sample’s local domain, after user manipulations
we might need to reconstruct the local trivariate func-
tions of the points undergoing deformation. We update
the local grids’ scalar value d and its velocity

.
d by inter-

polating the eight corner values dg and
.
dg stored in each

global cell using Gaussian blending. After evaluating
the new value for d, we use Equation 5 to update the
control coefficients p. We don’t need to update the coef-
ficients’ local trivariate functions in each simulation
step. We can update them together after completion of
the haptic sculpting.

Dynamic sampling. User manipulations (for
example, sculpting or deformation) on the surface
change the point-sampling density. To maintain a good
surface quality, we insert new sample points when sur-
face density becomes too low or simplify the surface by
eliminating points when the surface is squeezed other-
wise. We use an up-sampling scheme2 for point inser-
tion. In each modeling step, each point checks its
neighboring density by projecting its neighbor points
onto its tangent plane. We compute the Voronoi diagram
of these points and choose the Voronoi vertex with the
largest circle radius on the tangent plane. If the radius
is larger than a specified threshold, we project the ver-
tex onto the global distance field isosurface. Using this
approach, we achieve a locally near-uniform surface
density. In the meantime, we also reduce the sampling
density using one of several other methods. To save com-
putation overhead, we didn’t implement the surface sim-
plification scheme (for down-sampling) in our
interactive simulation.

Editing toolkits
Our sculpting system has two classes of tools: haptic

and geometric or topological.

Haptic tools
Haptic tools, such as rope and painting tools, not only

let users perform direct sculpting and deformation with
force feedback, but also enhance  appearance because
users can paint directly on the point set surface. 

Rope tool. Our rope tool lets users select any point
location inside the sculpting region and simulate the
dynamics on the mass points inside the region. A user-
defined function distributes the force among nearby
mass points. The function can be Gaussian, constant,
spherical, or any other distribution. In addition to the
point-based rope tool, our system provides a curve-
based rope tool with which users can apply force along
the user-defined curve using any distribution mode.
Figure 2a shows how we can use the point-based rope

tool to drag a plate’s surface; Figure 2b shows how we
apply a curve-based force to sculpt a letter “G” on the
plate.

Painting tool. Given the haptic interaction, we can
paint directly onto the model’s surface without the cum-
bersome mapping schemes Zwicker et al. describe (see
the “Related Work” sidebar). Our painting scheme is sim-
ilar to that of Gregory et al.4 We use the haptics cursor
as a virtual paintbrush with the user-specified brush
color, brush size, and brush fall-off. The brush size is pro-
portional to the amount of force the user applies—much
like a real paintbrush, which applies more paint if it’s
pressed against the surface harder. In our implementa-
tion, the brush colors a point within its size range accord-
ing to the brush function by blending with the point’s
original color. We used the following brush function:

;

C = Cb * I + Cp *(1 − I) 

where I is paint intensity, Rp is the point’s distance to the
haptics cursor, Rb is brush size, f is a user-specified fall-
off rate, Cb is brush color, Cp is the point’s original color,
and C is the resulting color that smoothly blends Cb and
Cp. If the brush only partly covers a point sample (a
surfel), we can up-sample more points in the partially
covered point sample’s vicinity2 and then perform the
covering test again on the up-sampled points. This
process proceeds recursively until the partially covered
point sample becomes so small that we can project it
directly onto the screen as a single pixel.

While users are performing direct painting on 3D
models, we let them sense the painting tool’s force feed-
back. Because our point set surfaces are embedded in a
global surface distance field, we can easily perform col-
lision detection based on the scalar field’s inside/out-
side property. In our current implementation, we use
Kim et al.’s force-generation scheme5 to decide both the
direction and magnitude of the feedback force. We
determine the direction of the haptic device’s force feed-
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2 Rope tool functions: (a) applying a point-based rope
tool deform a plate’s surface; (b) using a curve-based
rope tool to sculpt a letter “G” on the plate.

(a) (b)



back by interpolating the gradient of eight cell points of
the global grid around the tool tip. We base the force’s
magnitude on the surface’s virtual contact point (VCP),
which is the intersection point between the surface and
the ray along the force direction. Having the VCP lets us
compute the penetration force as proportional to the
distance between the VCP and the tool tip. We can also
simulate friction force by limiting the VCP’s movement,
which accounts for penetration depth.

Additional tools
Our geometric and topological tools use embossing

and engraving and Boolean operations to change the
underlying object’s shape.

Embossing and engraving. Users can easily per-
form embossing or engraving operations on an object
using our implicit scheme. They can use an existing image
to define the distance value at the point samples. Figure
3a is an image of global map. We construct the implicit
surface by fitting the distance value associated with each
point sample. We then displace the points onto the iso-
surface of the local distance field, giving us embossing or
engraving effects on the point set surface. Figures 3b and
3c show a global map embossed onto a sphere shape and
painted using the haptic device. We can easily perform
engraving operations on the surfaces by reversing the dis-
tance field along the opposite direction.

Boolean operations. Another major advantage
of the implicit surface modeling system is that users can
easily perform constructive solid geometry (CSG)
Boolean operations such as union, intersection, and dif-
ference between half-space primitives because com-
puting surface–surface intersection only requires
evaluating the implicit function. For point-sampled
geometry, Pauly et al. proposed using the MLS projec-
tion operator to conduct inside/outside classification;
however, the projection operation can be rather time
consuming. In our implicit scheme, we perform the
inside/outside classification by simply evaluating the
implicit function (see Equation 3).

At present, our framework doesn’t let us represent
objects with sharp features. Therefore, when perform-
ing Boolean operations, if we want to retain the sharp
intersection of two original point set surfaces, we treat
the resulting surface as two different patches of an
implicit surface. Otherwise, we treat the resulting sur-
face as a single patch for a relatively smooth intersec-
tion.

To render a sharp corner, we use the rendering
scheme Alexa et al.2 propose—that is, we sample addi-
tional points in an existing point sample’s neighborhood
at a resolution sufficient to conform to the screen space
resolution. Using this rendering method, illustrated in
Figure 4, it’s simple to render two surfaces’ sharp inter-
section. We sample additional points (in blue) near the
red point, evaluating the implicit function and discard-
ing the points outside the surface.

Using CSG Boolean operations, users can create
objects of complicated geometry and arbitrary topology.
More specifically, given two closed surfaces, S1 and S2,
represented by two point sets, P1 and P2, we obtain a new
point set P that defines the resulting surface S. Appar-
ently, P consists of two subsets: Q1 ⊆ P1 and Q2 ⊆ P2. We
can thus perform the operations by computing Q1 and Q2

using Table 1. In the table, s1 and s2 are the implicit sur-
face functions corresponding to S1 and S2, and we
assume that they have negative values outside the sur-
face and positive values inside.

Figure 5 lists the results of performing different
Boolean operations on two rabbit models, with sharp
corners preserved. 

Implementation and results
We implemented the simulation and rendering parts

of our system on a Microsoft Windows XP PC with dual
Intel Xeon 2.4-GHz CPUs, 2 Gbytes of RAM, and an
Nvidia GeForce Fx 5800 Ultra GPU. We wrote the sys-
tem entirely in Microsoft Visual C++ and built the
graphics-rendering component on OpenGL. A SensAble
Technologies Phantom, attached to a low-end PC, pro-
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(a) (b) (c)

3 Embossing and engraving tool:
(a) grayscale image of the global
map, which we use to define the
local distance field; (b) embossed
sphere; and (c) virtual earth painted
using the haptic device.

Outside

Inside

Outside

Inside
4 Rendering of
point samples
(red) near the
intersection
curve (green) of
two isosurfaces.

Table 1. Classification of our implicit Boolean operations.

Point Subset Point Subset 
Operation Q1 with Q1 ⊆ P1 Q2 with Q2 ⊆ P2

S1 ∪ S2 {p ∈ P1|s2(p) < 0} {p ∈ P2|s1(p) < 0}
S1 ∩ S2 {p ∈ P1|s2(p) ≥ 0} {p ∈ P2|s1(p) ≥ 0}
S1 − S2 {p ∈ P1|s2(p) < 0} {p ∈ P2|s1(p) ≥ 0}



vided haptic input and force feedback. Figure 6 shows
the haptic user interface.

System configuration
To reduce latency and maximize throughput when

using haptic tools, we resort to a parallel technique that
multithreads the haptics, graphics, and sculpting
processes with weak synchronization (see Figure 7).
This technique significantly improves performance and
permits a parallel haptic sculpting implementation given
high-end multiprocessor computing resources.

Because the haptics server processes haptic input and
output exclusively, it need not compete with the com-
putationally intensive simulation thread implemented
in a high-end workstation.

We implement the force-mapping thread in the high-
end workstation as a single thread with highest priority.
The force-mapping thread takes the haptics cursor posi-
tion and the implicit point set surface information and
computes the necessary force feedback, which it sends to
the haptics server via network communication. Because
our force-mapping thread has the highest priority, it can
maintain the haptic refresh rate, which is no less than 1
KHz. Typically, the simulation process is much slower
than 1 KHz, so our force-mapping thread must estimate
the resultant force several times between updates. If we
computed the force using only a piecewise constant esti-
mation between updates, the user would feel a snapping,
as if pulling the surface over ridges. 

Our current implementation uses the exponential
weighted average extrapolation scheme to smooth the
resulting force. We formulate the underlying mathe-
matics as Ei+1 = Ei α + Fi(1 − α), where Ei is the expect-
ed force value at time i, α ∈ (0, 1) is the smoothing
factor, and Fi is the value of the constant force between
updates. This force-extrapolation scheme smoothes the
resulting force while anticipating large changes.

Because we also implement the rendering and simu-
lation on different threads, when we run the system on
a dual-processor board, the two components won’t inter-
fere with each other from a CPU load viewpoint. For sim-
ple colored point surfaces, we simply render the surfaces
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5 Results of
implicit Boolean
operations: 
(a) union (rabbit
∪ rabbit); 
(b) intersection
(rabbit ∩ rabbit);
and (c) differ-
ence (rabbit −
rabbit). 

(a) (b) (c)

6 Haptics-based user interface. The user is using a rope tool to sculpt the
hand of a Santa Claus model.
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as point sprites, small disks, or spheres using the QSplat
structure. For high-quality antialiased point rendering,
we implement the rendering component using hard-
ware-accelerated splatting.6 Our experiments have
shown that Ren et al.’s hardware-accelerated EWA splat-
ting is fast enough for moderate-sized (fewer than
100,000 points) point set surfaces compared with the
simulation speed, so the splatting technique will not
become a bottleneck of our overall performance.

During the sculpting simulation, we set the number of
free control coefficients and local grids to 3 × 3 × 3.
Results showed that this number is sufficient for each
point sample in our experiments. To achieve interactive
simulation, our dynamic sculpting only handles rela-
tively small data sets (discretizing the global distance
field is space consuming, and simulating the dynamics
on large data sets is time consuming).

Currently, we don’t consider the self-intersection
problem for our interactive system because we assume
users will always try to avoid self-intersection when
manipulating the surfaces. We’re planning to consider
this issue in our future work, however.

Time performance
We’ve performed many experiments and have record-

ed the running time for constructing implicit surfaces
and for updating the sculpting operations without
dynamically updating the local domains. Tables 2 and 3
detail the results. We don’t include the dynamic sam-
pling time in Table 3 because it greatly depends on the
number of points inserted on each simulation step.
(Note that the haptics loop is always performed within
1 microsecond on the low-end haptics server.) Table 3
shows that the number of point samples inside the
sculpting region is fundamental to system performance.
Thus, it’s important to limit the sculpting region to only
the surface of interest.

Results
Using our implicit point set surface modeling frame-

work, we’ve created several objects. Figure 8 shows car-
toon-style characters created from some simple data sets
such as spheres, ellipses, and cylinders. To create the
apple and lemon characters, we used the haptics-based
rope tool to pull out the arms and legs from both bodies
as well as a bump on the lemon’s head, and to push in a
dent on the apple’s head. We used Boolean operations
to add the hands, feet, noses, and eyes. Finally, we used
haptics painting to make the images in Figure 8 attrac-
tive. We created the IEEE CG&A logo using a haptics-
based curve tool and Boolean operations. We began
with five cubic blocks and drew the characters as curves
on the surfaces. We then applied the curve-based rope
tool on the curves to sculpt the logo on the plates. Expe-
rienced users completed similar examples in less than
15 minutes.

Conclusion
Several extensions to our work are possible in the near

future. For example, to adapt our system to support
global deformation of the point set surface, we could
integrate the scalar-field-based freeform deformation
which is performed by manipulating the underlying
scalar field. In addition, we’ll further explore the dynam-
ic resampling scheme so we can dynamically change
point set surface topology such as with sketch-based
editing. ■
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Table 2.  Running time for the implicit surface
construction.

Construction 
Point Samples Time (seconds) 

1,442 2.575340
4,500 8.177936
8,000 15.378002
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Table 3. Updating time for the dynamic simulation.

Mass Points Points Inside Updating Time (seconds)
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40 × 40 × 40 6,060 0.050563
20 × 20 × 20 16,071 0.029026
30 × 30 × 30 16,071 0.042454
40 × 40 × 40 16,071 0.066969

8 Cartoon
images created
using haptics-
based rope tool,
Boolean opera-
tions, and hap-
tics painting.
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