
Visual Comput (2006) 22: 168–180
DOI 10.1007/s00371-006-0374-y O R I G I N A L A R T I C L E

Seyoun Park
Xiaohu Guo
Hayong Shin
Hong Qin

Surface completion for shape and
appearance

Published online: 3 February 2006
© Springer-Verlag 2006

S. Park (�)
VMS Lab Dept of Industrial Engineering,
Korea Advanced Institute of Science and
Technology, Daejoen, South Korea
parksy@vmslab.kaist.ac.kr

X. Guo
Center of Visual Computing, Dept. of
Computer Science, State University of
New York at Stony Brook, USA
xguo@cs.sunysb.edu

H. Shin
Dept. of Industrial Engineering, Korea
Advanced Institute of Science and
Technology, Daejoen, South Korea
hyshin@kaist.ac.kr

H. Qin
Center of Visual Computing, Dept. of
Computer Science, State University of
New York at Stony Brook, USA
qin@cs.sunysb.edu

Abstract In this paper, we present
a new surface content completion
system that can effectively repair
both shape and appearance from
scanned, incomplete point set inputs.
First, geometric holes can be robustly
identified from noisy and defective
data sets without the need for any nor-
mal or orientation information. The
geometry and texture information
of the holes can then be determined
either automatically from the models’
context, or interactively from users’
selection. We use local parameteri-
zations to align patches in order to
extract their curvature-driven digital
signature. After identifying the patch
that most resembles each hole region,
the geometry and texture information
can be completed by warping the
candidate region and gluing it onto
the hole area. The displacement
vector field for the exact alignment
process is computed by solving

a Poisson equation with boundary
conditions. Our experiments show
that the unified framework, founded
upon the techniques of deformable
models, local parameterization, and
PDE modeling, can provide a robust
and elegant solution for content
completion of defective, complex
point surfaces.

Keywords Hole filling · Active
contour method · Poisson equation

1 Introduction

The ever-increasing popularity of data acquisition devices
has made surface completion a critical step in the entire re-
verse engineering pipeline. Considering the different digi-
tizing techniques that are currently available, many optical
devices often produce defective data samples that are sub-
ject to a local absence of data. This incompleteness of
scanned data inputs is mainly due to occlusions, low re-
flectance, or scanner placement constraints, etc. In certain
digital information restoration applications (especially in

archeology), the scanned object (e.g., antiques) itself may
be incomplete and defective because some missing parts
have been ruined during the long historic time span. In
addition, some local surface editing processes may cause
big holes unintentionally. In these cases, both shape and
appearance (texture) information needs to be repaired in
order to facilitate the downstream processing of the digital
content. The surface completion task is a nontrivial pro-
cess, which may often produce unsatisfactory results, and
may require tedious human effort as well. In particular,
if the hole is relatively bigger than a neighboring feature
size, or there is a large missing part in the real object (e.g.,

Surface completion for shape and appearance 169

ruined sculptures), surface completion would be difficult
to achieve using only the boundary information of the
holes.

Ideally, a set of desirable properties for a general-
purpose surface content completion technique would in-
clude:

– Ability to deal with raw scanned point sets, without
certain specific information (such as surface normals)
or requirements (e.g., data accuracy or density).

– Robustness for defective and incomplete point sets.
– Automatic hole detection under the assumption that

the surface is a closed manifold. If the surface is not
a closed manifold, however, the hole-finding process
should be semi-automatic under user guidance.

– Automatic repair for both the shape and appearance of
the defective point sets.

– The holes should be filled in a way that is minimally
distinguishable from their surrounding regions, both
in shape geometry and appearance modeling. If the
scanned model has enough context information, it
should be automatically filled in the way that conforms
with the natural properties of the model [24]. Other-
wise it should be guided by the user.

In this paper, we present an automatic and interac-
tive system which can repair both shape and appear-
ance of defective point sets. The main idea of this sys-
tem, inspired by [24], is to directly use the context infor-
mation of the model itself, or other models’ geometric
and texture information to complete the defective point
surfaces, via automatic cut-and-paste. We take as input
a set of point samples (possibly noisy) that is assumed
to be a closed manifold without any normal or orienta-
tion information. The point cloud is first pre-processed
by a deformable-model-based region partition approach to
determine the orientations of all the point samples, re-
move outliers and noise, and infer the in-and-out relation-
ship, all in the same stage [31]. Towards this goal, we
use an octree discretization of the original point cloud
data to build its distance field. The holes in the original
point set can be robustly detected using the method of ac-
tive deformable models by seeking all the saddle points
of the unsigned distance field, which will uniquely iden-
tify all the missing parts of the scanned data inputs. The
automatic hole detection algorithm is more robust than
the previous methods that were based on analyzing the
point distribution in each octree cell. Then, we extend the
key idea of context-based surface completion [24] (when
the scanned model contains enough context information)
to conduct model repair for both geometry and appear-
ance.

Rather than analyzing the shape similarities based on
the signed distance fields through volumetric embedding
in [24], we propose to analyze both shape and appearance
similarities solely based on the curvature and color in-

formation of the surface patches. Specifically, we devise
a curvature-centered “digital signature” extracted from the
surface geometry, and use it to identify one patch in the
context of the scanned model that is most similar to the
hole region. The curvature-driven shape signature is an in-
trinsic surface geometric quantity, and it can provide better
performance for geometric shape comparison. Finally, we
solve surface partial differential equations (Poisson equa-
tions) to acquire the “warped” shape and appearance of the
hole region. In contrast to other volumetric PDE-based ap-
proaches, our surface PDE method is much more efficient
and robust.

To the best of our knowledge, our work is the first
attempt to repair both geometry and texture informa-
tion in a single unified framework. This can be only
achieved by using local parameterization, which can fa-
cilitate patch similarity comparison, patch alignment, and
patch warping via a 2D Poisson solver. We perform local
parameterization over the surface patches in each oc-
tree cell up to a certain layer under the condition that
each octree cell contains at most one surface patch that
is homeomorphic to a topological disc. After local pa-
rameterization, the patches can be brought into corres-
pondence, which makes similarity comparison easier, and
geometric and textural information can be warped by solv-
ing the Poisson equations over the surface patches. For
complicated surface patches (or even higher genus local
patches), however, local parameterization becomes infea-
sible. For some special cases where the repaired model
does not have enough context information, or the auto-
matic patch selection can not give a globally meaningful
solution (such as the missing hand of the Santa Claus
model in Fig. 1), our surface completion system allows
user interaction in the whole surface completion pro-
cess.

Fig. 1a,b. Shape and appearance repair of the Santa Claus model
under user manipulation: a automatic hole detection from the de-
fective input point set; b both shape and appearance of the holes are
filled in a way that is minimally distinguishable from the model’s
context

170 S. Park et al.

2 Related work

Surface completion of the scanned point sets needs to
be naturally integrated into a surface reconstruction al-
gorithm. The original point samples can be interpolated
using alpha shapes [2, 9], crusts [1], or balls [3]. These
methods guarantee the interpolation quality under certain
sampling conditions, e.g., in crusts the distance between
two points should be less than the local feature size. [11]
used the signed distance field to reconstruct the surface
from point clouds. [18] used moving least-squares for in-
terpolating, or smoothing scattered-data. [5] used glob-
ally supported radial basis functions (RBFs) to fit data
points by solving a large dense linear system. [21] pro-
posed multi-level partition of unity implicits for construct-
ing a piecewise implicit surface from large-scale point
clouds.

Another class of surface reconstruction methods for
point clouds is called the active contour method (or
deformable models) [14, 30, 31, 33], which has been ex-
ploited extensively in computer vision. Among their many
advantages, deformable models are very robust in dealing
with noisy data sets. In this paper, we also utilize the active
contour method for robustly locating holes.

Surface completion can be also conducted by solv-
ing certain partial differential equations. [7] addressed the
problem of hole filling via isotropic volumetric diffusion,
which can handle geometrically and topologically compli-
cated holes. [16] proposed a variation by using a quadric
approximation of the signed distance function. [27] used
implicit surfaces to fill the holes via geometric partial
differential equations derived from image inpainting algo-
rithms. [6] repaired the surfaces as an optimization process
by minimizing the integral of the square mean curvature.

Most hole filling methods are volumetric methods that
obtain the surface implicitly as the boundary between in-
side and outside volumetric regions. [13] constructed an
inside/outside volume using an octree grid, and repaired
the polygonal meshes by contouring the half-edge loops
surrounding the holes. [20] decomposed the space into
atomic volumes, and utilized the graph cuts to determine
the individual volumes to be inside or outside. Volumet-
ric methods are inappropriate for appearance repair since
the texture is an intrinsic property of the surface that can-
not be embedded in 3D volume. In this paper we use local
parameterization to capture the textural information.

While all of the above methods create a smooth patch
to cover the hole region, context-based approaches re-
pair the holes according to their context information. [25]
warps a given shape model towards the missing region of
the given surface using control points, followed by a fair-
ing step along the boundary of the hole. [24] can auto-
matically choose a local patch that is geometrically similar
to the hole region. [15] filled the holes using a mapping
between the incomplete mesh and a template model. The

completed models are guaranteed to have the same top-
ology as the template. [19] retrieved context models from
a database of 3D shapes, and warped the retrieved models
to conform with the incomplete scanned data. Our ap-
proach in this paper is conceptually similar to [24] for au-
tomatic context-based hole filling. Nonetheless, different
from the volumetric embedding approach taken in [24],
our method is solely based on the intrinsic properties of
the surface (curvatures and colors), in which case not only
geometry, but also appearance information can be repaired
automatically based on context information by only solv-
ing a two-manifold PDE system.

3 System overview

Our surface completion system is mainly composed of the
following three separate parts:
1. Hole detector: given a set of noisy, defective point sam-

ples as input, this part utilizes a deformable-model-
based method to determine the orientation of each
point sample and remove noise. In the meantime, the
holes in the original point cloud can be automatically
detected (Sect. 4) in this stage.

2. Surface patch selector: this part finds the most similar
surface patch to the detected hole based on the octree
discretization. For automatic selection, a curvature-
centered “digital signature” is computed for each local
patch (Sect. 5.2), which can be subsequently em-
ployed for both geometry and appearance comparison
in a quantitative way. If users need to select surface
patches directly, Boolean operations are provided for a
more accurate selection task.

3. Poisson solver: in this part, the best candidate surface
patch and its corresponding boundary are aligned with
the hole region using the colored ICP (iterative clos-
est point) method (Sect. 6.1). Finally, its geometry and
color information are warped one after the other to the
hole region by solving Poisson equations (Sect. 6.2).
Figure 2 shows the general pipeline of our surface

completion system. To achieve efficiency, three kinds of
data structures are constructed as a pre-process. First, we
embed an input point set in an octree structure. Also, the
hierarchical volumetric grid structure is used to construct
the distance field in Sect. 4. Finally, we utilize a kd-tree for
the fast retrieval of neighboring points in our system.

4 Hole detection

We use the active contour method as a pre-processing
stage for the original point set surface. Given a set of
noisy, defective point samples without any normal or
orientation information, the active contour method of [31]
can be utilized to facilitate determining the orientation of

Surface completion for shape and appearance 171

Fig. 2. The general framework and data pipeline of our surface
completion system

each point sample, removing outliers and noise. We will
show in this paper that the active contour method can also
be utilized for automatic hole detection. In this section, we
will briefly introduce the active contour method and ex-
plain how to utilize it to find the holes. For more details
on its technical settings and applications to orientation de-
termination and removal of outliers, the reader is referred
to [31].

If the input point set, Γ , is assumed to be a closed
manifold, we can naturally divide the volumetric space
into inside and outside regions. The active contour method
is a commonly used approach to determine the inside or
outside of a surface. To avoid leakage through holes, most
deformable models resort to the minimization of certain
strain energies. [31] takes a different approach by launch-
ing two active contours growing at both sides of the hole.
The active contours travel at the same speed and keep the
same distance to the surface, and they will finally collide
at the center of the hole. For any spatial region visually
bounded by a set of surface samples, there exists at least
one space point inside the surface that has a local maximal
unsigned distance field. Therefore, it is sufficient to launch
an active contour seed at each local maximum point be-
sides the one in the outer bounding space. Figure 3 shows
the idea of the active contour method. We launch an active
contour at each local maximum of the unsigned distance
field, as well as in the outer bounding space (Fig. 3 (c)).
The active contours grow and shrink toward the surface
and try to keep the same distance to the surface, and at
the end the whole surface is sandwiched between these ac-
tive contours (Fig. 3 (d)). Please note that the hole region
is sandwiched by an inner and an outer contour, and the

Fig. 3. Active contour method for automatic hole detection

Fig. 4a,b. Automatic hole detection for the incomplete dragon
model: a the original point set with three complicated holes; b the
holes (in blue) are detected automatically

center of the hole is a saddle point of the unsigned distance
field (Fig. 3 (e)).

In our implementation, the continuous unsigned dis-
tance field is discretized onto a volumetric grid. Each grid
point is associated with a distance value, which is defined
as its block distance to the nearest nonempty cell. Each
local maximum grid point initiates an active contour. All
points on the active contours are sorted with a heap by
their distance to the surface, and the furthest point grows
first. This can guarantee that all parts of the active contours
grow with nearly the same distance to the surface. When
the active contours collide, we can check for the distance
value associated with each grid point. If the distance value
is the local maximum, this grid point can be considered
the center of a hole. The performance of this volumetric
approach can be improved by introducing a hierarchical
version of this algorithm (see [31] for more detail), which
allows us to obtain a O(n2 log n) speed, when n is the
diameter of the volumetric grid. Also, we calculate nor-
mal vectors for the latter steps using principal component
analysis (PCA) with neighbor points.

172 S. Park et al.

When a hole Υ is detected, we can identify its bound-
ary ∂Υ by first collecting all the surface points in Γ resid-
ing in the neighborhood of the boundary grid points. We
can check over each point p ∈ Γ , and project the neighbor-
ing points of p onto its tangent plane. If the angle of the
open fan area (the region where no neighboring point re-
sides) is larger than a certain threshold angle, we consider
p as belonging to the boundary of the hole ∂Υ . Figure 4
shows an example of the automatic hole detection for the
incomplete dragon model.

5 Surface patch selection

After the holes of the original point surface have been
identified, they should be filled in a way that is minimally
distinguishable from their surrounding regions while
maintaining certain degrees of continuity with boundaries.
Because there is no information inside the hole region, it
would be better to use the context information obtained
from other regions that do not contain holes. If the original
model has enough context information, holes can be filled
automatically (both shape and appearance) by conform-
ing with the natural properties of the model. This can be
achieved by automatically translating, rotating, and pos-
sibly warping copies of points from another region that is
most similar to the hole region.

Without global parameterization, surfaces lack a natu-
ral intrinsic spatial structure, which can facilitate search-
ing and selecting similar surface regions for the holes. To
tackle this underlying difficulty, we have to resort to a vol-
umetric embedding structure (in this paper we utilize the
hierarchical octree structure) to define where and how to
search for and select adequate patches.

In this paper, we propose to perform local parame-
terization, to compare both the shape and appearance of
the local surface patches discretized by the octree struc-
ture. In Sect. 5.1, we will address the local parameteri-
zation techniques. The patch similarity is based on com-
puting curvature-driven digital signatures, which will be
addressed in Sect. 5.2. In addition, there is no guaran-
tee that this automatic approach will always give the best
solution from a human perspective. Thus, it can be com-
plemented by user intervention. We will address manual
selection issues in Sect. 5.3. The surface patch selection is
performed separately for geometry and texture.

5.1 Local parameterization

In order to compare both the shape and appearance of the
local surface patches Γi ⊂ Γ , we perform local parame-
terization for the surface patches in each octree cell up to
a certain layer λ. λ is determined from the highest layer
of the existing holes, and it should also satisfy the condi-
tion that each octree cell beneath the layer contains at most

one surface patch that is homeomorphic to a topological
disc; otherwise we do not parameterize the “high-genus"
surface patch (genus ≥ 1) and leave it alone. If the sur-
face patch does not contains a hole, several existing local
parameterization methods can be utilized to parameterize
each local patch. In this paper, we utilize the minimum
distortion parameterization method in [34].

Let X : [0, 1]×[0, 1] → Γi be the mapping from a pa-
rameter domain Di to a surface patch Γi . Then the param-
eterization becomes the minimization problem with the
following cost function:

C(X) =
∑

j∈M

{X(sj)− pj}2 + ε

∫

Di

γ(s)d s, (1)

where γ(s) = ∫
θ
(∂2

∂r2 X s(θ, r))2dθ, and s = (u, v) ∈ Di ,
p ∈ Γi . X s(θ, r) denotes local polar reparameterization

defined as X s(θ, r) = X(s + r[cos(θ)
sin(θ)

]). The first term

in Eq. 1 represents squared error of the parameterization
given by constraints and the second term estimates the dis-
tortion by integrating the squared curvature γ(x) in the
parameter domain D. Let the inverse mapping of X be
U : Γi → [0, 1]× [0, 1]. To minimize Eq. 1 and to obtain
U , Zwicker et al. [34] proposed a discretization method
under the point cloud setting.

Since the octree cells are aligned with the world co-
ordinate system (instead of the object-space), the surface
patches inside the octree cells can be of arbitrary shape.
For example, in Fig. 5 (a), the local patch inside the octree
cell is “three-sided”. This would make our local surface
parameterization undesirable if it maps an “n-sided” sur-
face patch onto the [0, 1]×[0, 1] parameter domain. This
problem can be remedied by selecting local “four-sided”
patches in an object-space fashion. We use PCA to ob-
tain the principal directions u, v, w of the local patch,
where the origin o of these local axes resides at its cen-
ter of mass. Given a user-specified patch length L, we can
check if a point p belongs to the “four-sided” local patch
by testing if −→op ·u ≤ L and −→op ·v ≤ L, where −→op = p −

Fig. 5. a A local surface patch inside the octree cell; b automatically
selecting local “four-sided” surface patches to facilitate local pa-
rameterization

Surface completion for shape and appearance 173

o. The checking process can start from o. If it belongs
to the “four-sided” local patch, we can continue to check
its neighbors in a recursive way. The four farthest corner
points can be set as positional constraints in the first term
of Eq. 1 (see Fig. 5 (b)).

If the surface patch contains holes, the distortion part
in (Eq. 1) is hard to estimate around the hole boundary
∂Υ . We parameterize Γi by fixing parameter values of hole
boundary using the reference plane fitted by the points in
Γi . Let nh be the number of holes in Γ and the k-th hole
Υ k

i be contained in the surface patch Γi . We use PCA to
obtain the principal directions u, v, w of Γi , where the
local reference plane is spanned in the u and v directions.
Having the reference plane as a parameter domain Di , we
can calculate parameter values of points p ∈ ∂Υ k

i by dir-
ect projection (see Fig. 6). After obtaining the parameter
values for the boundary points in Υ k

i , we can set them as
additional constraints (first term) in Eq. 1, and obtain the
parameter values for the other points in Γi .

Fig. 6. Local parameterization of patches with a hole

5.2 Automatic selection

After local parameterization, we can compare the sur-
face patches based on their curvature (Sect. 5.2.1) and
color information by computing their “digital signatures”
(Sect. 5.2.2). The selected best-matching patch can be
warped to the hole region by solving Poisson equations
(Sect. 6) directly over the surface patches.

5.2.1 Curvature estimation

We can analyze both geometry and texture similarities
based on the curvature and color information of the
patches discretized by the octree structure. Color informa-
tion at each point for comparing appearance is typically
given by the scanned data. Curvature values for comparing
geometry need to be estimated at each point. For triangu-
lar meshes, there are several existing methods [22, 26] to
estimate surface curvatures that are quite stable with noisy

data using wide neighbor area and weights. In this paper,
we take the similar normal voting approach of [22] to ap-
proximate the surface curvature at each point in the point
cloud.

Let κp(Tθ) be the surface normal curvature at point p
in the unit length tangent direction Tθ . The symmetric ma-
trix:

Mp = 1

2π

π∫

−π

κp(Tθ)TθTt
θ dθ (2)

has eigenvectors that are equivalent to the principal direc-
tions {T1, T2}, and its eigenvalues {m1

p, m2
p} are related to

the principal curvatures {κ1
p, κ2

p} as:

κ1
p = 3m1

p −m2
p, κ2

p = 3m2
p −m1

p. (3)

Note that the normal vector Np is another eigenvector of
Mp associated with the eigenvalue 0.

In our discretized point cloud setting, we consider the
local neighborhood {q1, ..., qm} around p to estimate the
principal curvature of the surface at point p. For each
neighboring point qi , we estimate the normal curvature at
point p as:

κi = ∆ϑi

∆s
, (4)

where ϑi is the turning angle, and s is the arc length (see
Fig. 7). We project the normal of qi (denoted as Nqi) onto
the plane Πi that contains Np, p, and qi , to obtain the pro-
jected vector Ñqi . ∆ϑi is the change in turning angle, and
it can be computed as:

cos(∆ϑi) = Np · Ñqi

||Ñqi ||
. (5)

The change in arc length ∆s can be estimated as the
geodesic distance from qi to p.

After computing the directional normal curvature from
each neighboring point qi , we can approximate Eq. 2 as:

M̃p = 1

2π

∑
ωiκi TiTt

i , (6)

Fig. 7. Normal voting for curvature estimation

174 S. Park et al.

where the weight ωi must satisfy the constraint
∑

ωi =
2π. By analyzing the eigenvalues of M̃p, we can estimate
the principal curvatures from (Eq. 3).

5.2.2 Finding similar patches

After parameterization, the local patches cannot be di-
rectly compared with the hole patch, since the hole region
contains no geometric/textural information. The compar-
ison has to be performed outside the hole region based
on its parametric correspondence (see Fig. 8). However,
there is still an extra degree of freedom to rotate the
local patches on their parametric plane before compari-
son. To tackle this problem, we quantize the local para-
metric orientation to 24 discrete angles, i.e., i ×15◦, i =
0, 1, . . . , 23. We rotate the local patches on their paramet-
ric plane, and pre-compute 24 different rotated parametric
copies of the same patch. Due to the symmetry about the
uv axis, we can save memory space by storing only six
rotated copies at each octree cell. Similar strategies of pre-
processing textures are used in [28, 29].

To find similar patches, we use curvature information
for geometry comparison and (R, G, B) color values for
appearance. We select several signatures, which represent
both the geometry and color information of a given patch.
For geometry, we select six signatures (f1, . . . , f6) re-
lated to the curvatures, considering the fact that the cur-
vatures are the intrinsic geometric properties of a surface
patch. They are defined as:

f1 =
∑

j κ1 j

ni
, f2 = maxj{κ1 j}, f3 = minj{κ1 j}

f4 =
∑

j κ2 j

ni
, f5 = maxj{κ2 j}, f6 = minj{κ2 j} ,

(7)

where κ1 j is the maximum curvature of pj ∈ Γi , κ2 j is
the minimum curvature of pj , and ni is the number of

Fig. 8. Surface patch comparison outside the hole region

points in Γi . For texture comparison, we use nine signa-
ture values, g1, ..., g9, which represent the average, the
maximum, and the minimum color value of R, G, B, re-
spectively.

Given a hole patch Υk, (k ∈ {0, ..., nh}), we need to
compare it with other surface patches Γi, (i = 0, ..., nλ)

using signatures. The similarity function S(f Υk
j , f Γi

j) (Sj
for short) can be defined as:

Sj =
(

1− dj

dmax, j

)r

, (8)

where f Υk
j is the j-th signature value of the patch Υk,

dj = | f Υk
j − f Γi

j |, dmax, j = maxj{dj}, j = 0, . . . , ni. r rep-
resents the sensitivity of S along dj , and we simply set
r = 2.

Then, the similarity between two surface patches is de-
fined as a normalized value of the weighted sum, which is
obtained by comparing each signature:

similarity(Υk, Γi) =
∑

j wjSj∑
j wj

, (9)

After calculating the similarity value of each surface
patch, we can find the most similar patch Γi∗ , which has
the maximum similarity value as a candidate to fill Υ .
However, the automatic approach may not always guar-
antee the best results from a human perspective. So, our
algorithm can provide several candidates that have the
maximum similarity values, and the users can select one of
them as Γi∗ . Also, the most similar patches are not neces-
sarily the same for geometry and texture filling, so we can
find different Γi∗ for geometry and texture separately.

5.3 Manual selection

The automatic selection approach based on local param-
eterization works very well for local surface patches that
are relatively flat and simple. For complicated local geom-
etry such as the claw of the dragon model in Fig. 9, how-
ever, local parameterization would face severe stretch and
distortion, which make it inappropriate for subsequent
processing. In some surface completion tasks, the scanned
model doesn’t have enough context information, or the
automatic selection in Sect. 5.2 may not give a global solu-
tion because of the octree structure. For example, in Fig. 1,
the octree discretization cannot give any plausible solu-
tion for the missing hand of the Santa Claus model without
user intervention. In our system, we provide efficient and
accurate user interaction techniques to handle incomplete
point sets.

Let us assume that a 3D closed curve C located on the
surface patch is given by a user, and this curve separates
the input point set into two parts. We want to find these
two parts divided by C. Because there is no connectivity

Surface completion for shape and appearance 175

Fig. 9a,b. Repairing the dragon model by user manipulation; a the
user selects the most similar regions (orange region) from the mod-
el’s context; b the final repaired model

between pure points, we embed Γ and C into the volumet-
ric grids used in Sect. 4 for efficiency. We visit the grid
points in two opposite directions starting from the cells in-
tersecting C. The grid points that we visit are only limited
to those that sandwich the point surface. The front propa-
gation on the narrow band grids is similar to the tangential
flow approach, and [17] also suggest a similar technique
in 2D. Based on the assumption that the input point set
is obtained from a two-manifold surface model, this front
propagation works very well in all of our experiments.
Figure 9 shows an example of surface completion based
on user manipulation.

5.4 Boundary detection

The hole filling process introduced in Sect. 6 is basi-
cally achieved by translating, rotating, and possibly warp-
ing copies of the points from the selected region to the
target hole region based on their boundary information.
At this stage, the boundary of the selected patch ∂Γi∗
should be detected. The same technique used in Sect. 4
can be applied to decide whether a point in Γi∗ belongs to
∂Γi∗ or not. Because there may be several closed bound-
ary curves in one patch, we need to check and sepa-
rate them. Let us assume that if p1 and p2 belong to
different boundary curves then dist(p1, p2) > r, where
dist(p1, p2) is the Euclidean distance between p1 and p2,
and r is the tolerance value. We construct a Euclidean min-
imum spanning tree (EMST) of boundary points. Then
we examine each edge of the EMST, and cut those edges
longer than r (see Fig. 10). The remaining connected
points compose the closed boundary curves. Actually, the
points in the remaining EMST are not connected to form
closed curves. However, we can simply collect all the
separated boundary points, since their connectivity in-

Fig. 10. The Euclidean minimum spanning tree (EMST) and
boundary curve separation

formation is not needed for the patch alignment process
later (Sect. 6.1).

6 Filling holes

Before filling a hole with the selected copy region, the ini-
tial alignment of these two regions should be performed
with respect to a rigid body transformation (Sect. 6.1).
After initial alignment between the selected context patch
and the original hole-region, there may be still some
gaps that cannot be further reduced by rigid body trans-
formation. At this moment, the Poisson equation is used
to solve for the remaining displacement field (Sects. 6.2
and 6.3). The displacement field is generally smooth based
on the Poisson equation. However, their geometric and
textural detail/sharp features are maintained as much as
possible, since they are input as the guidance field in the
Poisson equation, and can be preserved in a least squared
sense. A hole filling step is also performed twice for
geometry and texture, respectively.

6.1 Initial alignment

Because we have no point in the hole, the transformation
from ∂Γi∗ to ∂Υ should be performed to align the copy re-
gion with the hole. Here, ∂Υ is the banded point surface
region around the hole, and ∂Γi∗ is the set of points on Γi∗
corresponding to ∂Υ . In our current work, we use the ICP
method, which gives a quite reasonable result for the reg-
istration between two banded regions. Since ICP does not
work when the two point sets are not close, we align the
centroid of two point sets and coordinates of two OBBs
first. Also, normal information is used to check whether
the copy patch is turned over. Let T be the (4×4) matrix
that represents rigid body transformation. Let qj ∈ ∂Γi∗ be
the nearest point of pj ∈ ∂Υ , and the distance between two
point sets be defined as:

d(∂Υ, ∂Γi∗) =
∑

j

||pj −qj ||2. (10)

The traditional ICP method finds the matrix T that satis-
fies:

min
T

d(∂Υ, T∂Γi∗). (11)

176 S. Park et al.

A similar procedure can be applied to the texture align-
ment by modifying the distance between two points p1 =
(x1, y1, z1, r1, g1, b1) and p2 = (x2, y2, z2, r2, g2, b2) to
include additional color information. We use the following
distance measure, similar to the colored ICP method [12]:

d6(p1, p2) =
⎡

⎣
(x1 − x2)

2 +w1(r1 −r2)
2+

(y1 − y2)
2 +w2(g1 − g2)

2+
(z1 − z2)

2 +w3(b1 −b2)
2

⎤

⎦

1
2

. (12)

In our experiments we choose w1 = w2 = w3 = 1/3.
Because this initial alignment uses only boundary re-

gions, it may not give the most appropriate solution con-
forming with the model’s context. (E.g., in Fig. 1, the
copied hand of the Santa Claus model would need a mirror
reflection before the final warping.) If the alignment is not
appropriate according to the overall context, users can ro-
tate, translate, or symmetrically reflect the patch after the
automatic alignment process.

6.2 Poisson model

Partial differential equation (PDE) techniques have been
widely used in many visual computing applications. The
PDE methods model graphical objects as solutions of cer-
tain elliptic PDEs with boundary constraints. The PDE
model uses only boundary conditions to recover all of the
hole interior information and offers high-order continuity,
as well as energy minimization properties. Both the geom-
etry and color information of the surface patch that has
highest similarity can be blended with the hole patch by
solving PDEs.

In our implementation, to merge two point sets smoothly
with boundary conditions, we choose the Poisson equa-
tion with Dirichlet boundary conditions [23, 32], which is
a second-order PDE and can be solved more efficiently:

∇2 f = div h over Ω, with f |∂Ω = f ∗|∂Ω, (13)

where h is the guidance vector field, ∇2 = (∂2

∂x2 + ∂2

∂y2 +
∂2

∂z2), and div h is the divergence of h. It can be verified
that the Poisson equation (Eq. 13) is the solution of the
minimization problem:

min
f

∫

Ω

|∇ f −h|2, with f |∂Ω = f ∗|∂Ω, (14)

If the guidance field h is the gradient of some guidance
function g (i.e., h = ∇g), we can define a correction func-
tion f̃ = f −g. In this way, the Poisson equation becomes
the Laplacian equation with boundary conditions:

∇2 f̃ = 0 over Ω, with f̃ |∂Ω = (f ∗ − g)|∂Ω, (15)

In our hole filling problem, the guidance function g can be
simply the geometry and color information of the selected
surface patch (see Fig. 11).

Fig. 11. The selected “most” similar patch is warped to the hole
patch by solving a Poisson equation, where the guidance function
g is simply the geometry and texture information of the selected
patch

Fig. 12. Local umbrella operator for computing the Laplacian at
each point

6.3 Poisson solver

The Laplacian equation (Eq. 15) can be solved directly on
the point sampled surfaces. It can be discretized over both
the selected surface patch and the hole patch on each point
sample. To specify the boundary condition, each point
p ∈ ∂Γi∗ is mapped to the nearest point in ∂Υ before eval-
uation.

The discretization of Eq. 15 simply means the dis-
cretization of the Laplacian operator ∇2 f̄ , which can be
approximated using the scale-dependent umbrella opera-
tor [8]:

U(pi) =
n∑

j=0

εpi ,qj (f̄ (qj)− f̄ (pi)), (16)

where n is the number of neighboring points of pi , qj ∈
N(pi), and the weights εpi ,qj = 1

‖qj−pi‖/
∑n

k=0
1

‖qk−pi‖
are in inverse proportion to their distances. Figure 12 de-
scribes the meaning of this operator.

Now, by applying Eq. 16 with position and color values
to all the points p ∈ Γi∗ , we can formulate a sparse linear
system A f̄ = b, which can be solved numerically using
a conjugate gradient method.

7 Experimental results

Our system is implemented on a Microsoft Windows XP
PC with Xeon 2.80 GHz CPU, 2.00 GB of RAM. We
tested our system on several incomplete point surfaces,
and recorded the statistics of our system’s performance in
Table 1. Figure 13 shows an example of a scanned Bud-
dha model with one large hole, which is detected and filled

Surface completion for shape and appearance 177

Table 1. The time performance of our shape and appearance com-
pletion algorithm (in seconds)

Model Points Holes Param. Finding Filling

Buddha 13,942 1 No 131 s 16 s
Chameleon 99,835 1 Yes 193 s 108 s

Dragon 52,982 3 No 53 s 32 s
Female 123,369 3 No 62 s 89 s

Iphigenie 144,622 3 Yes 104 s 361 s
Male 145,177 6 Yes 153 s 653 s

Rocker arm 39,501 1 Yes 103 s 87 s
Santa 71,438 3 No 67 s 78 s

Fig. 13a–d. Repairing the Buddha model under user manipulation;
a the original point set with one large hole; b automatic hole de-
tection (with hole boundary in yellow); c the selected surface patch
(only for shape) is rendered in white and the corresponding bound-
ary in red; d final result

Fig. 14a,b. Repairing the sharp feature of the rocker arm model
automatically: a the original point set with one hole; b the sharp
feature is repaired from the model’s context

automatically. The shape and appearance of the missing
part is completed with details taken from the existing parts
of the body. The sharp feature of rocker arm model in
Fig. 14 can be also repaired gracefully and automatically
based on its context information. The Iphigenie model
(Fig. 15) and the male model (Fig. 16) are both non-trivial
examples with several complicated missing parts, which
are all detected and repaired automatically conforming to
their context information based on the local parameteri-
zation. Also, very complicated texture of the chameleon
model (Fig. 17) is repaired from model’s context using
same method. The local parameterization approach can

Fig. 15a–c. Automatically repairing the Iphigenie model based on
local parameterization: a the original point surface with several
missing parts; b the holes are detected automatically (with hole
boundary points drawn in red); c the model is repaired conforming
to the context information based on local parameterization

Fig. 16a,b. Automatic shape and appearance repair based on local
parameterization: a the holes in the original point set can be de-
tected automatically; the points near the hole boundaries are ren-
dered in red. b both the shape and appearance of the hole regions
can be repaired based on local parameterization

only handle relatively simple holes and is not suitable for
repairing the hand of the Santa Claus model (Fig. 1), the
claw of the dragon model (Fig. 9), or the foot of the female
model (Fig. 18). The missing parts in all these models are
very complicated, making them inappropriate for local pa-
rameterization. The holes of these models are all detected
automatically using our active contour approach. The hand
of Santa Claus, the claw of the dragon, and the foot of the
female model are repaired interactively by user manipu-

178 S. Park et al.

Fig. 17a,b. Automatically repairing shape and appearance of the chameleon model; a the red points are near the boundary of the hole;
b complicated texture information can be repaired from the model’s context based on local parameterization

Fig. 18a–d. Repairing the female model under user manipulation: a the original point set with three complicated holes; b automatic
hole detection (with hole boundary in yellow); c the selected surface patch (only for shape) is rendered in yellow and the corresponding
boundary in blue; d final result

lation, while other relatively “flat” holes are repaired au-
tomatically conforming to their context information based
on local parameterization.

The number of surface patches used in Sect. 5.2.2 is
dependent on the level of the octree. In the case of the
Iphigenie model, an average of 282 patches are used for
comparison. These results may be affected by some deci-
sion parameters that are introduced at several stages. In the
hole detection stage, user-defined threshold is needed to
detect boundaries. When estimating curvature, the neigh-
borhood size is an important parameter, which we set as
nine for our experiments. Also, the weights to calculate
similarity in (Eq. 9) and color ICP in (Eq. 12) are simply
set as equal average values.

8 Conclusion

In this paper we have developed a novel surface con-
tent completion system that can repair both shape and
appearance of incomplete point set inputs. The entire

model repair pipeline consists of hole detection, auto-
matic/interactive patch selection, and hole filling via the
cut-and-paste operation. We utilize the active contour
method to facilitate robust hole detection from the noisy
and defective data sets. Our surface content completion
enables automatic context-based geometry and texture
filling simultaneously. We use boundaries to align the
local patches and to solve Poisson equations for warp-
ing the patch to cover the hole region and to achieve
a smooth transition across the hole boundary. Local pa-
rameterization is utilized to facilitate automatic patch
selection, alignment, and the warping process. Com-
pared with other existing work on surface completion,
our method can automatically repair color information
in addition to just geometry, and can achieve better ef-
ficiency, since all these operations are performed on a
local 2D parameterization domain rather than on the
volume through the volumetric-embedding mechanism.
Our surface completion framework and its constituents
are of particular value to computer graphics applica-
tions such as model reconstruction and shape model-
ing.

Surface completion for shape and appearance 179

Acknowledgement This research was conducted at Stony Brook
University when Ms. Seyoun Park was an exchange Ph.D candi-
date in the Computer Science Department and Center for Visual
Computing. This work was partially supported by KRF grant M07-

2003-000-20301-0 to S. Park, and by NSF grant ACI-0328930, ITR
grant IIS-0326388, and the Alfred P. Sloan Fellowship to H. Qin.
The Santa, rocker arm, male, and female models are courtesy of
Cyberware, Inc.

References
1. Amenta, N., Bern, M., Kamvysselis, M.: A

new Voronoi-based surface reconstruction
algorithm. Proc. SIGGRAPH, pp. 415–421
(1998)

2. Bajaj, C.L., Bernardini, F., Xu, G.:
Automatic reconstruction of surfaces and
scalar fields from 3D scans. Proc.
SIGGRAPH, pp. 109–118 (1995)

3. Bernardini, F., Mittleman, J., Rushmeier,
H., Silva, C., Taubin, G.: The ball-pivoting
algorithm for surface reconstruction. IEEE
Trans. Vis. Comput. Graph. 4, 349–359
(1999)

4. Biermann, H., martin, I., Bernardini, F.,
Zorin, D.: Cut-and-paste editing of
multiresolution surfaces. ACM Trans.
Graph. 21(3), 312–321 (2002)

5. Carr, J.C., Beatson, R.K., Cherrie, J.B.,
Mitchell, T.J., Fright, W.R., McCallum,
B.C., Evans, T.R.: Reconstruction and
representation of 3D objects with radial
basis functions. Proc. SIGGRAPH, pp.
67–76 (2001)

6. Clarenz, U., Diewald, U., Dziuk, G.,
Rumpf, M., Rusu, R.: A finite element
method for surface restoration with smooth
boundary conditions. Comput. Aided
Geom. Des. 5, 427–445 (2004)

7. Davis, J., Marschner, S.R., Garr, M., Levoy,
M.: Filling holes in complex surfaces using
volumetric diffusion. Proceedings
International Symposium on 3D Data
Processing, Visualization, and
Transmission, Padova, Italy, June 19–21,
2002, pp. 428–438. IEEE Computer
Society (2002)

8. Desbrun, M., Meyer, M., Schröder, P., Barr,
A.H.: Implicit fairing of irregular meshes
using diffusion and curvature flow. Proc.
SIGGRAPH, pp. 317–324 (1999)

9. Edelsbrunner, H., Mucke, E.P.:
Three-dimensional alpha shapes. ACM
Trans. Graph. 13(1), 43–72 (1994)

10. Fu, H., Tai, C., Zhang, H.: Topology-free
cut-and-paste editing over meshes.
Proceedings: Geometric Modeling and
Processing, Beijing, China, April 13–15,
2004, pp. 173–182. IEEE Computer
Society (2004)

11. Hoppe, H., DeRose, T., Duchamp, T.,
McDonald, J., Stuetzle, W.: Surface

reconstruction from unorganized points.
Proc. SIGGRAPH, pp. 71–78 (1992)

12. Johnson, A.E., Kang, S.B.: Registration and
integration of textured 3D data.
Proceedings International Conference on
Recent Advances in 3D Digital Imaging
and Modeling, Ottawa, Canada, May
12–15, 1997, pp. 234–241. IEEE Computer
Society (1997)

13. Ju, T.: Robust repair of polygonal models.
ACM Trans. Graph. 23(3), 888–895 (2004)

14. Kass, M.A.W., Terzopoulos, D.: Snakes:
active contour models. Int. J. Comput. Vis.
1(4), 321–331 (1987)

15. Kraevoy, V., Sheffer, A.: Template-based
mesh completion. Proceedings of
Eurographics Symposium on Geometry
Processing, pp. 13–22 (2005)

16. Masuda, T.: Filling the signed distance field
by fitting local quadrics. Proceedings
International Symposium on 3D Data
Processing, Visualization, and
Transmission, pp. 1003–1010 (2004)

17. Mortensen, E.N., Barrett, W.A.: Interactive
segmentation with intelligent scissors.
Graph. Models 60(5), 349–384 (1998)

18. Levin, D.: The Approximation power of
moving least-squares. Mathematics of
Computation, 67(224), 1517–1531 (1998)

19. Pauly, M., Mitra, N.J., Giesen, J., Gross,
M., Guibas, L.J.: Example-based 3D scan
completion. Proceedings Eurographics
Symposium on Geometry Processing, pp.
23–32 (2005)

20. Podolak, J., Rusinkiewicz, S.: Atomic
volumes for mesh completion. Proceedings
Eurographics Symposium on Geometry
Processing, pp. 33–41 (2005)

21. Ohtake, Y., Belyaev, A., Alexa, M., Turk,
G., Seidel, H.P.: Multi-level partition of
unity implicits. ACM Trans. Graph. 22(3),
463–470 (2003)

22. Page, D.L., Koschan, A., Sun, Y., Pail, J.,
Abidi, M.A.: Robust crease detection and
curvature estimation of piecewise smooth
surfaces from triangle mesh approximations
using normal voting. Proceedings
International Conference on Computer
Vision and Pattern Recognition, Vol. 1, pp.
162–167 (2001)

23. Perez, P., Gangnet, M., Blake, A.: Poisson
image editing. ACM Trans. Graph. 22(3),
313–318 (2003)

24. Sharf, A., Alexa, M., Cohen-Or, D.:
Context-based surface completion. ACM
Trans. Graph. 23, 878–887 (2004)

25. Savchenko, V., Kojekine, N.: An approach
to blend surfaces. Proc. Computer Graphics
International, Bradford, UK, July 1–5
(2002)

26. Taubin, G.: Estimating the tensor of
curvature of a surface from a polyhedral
approximation. Proceedings International
Conference on Computer Vision, pp.
902–907 (1995)

27. Verdera, J., Caselles, V., Bertalmío, M.,
Sapiro, G.: Inpainting surface holes.
Proceedings International Conference on
Image Processing, Barcelona, Spain, Sept.
14–17, 2003. IEEE Computer Society
(2003)

28. Wang, B., Wang, W., Yang, H., Sun, J.:
Efficient example-based painting and
synthesis of 2d directional texture. IEEE
Trans. Vis. Comput. Graph. 10(3), 266–277
(2004)

29. Soler, C., Cani, M.P., Angelidis, A.:
Hierarchical pattern mapping. ACM Trans.
Graph. 21(3), 673–680 (2002)

30. Whitaker, R.T.: A level-set approach to 3d
reconstruction from range data. Int. J.
Comput. Vis. 3, 203–231 (1998)

31. Xie, H., McDonnell, K., Qin, H.: Surface
reconstruction of noisy and defective data
sets. Proc. Visualization, Austin, TX, Oct.
10–15, 2004, pp. 259–266. IEEE Computer
Society (2004)

32. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H.,
Guo, B., Shum, H.Y.: Mesh editing with
poisson-based gradient field manipulation.
ACM Trans. Graph. 23, 644–651 (2004)

33. Zhao, H.K., Osher, S., Fedkiw, R.: Fast
surface reconstruction using the level set
method. Proceedings IEEE Workshop on
Variational and Level Set Methods, p. 194
(2001)

34. Zwicker, M., Pauly, M., Knoll, O., Gross,
M.: Pointshop3d: an interactive system for
point-based surface editing. Proceedings
SIGGRAPH, pp. 322–329 (2002)

180 S. Park et al.

SEYOUN PARK is a Ph.D. Candidate in the
Department of Industrial Engineering at
KAIST(Korea Advanced Institute of Science
and Technology). She received a B.S. degree
(2002) and M.S. degree(2004) all in Industrial
Engineering from KAIST. Her main research
interests are in general geometric modeling,
point-based graphics, computational geometry,
and Bio-CAD. For more information, please
send a mail to parksy@vmslab.kaist.ac.kr.

XIAOHU GUO is a Ph.D. candidate in the De-
partment of Computer Science at State Uni-
versity of New York at Stony Brook. He has
a B.S. degree (2001) in Computer Science from
the University of Science and Technology of
China. He received his M.S. degree (2004) in
Computer Science from the State University
of New York at Stony Brook. His research
interests include computer graphics, geomet-

ric and physics-based modeling, computer an-
imation and simulation, scientific visualization,
human-computer interaction, virtual reality, and
computer vision. For more information, please
visit http://www.cs.sunysb.edu/∼xguo.

HAYONG SHIN is an associate professor in
the Department of Industrial Engineering at
KAIST(Korea Advanced Institute of Science and
Technology). Before joining KAIST, He worked
for DaimlerChrysler Corp., CubicTek Co. and
LG Electronics, developing commercial and in-
house CAD/CAM software. He received a BS
from Seoul National University in 1985, an MS
and a PhD from KAIST in 1987 and 1991,
all in industrial engineering. His main research
interests are in the area of geometric model-
ing, tool path generation, process planning, and
computational geometry. He can be reached at
hyshin@kaist.ac.kr.

HONG QIN is Associate Professor of Computer
Science at State University of New York at Stony
Brook. In 1997, Professor Qin was awarded
NSF CAREER Award from the National Science
Foundation (NSF). In December, 2000, Profes-
sor Qin received Honda Initiation Grant Award.
In April, 2001, Professor Qin was selected as an
Alfred P. Sloan Research Fellow by the Sloan
Foundation. His areas of expertise include geo-
metric modeling, graphics, physics-based simu-
lation, computer aided geometric design, and
human-computer interaction. At present, he is an
associate editor of IEEE Transactions on Visu-
alization and Computer Graphics (TVCG) and
he is also on the editorial board of The Vi-
sual Computer (International Journal of Com-
puter Graphics). In 2005, he co-chaired the
23rd Computer Graphics International Confer-
ence (CGI 2005). For further information, please
visit http://www.cs.sunysb.edu/∼qin.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

