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Abstract

Subdivision surfaces are extensively used to model smooth shapes of arbitrary topology. Re-
cursive subdivision on an user-defined initial control mesh generates a visually pleasing smooth
surface in the limit. However, users have to carefully select the initial mesh and/or manipulate
the control vertex positions at different levels of subdivision hierarchy to satisfy the functional
and aesthetic requirements in the smooth limit surface. This modeling drawback results from
the lack of direct manipulation tools for the limit surface. In this paper, we integrate techniques
from physics-based modeling with geometric subdivision methodology, and present a scheme for
direct manipulation of the smooth limit surface generated by the (modified) butterfly scheme
using physics-based “force” tools. This procedure-based surface model obtained through but-
terfly subdivision does not have a closed-form analytic formulation (unlike other well known
spline-based models), and hence poses challenging problems to incorporate mass and damping
distribution functions, internal deformation energy, forces, and other physical quantities required
to develop a physics-based model. Our primary contributions to computer graphics and geomet-
ric modeling include : (1) a new hierarchical formulation for locally parameterizing the butterfly
subdivision surface over its initial control polyhedron, (2) formulation of physics-based butterfly
subdivision surface as a set of novel finite elements, and (3) optimal approximation of this new
type of finite elements by a collection of existing finite elements subjected to implicit geometric
constraints. Our new dynamic model can be sculpted directly by applying synthesized forces,
and its equilibrium is characterized by a minimum of the deformation energy subject to the im-
posed constraints. We demonstrate that this novel dynamic framework not only provides a direct
and natural means of manipulating geometric shapes, but also facilitates hierarchical shape and
non-rigid motion estimation from large range and volumetric data sets using very few degrees
of freedom (control vertices that define the initial polyhedron). This new physics-based model
promises a greater potential of subdivision schemes in computer graphics, geometric modeling,

and virtual environments.
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I[. INTRODUCTION

The concept of subdivision is ubiquitous in computer science. In visual computing areas, subdivision
surfaces are extensively used to model smooth shapes of arbitrary topology for computer graphics, an-
imation, and geometric design applications. A typical recursive subdivision scheme produces a visually
pleasing smooth surface in the limit by repeated application of a fixed set of refinement rules on an user-
defined initial control mesh. Despite the presence of a variety of subdivision schemes in the computer
graphics and geometric modeling literature, there is no direct and natural way of manipulating the limit
surface. The current state-of-the-art only permits the modeler to interactively obtain the desired effects
on the smooth surface by kinematically manipulating the vertex positions at various levels of subdivision
hierarchy. In this paper, we tackle the challenging problem of direct manipulation of the limit subdivision
surface at arbitrary locations/areas and offer a novel solution to this problem by embedding the modified
butterfly subdivision scheme in a physics-based modeling framework. As a result, unlike the existing
geometric solutions that only allow the operations on control vertices, our methodology and algorithms
permit the user to physically modify the shape of subdivision surfaces at desired locations via application
of forces. This gives the user an intuitive and natural feeling that is produced while modeling with real
clay /play-dough. We will also demonstrate that the proposed model efficiently recovers shapes as well as
non-rigid motions from large range and volumetric data sets. Note that, this paper neither proposes a
new subdivision technique nor provides a different interpretation of any existing subdivision technique,
but integrates the advantages of subdivision surface-based and physics-based modeling techniques to solve
important theoretical and practical problems. Although the principles of physics-based modeling are well
understood by the graphics experts and modeling researchers, this paper will greatly advance the state

of the art in physics-based shape modeling due to the following contributions : (1) a hierarchical local
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parameterization scheme for (modified) butterfly subdivision surfaces is derived; (2) material properties
are assigned to the smooth limit surface in order to embed this geometric model in a physics-based mod-
eling framework; (3) the smooth limit surface is decomposed into a set of novel finite elements; (4) the
motion equations that govern the behavior of (modified) butterfly subdivision surfaces are derived; (5)
users can sculpt this physics-based model at desired locations and the model responds naturally (as a
real-world object would); and (6) algorithms and procedures are developed to best approximate this novel
finite element using a collection of existing lower order finite elements. We will address the novelty of
the proposed model, detail our contributions, and compare this new model with our previous research
results on dynamic subdivision surfaces in later sections. First, we will briefly review the previous work

on subdivision surfaces.

A. Background

In [1], Chaikin first introduced the concept of subdivision to the computer graphics community for
generating a smooth curve from a given control polygon. During the last two decades, a wide variety
of subdivision schemes for modeling smooth surfaces of arbitrary topology have been derived following
Chaikin’s pioneering work on curve generation. In general, these subdivision schemes can be catego-
rized into two distinct classes namely, (1) approximating subdivision techniques and (2) interpolating
subdivision techniques.

Among the approximating schemes, the techniques of Doo and Sabin [2], [3] and Catmull and Clark
[4] generalize the idea of obtaining uniform biquadratic and bicubic B-spline patches respectively from
a rectangular control mesh. In [4], Catmull and Clark developed a method for recursively generating a
smooth surface from a polyhedral mesh of arbitrary topology. The Catmull-Clark subdivision surface,
defined by an arbitrary initial mesh, can be reduced to a set of standard B-spline patches except at a
finite number of degenerate points. In [5], Loop presented a similar subdivision scheme based on the
generalization of quartic triangular B-splines for triangular meshes. Hoppe et al. [6] extended his work
to produce piecewise smooth surfaces with selected discontinuities. Halstead et al. [7] proposed an

algorithm to construct a Catmull-Clark subdivision surface that interpolates the vertices of a mesh of
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arbitrary topology. Peters and Reif [8] proposed a simple subdivision scheme for smoothing polyhedra.
Most recently, non-uniform Doo-Sabin and Catmull-Clark surfaces that generalize non-uniform tensor
product B-spline surfaces to arbitrary topologies were introduced by Sederberg et al. [9]. All the schemes
mentioned above generalize recursive subdivision schemes for generating limit surfaces with a known
parameterization. Various issues involved with character animation using these approximating subdivision
schemes were discussed at length by DeRose et al. [10].

The most well-known interpolation-based subdivision scheme is the “butterfly” algorithm proposed by
Dyn et al. [11]. Butterfly subdivision method, like other subdivision schemes, makes use of a small
number of neighboring vertices for subdivision. It requires simple data structures and is extremely easy
to implement. However, it needs a topologically regular setting of the initial (control) mesh in order
to obtain a smooth C' limit surface. A variant of this scheme with better smoothness properties can
be found in [12]. Zorin et al. [13] has developed an improved interpolatory subdivision scheme (which
we call the modified butterfly scheme) that retains the simplicity of the butterfly scheme and results
in much smoother surfaces even from irregular initial meshes. These interpolatory subdivision schemes
have extensive applications in wavelets on manifolds, multiresolution decomposition of polyhedral surfaces
and multiresolution editing. A variational approach for interpolatory refinement has been proposed by
Kobbelt [14], [15] and by Kobbelt and Schroder [16]. In this approach, the vertex positions in the refined
mesh at each subdivision step are obtained by solving an optimization problem. Therefore, these schemes
are global, i.e., every new vertex position depends on all the vertex positions of the coarser level mesh.
The local refinement property which makes the subdivision schemes attractive for implementation in the
computer graphics applications is not retained in the variational approach.

The derivation of various mathematical properties of the smooth limit surface generated by the sub-
division algorithms is rather complex. Doo and Sabin [17] first analyzed the smoothness behavior of
the limit surface using the Fourier transform and an eigen-analysis of the subdivision matrix. Ball and
Storry [18], [19] and Reif [20] further extended Doo and Sabin’s prior work on continuity properties of
subdivision surfaces by deriving various necessary and sufficient conditions on smoothness for different

subdivision schemes. Specific subdivision schemes were analyzed by Schweitzer [21], Habib and Warren
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[22], Peters and Reif [23] and Zorin [24]. Most recently, Stam [25] presented a method for exact evaluation

of Catmull-Clark subdivision surfaces at arbitrary parameter values.

B. Shape modeling using the physics-based subdivision-surface model

Although recursive subdivision surfaces are powerful for representing smooth geometric shapes of ar-
bitrary topology, they constitute a purely geometric representation, and furthermore, conventional geo-
metric modeling with subdivision surfaces may be difficult for representing highly complicated objects.
For example, modelers are faced with the tedium of indirect shape modification and refinement through
time-consuming operations on a large number of (most often irregular) control vertices when using typi-
cal subdivision surface-based modeling schemes. Despite the advent of advanced 3D graphics interaction
tools, these indirect geometric operations remain non-intuitive and laborious in general. In addition, it
may not be enough to obtain the most “fair” surface that interpolates a set of (ordered or unorganized)
data points. A certain number of local features such as bulges or inflections may be strongly desired while
requiring geometric objects to satisfy global smoothness constraints in geometric modeling and computer
graphics applications. In contrast, physics-based modeling provides a superior approach to shape model-
ing that can overcome most of the limitations associated with traditional geometric modeling approaches.
Free-form deformable models governed by the laws of continuum mechanics are of particular interest in
this context. These dynamic models respond to externally applied forces in a very intuitive manner.
The dynamic formulation marries the model geometry with time, mass, damping and constraints via a
force balance equation. Dynamic models produce smooth, natural motions which are easy to control. In
addition, they facilitate interaction — especially direct manipulation of complex geometries. Furthermore,
the equilibrium state of the model is characterized by a minimum of the deformation energy of the model
subject to the imposed constraints. The deformation energy functionals can be formulated to satisfy local
and global modeling criteria, and geometric constraints relevant to shape design can also be imposed.
The dynamic approach subsumes all of the aforementioned modeling capabilities in a formulation which
grounds everything in real-world physical behavior.

Free-form deformable models were first introduced to computer graphics and visualization in Terzopou-
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los et al. [26] and further developed by Terzopoulos and Fleischer [27], Pentland and Williams [28],
Metaxas and Terzopoulos [29] and Vemuri and Radisavljevic [30]. Celniker and Gossard [31] developed
a system for interactive free-form design based on the finite element optimization of energy functionals
proposed in [27]. Bloor and Wilson [32], [33], Celniker and Welch [34] and Welch and Witkin [35] proposed
deformable B-spline curves and surfaces which can be designed by imposing the shape criteria via the
minimization of the energy functionals subject to hard or soft geometric constraints through Lagrange
multipliers or penalty methods. Qin and Terzopoulos [36], [37], [38] developed dynamic NURBS (D-
NURBS) which are very sophisticated models suitable for representing a wide variety of free-form as well
as standard analytic shapes. The D-NURBS have the advantage of interactive and direct manipulation of
NURBS curves and surfaces, resulting in physically meaningful hence intuitively predictable motion and
shape variation.

A severe limitation of the existing deformable models, including D-NURBS, is that they are defined on
a rectangular parametric domain. Hence, it can be very difficult to model surfaces of arbitrary genus using
these models. In [10], DeRose et al. assigned material properties to control meshes at various subdivision
levels in order to simulate cloth dynamics using subdivision surfaces. Note that, they assign physical
properties on the control meshes at various levels of subdivision and not on the limit surface itself, and
hence can not solve the modeling goal we are trying to achieve. Previously we introduced a dynamic
Catmull-Clark subdivision surface model [39], [40] which combined the benefits of subdivision surfaces
for modeling arbitrary topology as well as that of dynamic splines for interactive shape manipulation
by applying synthesized forces. The dynamic (modified) butterfly subdivision surface model formulated
and developed in this paper aims to achieve the same long-term objective, i.e., a formal mechanism of
allowing the modeler to directly and intuitively manipulate the smooth limit surface of arbitrary topology,
as if they were seamlessly sculpting a piece of real-world “clay”. However, this new model is superior to
our previously reported research in several significant aspects which will be discussed in detail later in
Section I-D. In this paper, we derive a novel technique for locally parameterizing the smooth limit surface
generated by the modified butterfly subdivision surface algorithm which embeds the proposed model in

a dynamic framework in a straight-forward manner. The model can be initialized interactively by an
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user-defined control mesh and is amenable to further sculpting via direct application of synthesized forces
to any region of object surface. The formulation and implementation details are discussed in subsequent

sections.

C. Shape and motion estimation using the physics-based subdivision-surface model

The dynamic subdivision surface model has been developed primarily for modeling arbitrary (known)
topology where modelers can directly manipulate the limit surface by applying synthesized forces in an
intuitive fashion. However, as we have shown in our earlier work [41], another important application of the
dynamic subdivision surfaces is in non-rigid shape and motion reconstruction/recovery. Accurate shape
recovery requires distributed parameter models which typically possess a large number of degrees of free-
dom. On the other hand, efficient shape representation imposes the requirement of geometry compression,
i.e., models with fewer degrees of freedom. These requirements are conflicting and numerous researchers
have been seeking to strike a balance between these contradicting requirements [30], [38], [41], [42], [43],
[44], [45], [46], [47]. Another important criterion in the design of shape models is that the initialization
of the model during the shape recovery process should not be restricted to globally parameterized input
meshes since it may be infeasible to globally parameterize shapes of arbitrary topology. A physics-based
model best satisfying the above mentioned criteria is an ideal candidate for a solution to the shape recovery
problem for obvious reasons.

Deformable models which come in many varieties, have been used to solve the problem in the physics-
based modeling paradigm. These models involve the use of either fixed size [30], [43], [48], [49], [50]
or adaptive size [44], [46], [51], [52], [53], [54] grids. The models with fixed grid size generally use less
number of degrees of freedom for representation at the cost of accuracy of the recovered shape. On the
other hand, models using adaptive grids generally need large number of degrees of freedom to recover the
shapes accurately. Note that the shapes being recovered from the image data are smooth in most of the
medical applications, i.e. the anatomical structures even with considerable amount of details have more
or less a C! surface. Under these circumstances, the finite element approaches as in [43], [46] need a

large number of degrees of freedom for deriving a smooth and accurate representation. In addition, they

August 20, 1998 DRAFT



can not represent shapes with known arbitrary topology. Moreover, almost all of these schemes require a
globally parameterized mesh as their input which may be infeasible at times.

Our previous dynamic subdivision surface model [39], [40], [41] offered an elegant solution to the above
mentioned problem as it could recover complex shapes in a hierarchical fashion using very few degrees
of freedom without requiring parameterized input mesh. However, the model proposed in this paper
outperforms the previous one in the compactness of the model representation. We will show experimental
results in support of this claim. We will also demonstrate the potential of this model in motion tracking
and visualization of a dynamically deforming shape from a time sequence of volumetric data sets. Like
the previous model, the dynamic modified butterfly subdivision surface model also deforms under the
influence of synthesized forces to fit the underlying shape in the given range or volumetric data set via

the principle of energy minimization.

D. Contributions

In this section, we summarize the contributions of the present work along with the advantages of
the proposed dynamic modified butterfly subdivision surface model over the dynamic Catmull-Clark
subdivision surface model [39], [40]. The primary contributions of the present work are as follows.

o We systematically derive a local parameterization scheme for the modified butterfly subdivision sur-
faces in a hierarchical style, and subsequently the initial control polyhedron can be viewed as the
parametric domain of the physics-based smooth limit surface.

o We treat the dynamic subdivision surface in the limit as a “real” physical object and represent the
smooth limit surface as a set of novel finite elements whose shape (basis) functions are derived using
the modified butterfly subdivision scheme. We envision that this new finite element method will prove
to be useful not only in the areas of computer graphics and geometric design, but also in engineering
analysis.

o We use modified butterfly subdivision techniques to create a surface model that incorporates mass and
damping distribution functions, internal deformation energy, forces, and other physical quantities. We

also systematically formulate the motion equations for this (modified) butterfly subdivision surface
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whose degrees of freedom are the collection of initial user-specified control vertices. Therefore, the
advantages of both the physics-based modeling philosophy and the geometric subdivision schemes are
presented within a single unified framework.

o Users will be able to manipulate this physics-based model in an arbitrary region, and the model
responds naturally (just like the real-world object) to this force application. This shape deformation
is quantitatively characterized by the time-varying displacement of control points that uniquely define
the geometry of the limit surface.

o We develop algorithms and procedures which approximate our novel finite element using a collection
of linear and/or bilinear finite elements subject to the implicit geometric constraints enforced by the
butterfly subdivision rules. This hierarchically-structured approximation is optimal in the sense that
it can fall within any user-specified error tolerance.

Although the long-term goals inherent in the previously-developed dynamic Catmull-Clark model [39],
[40] are the same as our current endeavor of deriving dynamic modified butterfly subdivision scheme, the
research presented in this paper achieves them in a much more elegant fashion. First of all, the finite
element implementation of the dynamic Catmull-Clark subdivision surface is specific to the subdivision
technique involved where a diversity of complicated finite elements must be employed in order to account
for the special cases and can not be readily generalized to other approximating subdivision schemes in
a straight-forward way. However, the finite element techniques developed in this paper can be easily
generalized to other interpolatory (as well as approximating) subdivision schemes involving triangular (or
n-sided) meshes. Second, for some specific cases the plate energy of Catmull-Clark subdivision surface
diverges as shown in [7], hence various case analysis need to be performed to derive the internal energy of
the dynamic Catmull-Clark subdivision surface model. The internal deformation energy of the dynamic
butterfly scheme can be derived in an unified fashion for a spectrum of scenarios. Third, for both models,
we need to derive the closest point on the limit surface from a given point in 3D for force applications.
The calculation overhead involved in this process is significantly less for the butterfly case as it is an
interpolatory scheme where all vertices at various levels of subdivision lie on the limit surface, and the

search space can be reduced rapidly in a hierarchical fashion. The situation is quite different for Catmull-

August 20, 1998 DRAFT



11

Clark subdivision scheme since it is an approximating scheme, and the technique used for finding the
closest model point [48] is computationally expensive. The force application is vital to any physics-
based model, and hence the adopted computationally inexpensive method to find the closest point for
the proposed scheme in this paper has very significant advantages over the previous model. Lastly, it
has been empirically found that the recovered shape is more compact (less number of degrees of freedom)
when using the proposed model in comparison with our earlier reported model using the same data set

and model-fitting criteria.

E. Qverview

The rest of the paper is organized as follows: Section II presents the detailed formulation of the dynamic
modified butterfly subdivision surfaces. The implementation details are presented in Section III followed

by experimental results in Section IV. Finally, we make the concluding remarks in Section V.

II. FORMULATION

In this section, we provide a systematic formulation of the dynamic subdivision surface model. First,
we briefly review the modified butterfly subdivision scheme. Next we introduce a local parameterization
scheme which will facilitate the formulation of the smooth limit surface as a function of the control point
positions defining the initial mesh. This parameterization scheme is then used to derive the dynamic
model. It may be noted that these techniques can be generalized to define and construct a generic
dynamic framework for other triangle-based subdivision surface schemes as well, but we will focus only

on the modified butterfly subdivision technique in this paper.

A. The (modified) butterfly subdivision scheme

The butterfly subdivision scheme [11], like many other subdivision schemes used in geometric design
literature/applications, starts with an initial triangular mesh which is also known as the control mesh.
The vertices of the control mesh are known as the control points. In each step of subdivision, the initial
(control) mesh is refined through the transformation of each triangular face into a patch with four smaller

triangular faces. After one step of refinement, the new mesh in the finer level retains the vertices of each
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(a) (b)

Fig. 1. (a) The control polygon with triangular faces; (b) Mesh obtained after one subdivision step.

triangular face in the previous level and hence, interpolates the coarser mesh in the previous level. In
addition, every edge in each triangular face is spilt by adding a new vertex whose position is obtained by
an affine combination of the neighboring vertex positions in the coarser level. For instance, the mesh in
Fig.1(b) is obtained by subdividing the initial mesh shown in Fig.1(a) once. It may be noted that all the
newly introduced vertices (marked in blue) corresponding to the edges in the original mesh have valence
(degree) 6, whereas the position and valence of the original vertices (marked in red) do not change in the
subdivided mesh.

In the original butterfly scheme, the new vertices corresponding to the edges in the previous level are
obtained using an eight-point stencil as shown in Fig.2(a). The name of the scheme originated from the
“butterfly”-like configuration of the contributing vertices. The weighing factors for different contributing
vertex positions are shown in Fig.2(b). The vertex e{;l in the j + 1-th level of subdivision, corresponding
to the edge connecting vertices v{ and vg at level 7, is obtained by

elT = 0.5(v] +v)) + 20wV} + v)) — w(v + v +vI + V), (1)

where 0 < w < 1, and vg denotes the position of the i-th vertex at the j-th level.
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Fig. 2. (a) The contributing vertices in the j-th level for the vertex in the j+1-th level corresponding to

the edge between v/ and vJ; (b) the weighing factors for different vertices.

The butterfly subdivision scheme produces a smooth C* surface in the limit except at the extraordinary
points corresponding to the extraordinary vertices (vertices with valence not equal to 6) in the initial
mesh [13]. All the vertices introduced through subdivision have valence 6, and therefore, the number of
extraordinary points in the smooth limit surface equals the number of extraordinary vertices in the initial
mesh. Recently, this scheme has been modified by Zorin et al. [13] to obtain better smoothness properties
at the extraordinary points. In [13], all the edges have been categorized into three classes : (i) edges
connecting two vertices of valence 6 (a 10 point stencil, as shown in Fig.3(a), is used to obtain the new
vertex positions corresponding to these edges), (ii) edges connecting a vertex of valence 6 and a vertex of
valence n # 6 (the corresponding stencil to obtain new vertex position is shown in Fig.3(b), where ¢ = .75
is the weight associated with the vertex of valence n # 6, and s; = (0.25 4 cos(2wi/n) + 0.5cos(4mi/n)) /n,
i=0,1,...,n—1, are the weights associated with the vertices of valence 6), and (iii) edges connecting two
vertices of valence n # 6. The last case can not occur except in the initial mesh as the newly introduced
vertices are of valence 6, and the new vertex position in this last case is obtained by averaging the positions

obtained through the use of stencil shown in Fig.3(b) at each of those two extraordinary vertices.
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(a) (b)

Fig. 3. (a) The weighing factors of contributing vertex positions for an edge connecting two vertices of
valence 6; (b) the corresponding case when one vertex is of valence n and the other is of valence 6.

B. Local parameterization of the limit surface

Oftentimes, the smooth limit surface defined by the recursive subdivision process is of arbitrary topology
where a global parameterization may not be possible. Nevertheless, we can locally parameterize the limit
surface over the domain defined by the initial mesh following a similar approach described in [55]. The
idea is to track any arbitrary point on the initial mesh across the meshes obtained via the subdivision
process (see Fig.4 and 5), so that a correspondence can be established between the point being tracked in
the initial mesh and its image on the limit surface.

The modified butterfly subdivision scheme starts with an initial mesh consisting of a set of triangular
faces. The recursive application of the subdivision rules smoothes out each triangular face, and in the
limit, a smooth surface is obtained which can also be considered as a collection of smooth triangular
patches. The subdivision process and the triangular decomposition of the limit surface is depicted in

Fig.4. Note that, the limit surface can be represented by the same number of smooth triangular patches
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@H & %@

Fig. 4. The smoothing effect of the subdivision process on the triangles of the initial mesh.

as that of the triangular faces in the initial mesh. Therefore, we can express the limit surface s as
n
s=Y s @)
k=1
where n is the number of triangular faces in the initial mesh and sy is the smooth triangular patch in the
limit surface corresponding to the k-th triangular face in the initial mesh.

We are now ready to describe the parameterization of the limit surface over the initial mesh. The
process is best explained through the following example. We choose a simple planar mesh shown in
Fig.5(a) as the initial mesh. An arbitrary point x inside the triangular face abc is tracked over the
meshes obtained through subdivision. The vertices in the initial mesh are drawn in black in Fig.5. After
one step of subdivision, the initial mesh is refined by addition of new vertices which are colored green.
Another subdivision step on this refined mesh leads to a finer mesh with introduction of magenta colored
new vertices. It may be noted that any point inside the smooth triangular patch in the limit surface
corresponding to the face abc in the initial mesh depends only on the vertices in the initial mesh which
are within the 2-neighborhood of the vertices a,b and c due to the local nature of the subdivision process.
For example, the vertex d, introduced after first subdivision step, can be obtained using the 10 point
stencil shown in Fig.3(a) on the edge ab. All the contributing vertices in the initial mesh are within the
1-neighborhood of the vertices a and b. A 10 point stencil can be used again in the next subdivision step
on the edge db to obtain the vertex g. Some of the contributing vertices at this level of subdivision, for
example, the (green colored) 1-neighbors of the vertex b (except d and e) in Fig.5(b), depend on some
vertices in the initial mesh which are within the 2-neighborhood of the vertices a,b and ¢ in the initial
mesh.

In the rest of the formulation, superscripts are used to indicate the subdivision level. For example,

August 20, 1998 DRAFT



16

Fig. 5. Tracking a point x through various levels of subdivision : (a) initial mesh, (b) the selected section
(enclosed by dotted lines) of the mesh in (a), after one subdivision step, (c) the selected section of
the mesh in (b), after another subdivision step.
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vl denotes the collection of vertices at level j which control the smooth patch in the limit surface
corresponding to the triangular face uvw at the j-th level of subdivision. Let v%, = be the collection of
vertices in the initial mesh which are within the 2-neighborhood of the vertices a, b and ¢ (marked black
in Fig.5(a)). Let the number of such vertices be r. Then, the vector v?,., which is the concatenation
of the (z,y,z) positions for all the r vertices, is of dimension 3r. These r vertices control the smooth

triangular patch in the limit surface corresponding to the triangular face abc in the initial mesh. Now,

there exists four (3r x 3r) subdivision matrices (Aqpc);, (Aabe);> (Aabe), and (Agpe),, such that

thu‘lf = (Aﬂbc)tvgbca
V;ed = (Aﬂbc)lvgbca
Vife = (Aﬂbc)rvgbu
Vilef = (Aﬂbc)mvgbm (3)

where the subscripts ¢, [, r and m denote top, left, right and middle triangle positions respectively (indi-
cating the relative position of the new triangle with respect to the original triangle), and v}ldf, Vi vife
and v}, ¢ are the concatenation of the (z,y, z) positions for the vertices in the 2-neighborhood of the cor-
responding triangle in the newly obtained subdivided mesh. The new vertices in this level of subdivision
are marked green in Fig.5(b). The 2-neighborhood configuration of the vertices in the newly obtained
triangles is exactly the same as that of the original triangle, hence local subdivision matrices are square
and the vector dimensions on both sides of Eqn.3 are the same. This concept is further illustrated in
Fig.6.

Carrying out one more level of subdivision, along with the old vertices, we get a new set of vertices

which are marked in magenta in Fig.5(c). Adopting a similar approach as in the derivation of Eqn.3, we

obtain
Vggi = (Abed)tvied
Vghg = (Abed)lvéed
Vzih = (Abed)rvied
Vghi = (Abed)mvied (4)
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Fig. 6. Different set of control points at a subdivided level obtained by applying different subdivision
matrices on a given set of control points in a coarser mesh.
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The relative position of the triangular face dgi in Fig.5(c) with respect to the triangular face bed is

topologically the same as of the triangular face adf in Fig.5(b) with respect to the triangular face abe.

Therefore, we can write (Apeq), = (Aqse);-

Using similar reasoning, Equn.4 can be rewritten as

vigi (Ab@d)tvéed = (Aabc)tvéed

Vghg = (Abfid)lv(%ed = (Aabc)lvéed

Vi = (Abed)rvéed = (Aabc)rvéed

Voni = (Aved)Voea = (Aabe),, vy (5)
ghi bed)m Vbed abc)m Vbed-

Combining Eqn.3 and Eqn.5, we get

Vggi = (Aabc)t(Aabc)lvgbca
Vghg = (Aﬂbc)l(AabC)lvgbca
Vi = (AﬂbC)T(AabC)lvgbm
V;hi (Aabc)m(Aabc)lV2bc- (6)

Let x be a point with barycentric coordinates (a2, ., 8%, .,72,.) inside the triangular face abc. When the
initial mesh is subdivided, x becomes a point inside the triangular face bed with barycentric coordinates
(o> Bteas Vieq)- Another level of subdivision causes x to be included in the triangular face dgi with
barycentric coordinates (ag,;, 33,72, Let s/, denote the j-th level approximation of the smooth
triangular patch sgp. in the limit surface corresponding to the triangular face abc in the initial mesh. Now

0 .
Vape Can be written as

T T T
A A A

0 N - P
Vabe = [@z: bz, Cay ooy, by, Cy, .oz, bz cs,

]T
where the subscripts z, y and z indicate the x, y and z coordinates respectively of the corresponding

vertex position. The expressions for v; , and vj ; can also be written in a similar manner. Next, we

construct the matrix ngc as follows:
_ r - - -
02,0, 8%0:7%0,0,...,0,0,...,0,0,...,0
aabc:ﬁabmr)/abc: grery Uy Uy ey Uy Uy ey
r e r
BO x _ —_—~— o ) o P———
a’bC( ) 0""707aabc’ﬁab077abc707'"70707"'70
r r j;
0,-..0,0,...,0,0%.. %700, 0, -, 0
IARER A A SERRS 7aabc7/6abc7’yabc7 y
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The matrices By, and Bj,; can also be constructed in a similar fashion. We can now write sJ,,.(x),

sk..(x), and s?, (x) as

abc
Sgbc(x) = ngC(X)ngc,
Swe(®) = Bla(Viea = Big()(Aane) Vo, @
S?Lbc(x) = B?lgi(x)vigi = Bégi(x)(AabC)tvéed = B?lgi(X)(Aabc)t(AabC)lvgbc'

Proceeding in a similar way, the expression for sibc(x), Jj-th level approximation of sg.(x), is given by
J

A\

Sibc(x) = Bzww (%) (AabC)m s (AabC)t(AabC)z ngc

= B{ww(x)(AZLbC)vgbc
= B?Lbc(x)vgbm (8)
where x is inside the triangular face uvw at level j (with an assumption that uvw is the triangular face
in the middle with respect to its coarser level original triangular face in the previous level), (Aj

abc) =
(Adbe)yy, - - - (Aabe) (Aape), and Bibc(x) = B{ww(x)(Aibc). It may be noted that the sequence of applying
(Agbe)s> (Aabe); (Agbe), and (Agpe),, depends on the triangle inside which the tracked point x falls after
each subdivision step. Finally, we can complete the local parameterization process by writing
Sane(x) = (Jim B, (x)) Vs = Base(X)Vise- (9)
In the above equation, By, is the collection of basis functions at the vertices of v0, . It may also be
noted that the modified butterfly subdivision scheme is a stationary subdivision process, and hence new
vertex positions are obtained by affine combinations of nearby vertices. This guarantees that each row of
the matrices (Aqgpe);, (Aabe);s (Aabe), and (Agpe),, sums to one. The largest eigenvalue of such matrices
is 1 and therefore the limit in Eqn.9 exists. Now, if we assume that the triangular face abc is the k-th face
in the initial mesh, then Eqn.9 can be rewritten as
sk(x) = Bi(x)v) = Br(x)Arp, (10)
where p is the concatenation of the (x,y,z) positions of all the vertices in the initial mesh and the matrix
A}, when post-multiplied by p, selects the vertices v controlling the k-th smooth triangular patch in the

limit surface. If there are t vertices in the initial mesh and r of them control the k-th patch, then p is a

vector of dimension 3t, Ay is a (3r x 3t) matrix and Bg(x) is a (3 x 3r) matrix.
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Combining Eqn.2 and Eqn.10, we get
ZBk JAL)P = J(X)p, (11)
where the (3 x 3t) matrix J is the collection of bas1s functions for the corresponding vertices in the initial

mesh. The vector p is also known as the degrees of freedom vector of the smooth limit surface s.

C. Dynamics

In the previous section, we have derived an expression of the smooth limit surface obtained via infinite
subdivision steps as a function of the control vertex positions in the initial mesh. We now treat the vertex
positions in the initial mesh defining the smooth limit surface s as a function of time in order to embed
the modified butterfly subdivision model in a dynamic framework. The velocity of this surface model can
be expressed as

5(x,p) = J(x)p, (12)
where an overstruck dot denotes a time derivative and x € S°, S° being the domain defined by the initial
mesh. The physics of the dynamic subdivision surface model is based on the work-energy relationship of
Lagrangian dynamics [56] and is formulated in an analogous way to that in [39], [40].

In an abstract physical system, let p;(t) be a set of generalized coordinates which are functions of time
and are assembled into the vector p. Let f;(t) be the generalized force assembled into the vector f, and

acting on p;. Then, the Lagrangian equation of motion can be expressed as
dor oT oOF 0oU
—a 5ttt
dt Op; Op; Opi Op;

where 7', F and U are the kinetic, dissipation and potential energy respectively.

= fi; (13)

Let u be the mass density function of the surface. Then the kinetic energy of the surface is
1 1
T o= 5[ uesTeoseode = JpTMp, (14)
2 Jxeso 2

where (using Eqn.12) M = [ _ ¢, p(x (x)JT (x)J(x)dx is the (3t x 3t) mass matrix. Similarly, let v be the

damping density function of the surface. The dissipation energy is
1 1
Fo= 5[ a0sTestdx = 5p"Dp, (15)
2 xeS° 2

where D = [ o, v(x)JT (x)J (x)dx is the (3t x 3t) damping matrix. The potential energy of the smooth
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limit surface can be expressed as
L r
U = 5p Kp, (16)
where the (3t x 3t) stiffness matrix K is obtained by assigning various internal energies to a discretized
approximation of the limit surface and is detailed in Section III.
Using the expressions for the kinetic, dissipation and potential energy in Eqn.13, we get the motion
equation given by
Mp+Dp+Kp =f,. (17)
The generalized force vector f,, which can be obtained through the principle of virtual work [56], is
expressed as
f, = / JT(x)f(x,t)dx. (18)
xeS°
We can apply various types of forces on the smooth limit surface, and the limit surface would evolve over

time according to Eqn.17 to obtain an equilibrium position characterized by a minimum of the total model

energy.

C.1 Multilevel Dynamics

We have developed a dynamic framework where the smooth limit surface evolves over time in response
to the applied forces. The entire process can be described as follows. Given an initial mesh, a smooth
surface is obtained in the limit. Users can directly apply synthesized forces to this smooth limit surface
to enforce various functional and aesthetic constraints. This direct manipulation is then transferred back
as virtual forces acting on the initial mesh through a transformation matrix (Eqn.18), and the initial
mesh (as well as the underlying smooth limit surface) deforms continuously over time until an equilibrium
position is obtained. The deformation of the surface in response to the applied forces is governed by
the motion equation (Eqn.17). Within our physics-based modeling framework, the limit surface evolves
as a consequence of the evolution of the initial mesh. One can apply various types of forces on the
limit surface to obtain a desired effect, but the possible level of details appearing in a shape that can be
obtained through evolution is constrained by the number of control vertices in the initial mesh. It might

be necessary to increase the number of control vertices in the initial mesh in order to obtain a detailed

August 20, 1998 DRAFT



24

shape through this evolution process.

The number of control vertices defining the same smooth limit surface can be increased by simply
replacing the initial mesh with a mesh obtained after one subdivision step applied to the initial mesh.
This new mesh has more number of vertices but defines the same limit surface. For example, after one
step of modified butterfly subdivision, the initial degrees of freedom p (refer to Eqn.11 and Eqn.12) in
the dynamic system will be replaced by a larger number of degrees of freedom q, where q = Ap. A is
a global subdivision matrix of size (3s x 3t) whose entries are uniquely determined by the weights used
in the modified butterfly subdivision scheme (see Section II-A for the weights). Thus, p, expressed as a
function of q, can be written as

p=(ATA) 'ATq=Alq, (19)
where AT = (ATA)ilAT. Therefore, we can rewrite Eqn.11 and Eqn.12 as
s(x) = (J(x)AN)a, (20)
and
5(x,q) = (J(x)Ah)g, (21)
respectively. Now we derive the equation of motion for this new subdivided model involving a larger
number of control vertices namely q. We need to recompute the mass, damping and stiffness matrices
for this “finer” level. The structure of the motion equation as given by Eqn.17 remains unchanged, but
the dimensionality and the entries of M, D, K, p and f, change correspondingly in this newly obtained
subdivided level. In particular the motion equation, explicitly expressed as a function of q, can be written
as
M,q+ Dyq+ Kyq =1, (22)
where M, = [ o 1(x) (AN IT (x)I (x)Atdx, S! being the domain defined by the newly obtained sub-
divided mesh. The derivation of D,, K, and f; follow suit.

It may be noted that further increase in the number of control vertices, if necessary, can be obtained via
another level of subdivision. Therefore, multilevel dynamics is achieved through recursive subdivision on
the initial set of control vertices. Users can interactively choose any subdivided mesh as the control mesh

for the dynamic model depending on their needs. Alternatively, the system can automatically determine
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the most suitable control mesh for certain applications based on an application-specific criteria.

III. FINITE ELEMENT IMPLEMENTATION

.................
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(b)

Fig. 7. (a) An initial mesh, and (b) the corresponding limit surface. The domains of the shaded elements
in the limit surface are the corresponding triangular faces in the initial mesh. The encircled vertices
in (a) are the degrees of freedom for the corresponding element.

In the previous section, we have expressed the smooth limit surface as a function of the control vertex
positions in the initial mesh, and have assigned mass and damping distribution, internal deformation
energy and forces to the limit surface to develop the corresponding physical model. In this section, we
describe the implementation of this physical model using the finite element method.

In Section IT we pointed out that the smooth limit surface obtained by the recursive application of the
modified butterfly subdivision rules can be represented by a set of smooth triangular patches, each of
which is represented by a finite element. The shape (basis) function of this finite element is obtained by

smoothing a hat function through repeated application of the modified butterfly subdivision rules. The
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number of finite elements in the smooth limit surface is equal to the number of triangular faces in the initial
mesh as mentioned earlier (refer Fig.4 and 7). We now provide a detailed discussion on how to derive the
mass, damping and stiffness matrices for these elements. These elemental matrices can be assembled to
obtain the global physical matrices M, D and K, and a numerical solution to the governing second-order
differential equation as given by Eqn.17 can be obtained using finite element analysis techniques [57].
We use the same example as in Section II (refer Fig.5) to develop the related concepts. The concept of
elements along with the control vertices and their corresponding domains is further illustrated in Fig.7.
We will now show how to derive the mass, damping and stiffness matrices for the element corresponding

to the triangular face abc in Fig.5. The derivations hold for any element in general.

A. Elemental mass and damping matrices

The mass matrix for the element given by sqs. (Eqn.9) can be written as

Mue = [ pG0{Bune()} {Bune() . (23)
XESabe

However, from Eqn.9 we know that the basis functions corresponding to the vertices in v?,. which are
stored as entries in By, are obtained as a limiting process. These basis functions do not have any analytic
form, hence computing the inner product of such basis functions as needed in Eqn.23 is a challenging
problem. In [55], an outline is provided on the computation of these inner products without performing any
integration. In this paper, we develop a different yet simpler approach to solve this problem. The smooth
triangular patch in the limit surface corresponding to the face abc in the initial mesh is approximated by
a triangular mesh with 47/ faces obtained after j levels of subdivision of the original triangular face abc
(each subdivision step splits one triangular face into 4 triangular faces). Then the mass matrix can be
expressed as

47
. T .
Mue =Y [ (B, (0} (B, (o). (24)
i=1 xEA;
The j-th level approximation of the corresponding basis functions can be explicitly evaluated (refer Eqn.8
for an expression of Bibc). An important point to note is that Eqn.8 involves several matrix multiplications

and hence can be very expensive to evaluate. However, the matrix (A, )(= (Aase),y, - - - (Aabe), (Aabe);)

in Eqn.8 encodes how vertices in the 2-neighborhood of the triangular face uvw at level 7 are related to
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the vertices in the 2-neighborhood of the triangular face abc in the initial mesh. In the implementation,
we keep track of how a new vertex is obtained from the contributing vertices in its immediate predecessor
level. If we move up from level j to level 0, we get the information stored in (A7, ) without forming any
local subdivision matrices and thus avoiding subsequent matrix multiplications.

By choosing a sufficiently high value of j, we achieve a reasonably good approximation of the elemental
mass matrices. We eliminate the computations involved in evaluating the integrals in Eqn.24 by using
discrete mass density function which has non-zero values only at the vertex positions of the j-th subdivision
level mesh. Therefore, the approximation of the mass matrix for the element can be written as

Mo = Zu B, (v} (B],(v)}. (25)
where k is the number of vertices in the trlangular mesh with 47 faces. This approximation has been
found to be very effective and efficient for implementation purposes. The elemental damping matrix can

be obtained in a similar fashion.

B. FElemental stiffness matriz

We assign the internal energy to each element in the limit surface, thereby defining the internal energy
of the smooth subdivision surface model. We take a similar approach as in the derivation of the elemental
mass and damping matrix and assign the internal energy to a j-th level approximation of the element.

In this paper, we use three types of internal energy — tension, stiffness and spring energy. For the
examples used throughout the paper, this energy at the j-th level of approximation can be written as

Eqpe ~ EZ, (Eibc) (Eibc) + (Eibc)sp’ (26)
where the subscripts ¢, st and sp denote tension, stiffness and spring respectively.

The expression for the tension energy, which is essentially equivalent to the first order strain (membrane)
energy [58], is

(E%,.), = kt2|vl—v7

= —kt{vabc}?Kibc)t{vibc}, (27)

where k; is a constant, vlj and vJ , the [-th and m-th vertex in the j-th level mesh, are in the 1-

neighborhood of each other, €2 is the domain defined by all such vertex pairs, and vgb . is the concatenation
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of the (x,y,z) positions of all the vertices in the j-th subdivision level of the triangular face abc in the
initial mesh.
Similarly, the expression for stiffness energy, which is equivalent to the second order strain (thin plate)

energy [58], can be written as

. 1 3 ) ' 2
(Ecjtbc)st = §kst Z |vi —2v) + V|
Q
L |
- §k5t{v‘]‘bc} (Kzlbc)st{v?zbc}a (28)

where v{ , vi.and vJ are the three vertices of a triangular face. The summation involves three terms
corresponding to each triangular face, and is over all the triangular faces in the mesh at the j-th level of
subdivision.

Finally, we add a spring energy term which is given by

klm |Vl j | — Zlm) . .
EJ — v —v?
( abc) 2 Z |Vl _ Vm| ( l m)
= E{ngc} (Kfzbc)sp{vibch (29)
where (klm)sp is the spring constant, Q is the domain as in Eqn.27 and ¢, is the natural length of the

spring connected between vlj and vJ . It may be noted that the entries in (Kibc)sp depend on the distance
between the connected vertices and hence, (Kibc)sp, unlike other elemental matrices, is a function of time
which needs to be recomputed in each time step.

Combining the expressions for tension, stiffness and spring energy, we get

Ezbc = %{ngc} {kt( abc) +k5t(Kabc) (K?Lbc)sp}{vt];bc}
= SV V)
= {( LV} (K2, (AL, ) (05}

= {Vabc} {( abc) ( abc)( abc)}{vabc} (30)

where (Agbc) and v?, = are same as in Eqn.8. Therefore, the expression for the elemental stiffness matrix
is given by

Kape = (Aibc) (KZ,.)(A,,). (31)
It may be noted that the matrix multiplications for constructing K. are avoided in the implementation

by following the same technique described in Section ITI-A.
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C. Force Application

The force f(x,t) in Eqn.18 represents the net effect of all externally applied forces. The current im-
plementation supports spring, inflation as well as image-based forces. However, other types of forces like
repulsion forces, gravitational forces etc. can easily be implemented.

To apply spring forces, a spring of stiffness & can be connected from a point dy to a point xg on the
limit surface (or, to the j-th level approximation mesh), the net applied spring force being

f(x,t) = / k(do —s(x,1))d(x — x0)dx, (32)
x€SI
where § is the unit impulse function implying f(xo,t) = k|dg — s(xo,t)| and vanishes elsewhere on the
surface. However, the § function can be replaced with a smooth kernel to spread the force over a greater
portion on the surface. The spring forces can be applied interactively using the computer mouse or the
points from which forces need to be applied can be read in from a file.

To recover shapes from 3D image data, we synthesize image-based forces. A 3D edge detection is
performed on a volume data set using the 3D Monga-Deriche(MD) operator [59] to produce a 3D potential
field P(x,y,z), which we use as an external potential for the model. The force distribution is then
computed as

f(z,y,2) = )\M (33)

VP, 2) I
where A\ controls the strength of the force. The applied force on each vertex at the j-th approximation level
is computed by trilinear interpolation for evaluating Eqn.18 in Cartesian coordinates. More sophisticated
image-based forces which incorporate region-based information such as gradients of a thresholded fuzzy
voxel classification can also be used to yield better and more accurate shape recovery. It may be noted

that we can apply spring forces in addition with the image-based forces by placing points on the boundary

of the region of interest in each slices of the 3D volume (MR, CT etc.) image data.

D. Discrete Dynamic Equation

The differential equation given by Eqn.17 is integrated through time by discretizing the time derivative
of p over time steps At. The state of the dynamic subdivision surface at time ¢ + At is integrated using

prior states at time ¢t and t—A¢. An implicit time integration method is used in the current implementation
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where discrete derivatives of p are calculated using

p(t + At) — 2p(t) + p(t — At)
At? ’

Bt + At) = (34)

and

p(t + At) — p(t — At)
2A¢

The elemental mass, damping and stiffness matrices can be assembled to get the global mass, damping

Pt + At) =

. (35)

and stiffness matrix for the smooth subdivision surface model. However, we do not assemble these global
sparse matrices explicitly for efficiency reasons. For the time varying stiffness matrix, we recompute K at
each time step. Using Eqn.17, Eqn.34 and Eqn.35, the discrete equation of motion is obtained as

(2M + DAt + 2A#K)p(t + At) = 2A¢%F,(t + At) + (DAt — 2M)p(t — At) + 4Mp(t). (36)
This linear system of equations is solved iteratively between each time step using the conjugate gradient

method [60], [61].

E. Model Subdivision

/\ i
evolution evolytion
I\ LN
subdivision same limit| surface
at equilit{)rium with more | patches
Q Q
evol%tion evoILition
@ @
(a) (b)

Fig. 8. Model subdivision to increase the degrees of freedom : (a) evolution of the initial mesh, and (b)
the corresponding limit surface evolution perceived by the user.

The initialized model grows dynamically according to the equation of motion (Eqn.17). The degrees of
freedom of the initialized model is equal to the number of control vertices in the initial mesh as mentioned

earlier. When an equilibrium is achieved for the model, the number of control vertices can be increased by
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replacing the original initial mesh by a new initial mesh obtained through one step of butterfly subdivision.
This increases the number of degrees of freedom to represent the same (deformed) smooth limit surface
and a new equilibrium position for the model can be obtained. This process is depicted schematically in
Fig.8. Model subdivision might be needed to obtain a very localized effect on a smooth limit surface. For
a shape recovery application, one may start with a very simple initial model, and when an approximate
shape is recovered, the degrees of freedom can be increased to obtain a new equilibrium position for the
model with a better fit to the given data set. The error of fit criteria for the discrete data is based on
distance between the data points and the points on the limit surface where the corresponding springs are
attached. In the context of image-based forces, if the model energy does not change between successive
iterations indicating an equilibrium for the given resolution, the degrees of freedom for the model can be
increased by the above-mentioned replacement scheme until the model energy is sufficiently small and the

change in model energy between successive iterations becomes less than a pre-specified tolerance.

IV. RESULTS

The proposed dynamic (modified) butterfly subdivision surface model can be used to represent a wide
variety of smooth shapes with arbitrary genus. The smooth limit surface can be sculpted by applying
synthesized forces in a direct and intuitive way in shape design applications. The underlying shape in
a range or volume data set can also be recovered hierarchically using the proposed dynamic (modified)
butterfly subdivision surface model. Before illustrating the application results of the proposed model, we
would like to point out the advantages of our model over the existing techniques. It is known that shapes
of arbitrary topology can be modeled either by explicit patching or by subdivision surfaces. Continuity
constraints across patches need to be imposed with care while modeling arbitrary topology using explicit
patching techniques. Subdivision surfaces do not face this problem, but one has to manipulate control
vertex positions at various levels of subdivision to obtain a desired smooth shape of arbitrary topology us-
ing subdivision surfaces. Our dynamic subdivision surface model overcomes this problem by allowing the
user to obtain the desired effect on the limit surface by direct sculpting via the application of synthesized

forces. To recover shapes from a given set of points in 3D, the existing subdivision surface based tech-
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(e) (f) (8) (h)

Fig. 9. (a), (b), (c) and (d) : Initial shapes; (e), (f), (g) and (h) : the corresponding modified shapes
after interactive sculpting via force application.

niques resort to complex techniques to derive a mesh for the underlying shape, and then typically mesh
optimization techniques are used to obtain a compact representation of the same. Our model recovers the
shape from a set of points in an efficient hierarchical way — any simple mesh of the same topology can be
used as an initial mesh which will evolve over time to fit the given data and depending on the error of
fit achieved, it will automatically refine itself until prescribed error of fit is obtained. In the rest of this
section, we elaborate on these points via examples.

In a shape modeling application, the user can specify any mesh as the initial (control) mesh, and

the corresponding limit surface can be sculpted interactively by applying synthesized forces. In Fig.9,
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we show several initial surfaces obtained from different control meshes and the corresponding modified
surfaces after interactive sculpting. To change the shape of an initial surface, the user can attach springs
from different points in 3D to the nearest points on the limit surface such that the limit surface deforms
towards these points to generate the desired shape. The initial mesh of Fig.9(a) has 125 faces and 76
vertices (degrees of freedom), the initial mesh of the closed cube-like shape in Fig.9(b) has 24 faces and
14 vertices. The one hole torus in Fig.9(c) and the corresponding modified shape in Fig.9(g) have initial
meshes with 64 faces and 32 vertices. A two hole torus with a control mesh of 272 faces and 134 vertices,
shown in Fig.9(d), is dynamically sculpted to the shape shown in Fig.9(h).

We have performed several experiments testing the applicability of our model to recover the underlying
shapes in range and volume data sets. In all the experiments, the initialized model has a control mesh
comprising of 24 triangular faces and 14 vertices whereas the control mesh of the fitted model has 384
triangular faces and 194 vertices. It may be noted that once an approximate shape is recovered, the model
is refined depending on the data-fitting criteria, thereby increasing the degrees of freedom of the recovered
shape only when necessary. For an error in fit (defined as the maximum distance between a data point
and the nearest point on the limit surface expressed as a percentage of the diameter of the smallest sphere
enclosing the object) of approximately 3%, the initialized model is refined twice following the technique
described in Section III-E. Also, the limit surface of any control mesh (of the desired genus) can be used
as the initialized model. However, an initial mesh with few degrees of freedom usually performs better in
terms of recovering a compact representation of the underlying shape.

In the first shape recovery experiment, we depict the laser range data acquired from multiple views
of a light bulb in Fig.10(a). Prior to applying our algorithm, the data were transformed into a single
reference coordinate system. The model was initialized inside the 1000 range data points on the surface
of the bulb. The fitted dynamic (modified) butterfly subdivision surface model is shown in Fig.10(b) and
(c¢). In the next experiment, the shape of a mechanical part is recovered from a range data set having
2031 data points (Fig.11). We also recover the shape of a human head from a range data set as shown in
Fig.12. The head range data set has 1779 points in 3D. It may be noted that the final shape with a very

low error tolerance is recovered using very few number of control points in comparison to the number of
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(a) (b) ()

Fig. 10. (a) Range data of a bulb along with the initialized model, (d) the fitted dynamic butterfly
subdivision model, and (c) visualization of the shape from another view point.

(a) (b)

Fig. 11. (a) Range data of a mechanical part along with the initialized model, (d) the fitted dynamic
butterfly subdivision model, and (c) visualization of the shape from another view point.

(a) (b) ()

Fig. 12. (a) Range data of a head along with the initialized model, (d) the fitted dynamic butterfly
subdivision model, and (c) visualization of the shape from another view point.
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(a) (b) ()

Fig. 13. (a) Data points identifying the boundary of the caudate nucleus on a MRI slice of human brain,
(b) data points (from all slices) in 3D along with the initialized model, and (c) the fitted dynamic
butterfly subdivision model.

data points present in the original range data set.

We present the recovery of the caudate nucleus (a cortical structure in human brain) from 64 MRI
slices, each of size 256 x 256 in our next experiment. Fig.13(a) depicts a slice from this MRI scan along
with a sparse set of points placed by an expert neuroscientist on the boundary of the shape of interest.
Fig.13(b) depicts the sparse data points (placed in each of the slices depicting the boundary of the shape
of interest) in 3D along with the initialized model. Note that points had to be placed on the boundary of
the caudate nucleus due to lack of image gradients delineating the caudate from the surrounding tissue in
parts of the image. Continuous image based forces as well as spring forces are applied to the model and
the model deforms under the influence of these forces until maximal conformation to the data is achieved.
The final fitted model is shown in Fig.13(c). We like to point out the fact that the recovered shape in [41]
using our previous dynamic subdivision surface model for the same data set has 386 degrees of freedom
and therefore, we achieve a factor of 2 improvement in the number of degrees of freedom required to
represent the model in this particular example.

In the last experiment, we animate the motion of the left-ventricular chamber of a canine heart over
a complete cardiac cycle. The data set comprised of 16 3D CT images, with each volume image having
118 slices of 128 x 128 pixels. First, we have recovered the shape from one data set using image-based

(gradient) as well as point-based forces. Once the shape is recovered from one data set, this fitted model
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(m) (0)

Fig. 14. Snapshots from the animation of canine heart motion over a cardiac cycle using the dynamic
butterfly subdivision model.
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is used as an initialization for the next data set to track the shape of interest. The snapshots from motion
tracking are shown in Fig.14 for the 16 volume data sets. It may be noted that the control mesh describing
the smooth surfaces shown in Fig.14 has only 384 triangular faces with a total of 194 vertices as mentioned
earlier. This experiment clearly shows that our model can be used to track a shape of interest from a set
of time dependent volume data sets in an efficient manner. Note that no other existing purely geometric

subdivision surface technique can be used with (time varying) continuous data sets.

V. CONCLUSIONS

In this paper, we have presented a novel finite element method to derive and analyze the new dynamic
model based on the modified butterfly subdivision surface scheme. The new physics-based surface model
provides a direct and intuitive way of manipulating smooth shapes of arbitrary topology and is very useful
for directly extracting and visualizing the underlying shapes in large range and volume data sets. The
proposed model has also been used successfully for non-rigid motion tracking from a temporal sequence of
volume data sets. We have developed a hierarchical local parameterization of the subdivision scheme which
is critical to the formulation of our dynamic model. We have combined material properties with geometric
entities, formulated the motion equations for our dynamic model, and incorporated the advantages of free-
form deformable models into conventional subdivision scheme. Moreover, we have introduced an efficient
hierarchical dynamic control for various applications. Our experiments indicate a promising future of the
proposed model in computer graphics, geometric modeling and scientific visualization. Furthermore, the
finite element techniques proposed in this paper should be of great interest to the engineering design and

analysis community as well.
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