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Abstract

Recent years have witnessed dramatic growth in the use
of subdivision schemes for graphical modeling and anima-
tion, especially for the representation of smooth, oftentimes
complex shapes of arbitrary topology. Nevertheless, con-
ventional interactive approaches to subdivision objects can
be extremely laborious and inefficient. Users must care-
fully specify the initial mesh and/or painstakingly manipu-
late the control vertices at different levels of the subdivision
hierarchy to satisfy a diverse set of functional requirements
and aesthetic criteria in the modeled object. This modeling
drawback results from the lack of direct manipulation tools
for the limit geometric shape. To improve the efficiency of
interactive design, we have developed a unified FEM-based
dynamic methodology for arbitrary subdivision schemes by
marrying principles of computational physics and finite ele-
ment analysis with powerful subdivision geometry. Our dy-
namic framework permits users to directly manipulate the
limit surface obtained from any subdivision procedure via
simulated ”force” tools. Our experiments demonstrate that
the new unified FEM-based framework promises a greater
potential for subdivision techniques in geometric model-
ing, finite element analysis, engineering design, computer
graphics, and other visual computing applications.

Keywords: Physics-Based Modeling, Geometric Mod-
eling, Computer Graphics, CAGD, Subdivision Splines,
Deformable Models, Dynamics, Finite Elements, Interac-
tive Techniques.

1 Motivation

Efficiently modeling and intuitively manipulating com-
plex shapes are fundamental to computer graphics, engi-
neering design, manufacturing, animation and simulation,
analysis and evaluation, rapid and virtual prototyping, visu-
alization, and interaction with virtual environments. There-

fore, the success of future visual computing technology and
system development hinges upon the advancement of pow-
erful modeling methods, efficient design tools coupled with
natural human-computer interaction techniques.

For geometric and visual modeling communities,
the industry-standard Non-Uniform Rational B-Spline
(NURBS) cannot represent surfaces of arbitrary topolog-
ical genus in one piece due to their limited (rectangular)
parameterization. In principle, modeling surfaces of arbi-
trary topology requires NURBS trimming and/or patching.
Although possible in commercial CAD systems, creating
complex objects based on NURBS patching and trimming
suffers from several difficulties: (1) Trimming two NURBS
patches to match their shared boundary frequently involves
the computation of surface-surface intersection (SSI), SSI
algorithms generally are both computationally expensive
and prone to numerical approximation errors; (2) Complex
and less intuitive continuity constraints must be imposed
along the common boundary of trimmed patches in order
to ensure the smoothness requirements; and (3) Enforcing
(or even approximating) the smoothness criteria of non-
static models throughout a sculpting session is very diffi-
cult. In principle, considerable amount of human interven-
tion is required to guarantee the seamlessness of the under-
lying NURBS patchwork.

By contrast, recursive subdivision schemes produce a
visually pleasing, smooth surface in the limit through the
repeated application of a fixed set of refinement rules on
a user-specified control mesh. They have the potential to
overcome the aforementioned difficulties associated with
NURBS for the following reasons:

� Subdivision geometry naturally generalizes B-spline
and NURBS representations. In principle, a single
subdivision surface can model an object of arbitrary
topology. It requires neither trimming nor patching op-
erations, and smoothness requirements along the patch
boundary can be automatically guaranteed.
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� Subdivision surfaces allow designers to arrange con-
trol vertices in a more natural way, which facilitates
the creation of geometric features without the need
to maintain a rectangular structure as required by
NURBS. This can significantly reduce modeling and
design times.

� Subdivision potentially allows the model to be refined
locally. Local refinement is not possible with NURBS,
since an entire row/column of control points must be
added to preserve the rectangular parameterization.

Despite the diversity of subdivision schemes in the lit-
erature as well as the dramatic growth in the use of sub-
division techniques for graphical modeling and animation
during the past ten years, it remains almost impossible to
manipulate the limit surface (obtained through procedure-
based subdivision) in a direct and natural way. The current
state-of-the-art permits modelers to interactively obtain the
desired effects (e.g., functional requirements and aesthetic
criteria) on the limit surface only through the kinematic ma-
nipulation of control vertices at various levels of the subdi-
vision hierarchy. This shape design process is extremely
clumsy and laborious in essence, despite modern interac-
tion devices. Moreover, existing subdivision surfaces are
not yet amenable to data exchange with industry standard
formats such as B-splines and NURBS, hampering their
widespread penetration in visual modeling and engineer-
ing design. The full potential of subdivision geometry has
yet to be realized, because intuitive and flexible 3D interac-
tion techniques between designers and subdivision geome-
try have not yet been adequately explored.

To improve the efficiency of interactive geometric mod-
eling and engineering design, in this paper we offer a novel
FEM-based solution which transforms the purely geomet-
ric subdivision procedure to geometric splines and, fur-
thermore, which integrates subdivision splines with pow-
erful FEM-based dynamic techniques. Consequently, our
methodology and algorithms permit designers to physically
modify subdivision splines at arbitrary region/location di-
rectly via simulatedforces. This provides designers an in-
tuitive, natural feeling analogous to modeling with real clay
or play-dough.

2 Subdivision Geometry Overview

Chaikin [7] first introduced the subdivision concept to
the modeling community for curve generation from an ar-
bitrary control polygon. Following Chaikin’s pioneering
work, a wide variety of subdivision schemes for model-
ing smooth surfaces of arbitrary topology have been derived
during the past two decades. In general, the existing subdi-
vision schemes can be categorized into two distinct classes:

(1) approximating subdivision techniques, and (2) interpo-
lating subdivision techniques.

Among the approximating schemes, Doo and Sabin [9],
and Catmull and Clark [4] generalized the idea of obtain-
ing uniform biquadratic and bicubic B-spline patches from
a rectangular mesh, respectively. Catmull and Clark [4] de-
veloped an algorithm that recursively generates a smooth
surface from a polyhedral mesh of arbitrary topology. The
Catmull-Clark subdivision surface can be reduced to a set
of standard B-spline patches except at a finite number of de-
generate points. Loop [15] presented a similar subdivision
scheme based on the generalization of quartic triangular B-
splines for triangular meshes. Hoppeet al. [13] further ex-
tended Loop’s work to produce piecewise smooth surfaces
with selected discontinuities. Halsteadet al. [12] proposed
an algorithm to construct a Catmull-Clark subdivision sur-
face that interpolates the vertex mesh of arbitrary topology.
Recently, non-uniform Doo-Sabin and Catmull-Clark sur-
faces that generalize non-uniform tensor-product B-spline
surfaces to arbitrary topologies were introduced by Seder-
berget al. [23]. Various issues involved in the use of these
approximating subdivision schemes for character animation
were discussed by DeRoseet al. [8].

The most well-known interpolating subdivision scheme
is the “butterfly” algorithm [11]. Butterfly method, like
other subdivision schemes, makes use of a small number
of neighboring vertices for subdivision. It requires simple
data structure and is rather straightforward to implement.
Nevertheless, it needs a topologically regular setting of the
initial (control) mesh in order to obtain a smoothC 1 limit
surface. Zorinet al. [31] have developed an improved inter-
polatory subdivision scheme that retains the simplicity of
the butterfly scheme and results in much smoother surfaces
even from irregular initial meshes. These interpolatory sub-
division schemes have extensive applications in wavelets
on manifolds, multiresolution decomposition of polyhedral
surfaces, and multiresolution editing.

The derivation of various mathematical properties of
the limit surface generated by the subdivision algorithms
is rather complex. Doo and Sabin [10] first analyzed the
smoothness behavior of the limit surface using the Fourier
transform and an eigen-analysis of the subdivision matrix.
Ball and Storry [2] and Reif [22] further extended Doo and
Sabin’s work on continuity properties of subdivision sur-
faces by deriving various necessary and sufficient smooth-
ness conditions for different subdivision schemes. Specific
subdivision schemes were also analyzed by several other
researchers [18, 1, 14, 29]. Most recently, Stam [25] devel-
oped an exact point evaluation algorithm for Catmull-Clark
subdivision scheme.
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Figure 1. The finite element decomposition of
four subdivision examples, each color repre-
sents one individual element in the limit sur-
face: (a-b) two limit surfaces of Catmull-Clark
subdivision; (c-d) two limit surfaces of But-
terfly subdivision.

3 FEM-Based Techniques

Subdivision splines have offered users extraordinary
power and flexibility, especially when utilized in model-
ing complex shapes of arbitrary topology. Nonetheless,
they constitute a purely geometric substrate whose design
methodology does not exploit the full potential of the under-
lying geometric formulation because of the following prob-
lems:

� Modelers are faced with the tedium of shape re-
finement through time-consuming operations on a
large number of topologically irregular control ver-
tices and less-intuitive modification on various subdi-
vision rules. In general, conventional techniques re-
mains clumsy and laborious for effectively represent-
ing and deforming highly complex objects.

� The editing on control points is unnatural, since they
generally do not reside on the sculpted geometric ob-
ject. Hence, this indirect approach often requires de-
signers to make many nonintuitive decisions, and it is
even more difficult to accurately quantify the effects of
refinement in arbitrary localized regions.

� Typical design requirements may be posed in both
quantitative and qualitative terms. For example, a cer-

tain number of local features such as bulges or in-
flections may be strongly desired while requiring ge-
ometric objects to satisfy global smoothness criteria.
Therefore, it can be very frustrating to enforce a set of
diverse, heterogeneous criteria simultaneously via the
indirect approach.

In contrast, physics-based modeling can ameliorate the ge-
ometric design process. Dynamic models are governed by
differential equations that continuously evolve all of their
intrinsic degrees of freedom (DOFs) in response to simu-
lated forces. The new dynamic approachaugments (rather
than supersedes) standard geometry and geometric design,
offering attractive extra advantages:

� Dynamics facilitates interaction, especially direct ma-
nipulation and interactive sculpting of complex geo-
metric models in real-time. The dynamic approach
subsumes all of the geometric capabilities in an elegant
formulation that grounds shape variation in real-world
physics.

� The equilibrium shape of a geometric object is charac-
terized by a minimum of its potential energy, subject
to imposed constraints. It is possible to formulate po-
tential energy functionals that satisfy local and global
design criteria. In particular, elastic energy function-
als will allow the imposition of global qualitative “fair-
ness” criteria through quantitative means.

� Geometric design is a time-varying process because
designers are often interested in not only the final static
equilibrium shape but the intermediate shape variation
as well. Dynamic models produce smooth, natural mo-
tions that are familiar and can easily be controlled.

� Practical design processes span from conceptual de-
sign to the fabrication of mechanical parts. Physics-
based modeling techniques integrate geometry with
physics in a natural and coherent way. The unified
formulation is potentially relevant throughout the en-
tire modeling, simulation, analysis, and manufacturing
process. More importantly, it is possible to introduce
manufacturing constraints in the earlier design stage.

� Modeling systems with dynamic interfaces should be
of great interests to scientists, engineers, as well as to
non-expert users. For example, physics-based shape
design can free designers from having to make non-
intuitive decisions. Non-expert users are able to con-
centrate on visual shape variation without necessarily
comprehending the underlying mathematical formula-
tion. Physics-based interaction, in short, should appeal
to everyone.

Proceedings of the Eighth Pacific Conference on Computer Graphics and Applications (PG'00)
0-7695-0868-5/00 $10.00 © 2000 IEEE 



(a) (b)

(c) (d)

Figure 2. Control point configurations for the
finite element patches and their correspond-
ing parametric domains of arbitrary subdivi-
sion schemes: (a-b) Catmull-Clark subdivi-
sion and its rectangular elements; (c-d) But-
terfly subdivision and its triangular elements.

4 Dynamic Modeling Formulation

Free-form deformable models were first introduced to
the modeling community by Terzopouloset al. [27], and
were improved by a number of researchers during the past
decade. Terzopoulos and Fleischer demonstrated simple
interactive sculpting using viscoelastic and plastic models
[26]. Celniker and Gossard developed an interesting pro-
totype system [5] for interactive free-form design based on
the finite-element optimization of energy functionals pro-
posed in [26]. The system combines geometric constraints
with sculpting operations based on forces and loads to yield
fair shapes. However, this approach does not provide inter-
active mechanisms in dealing with forces and loads. Bloor
and Wilson developed related models using similar energies
and numerical optimization [3]. Subsequently, Celniker and
Welch investigated deformable B-splines with linear con-
straints [6]. Welch and Witkin extended the approach to
trimmed hierarchical B-splines for interactive modeling of
free-form surface with constrained variational optimization
[30]. We proposed and developed D-NURBS [28, 21]. D-
NURBS offer the advantage of interactive and direct manip-
ulation of NURBS curves and surfaces, resulting in phys-
ically meaningful thus intuitively predictable motion and
shape variation. The D-NURBS formulation permits hard

and soft geometric constraints to be imposed through La-
grange multipliers or penalty methods, respectively.

Despite the popularity of our D-NURBS models, they
cannot easily be adapted to model surfaces of arbitrary
genus due to their rectangular structure. By contrast, the
subdivision scheme is a powerful and superior candidate
for the next generation of physics-based models that can
bridge the gap between D-NURBS and conventional finite
element models. We have formulated FEM-based dynamic
models for the Catmull-Clark, Butterfly, and Loop subdivi-
sion schemes [20, 16, 17]. In addition, we have developed a
general and systematic mechanism for converting the limit
surface of any subdivision scheme to the physics-based for-
mulation using a single type of finite element [17].

We shall now present the formulation of our FEM-
based subdivision splines and develop a dynamic frame-
work that permits users to directly manipulate the limit sur-
face obtained from any subdivision procedure via simulated
”force” tools. The most significant contribution of our uni-
fied approach is the formulation of the limit surface of an
arbitrary subdivision scheme as being composed of a single
type of novel finite element. The limit surface of an arbi-
trary subdivision scheme can be viewed as a function of the
initial control mesh. The shape parameters (initial control
vertices) of subdivision splines play the key role of gen-
eralized (physical) coordinates in a finite element formu-
lation. We introduce time, mass, and deformation energy
into the procedure-based subdivision splines and employ
Lagrangian dynamics to arrive at a system of differential
equations that governs the shape and motion of subdivision
splines. The typical subdivision surfaces can be decom-
posed into a set of finite elements (each color denotes an
individual finite element in Fig. 1):

s =

kX
i=1

si; (1)

wherek is the number of faces defined by the initial control
mesh. We concatenate all the coordinates of initial control
vertices into the vector:

p(t) =
�
� � � p

>
i � � �

�>
;

wherep(t) are functions of time, also known as the DOF
vector of the limit surfaces. Now, we can explicitly express
the velocity and position of the limit surface as

s(x;p) = J(x)p;

and
_s(x;p) = J(x) _p;

where an over-struck dot denotes a time derivative,x 2 S0

andS0 define the domain of the initial mesh. Note thatS 0
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is the parametric domain of the limit surface. Fig. 2 illus-
trates several examples of finite elements and their control
vertices. The matrixJ(x) of dimension(3; 3n) is the Jaco-
bian matrix of the limit surface with respect top. It is also
the concatenation of basis functions for the corresponding
vertices in the initial mesh

J =
�
� � � Bi(x) � � �

�
:

Fig. 3 shows several examples of basis functions associated
with specific subdivision schemes. The equations governing
the motion of subdivisionsplines are derived from the work-
energy version of Lagrangian dynamics:

M�p+D _p+Kp = fp; (2)

whereM, D, andK are the mass, damping and stiffness
matrices of the physical model, respectively. All matrices
can be formulated explicitly. The mass and damping matri-
ces can be expressed as

M(p) =

Z
x2S0

�(x)J(x)>J(x)dx; (3)

and

D(p) =

Z
x2S0


(x)J(x)>J(x)dx; (4)

where�(x) is the prescribed mass density function over the
subdivision splines and
(x) is the prescribed damping den-
sity function. To define an elastic potential energyE(s) for
the surface, we can adopt a large variety of functional for-
mulations (such as the simplethin-plate-under-tension en-
ergy model [28] or complex non-quadratic curvature-based
energy [27]). In general, the energy functionalE(s) in-
volves derivative quantities (up to ordern) such assu, sv,
suu, etc., where(u; v) is a local parametric coordinate of
s(x). The internal force and the stiffness matrix can be for-
mulated as

fint =
@E

@p
= Kp: (5)

This allows our FEM-based subdivision splines to exhibit a
wide range of material and physical behavior such as linear
elastic and/or non-linear plastic deformation. The general-
ized force

fp =

Z
x2S0

J
>
f (s(x); t)dx (6)

is obtained through the principle of virtual work done by the
applied force distributionf (s(x); t). Because of the gener-
ality of our deformation functional, our FEM-based model
is applicable for modeling isotropic as well as anisotropic
phenomena.

To sculpt subdivision splines interactively in a modeling
system, it is vital to provide users with real-time feedback.
Dynamic simulation sessions involving real-world complex

shapes are computationally expensive due to the typically
large number of DOFs. Therefore, rather than using costly
time-integration methods that take the largest possible time
steps, it is more important to provide a smoothly animated
display by maintaining the continuity of the dynamics from
one step to the next. Hence, less costly yet robust and stable
time integration methods that take modest time steps are
desirable.

Note that, the equations of motion in (2), which deter-
mine the evolution ofp, cannot be solved analytically in
general. Instead, we pursue an efficient numerical imple-
mentation. Standard finite element procedures explicitly as-
semble the global matrices. Instead, we use an iterative ma-
trix solver to avoid the cost of assembling the global matri-
cesM, D, andK. A patch (e.g.,si) of subdivision models
(refer to Fig.1 and Fig.2) is considered to be a novel type
of finite element. The element data structure contains the
geometric specification of the patch element along with its
physical properties. A complete subdivision object consists
of an ordered array of subdivision elements with additional
information. The element structure includes pointers to ap-
propriate components of the global vectorp (initial control
points). Neighboring elements will share some generalized
coordinates. We also allocate in each element an elemental
mass, damping, and stiffness matrix, and include in the ele-
ment data structure the quantities needed to compute these
matrices. These quantities include the mass�(x), damping

(x), and elasticity (used to defineE) density functions,
which may be represented as either analytic functions or
parametric arrays of sample values. Our finite element data
structure fully supports parallel assembly and evaluation of
individual elements.

The integral expressions for the mass, damping, and
stiffness matrices associated with each element can be eval-
uated numerically using standard discretization techniques
such as Gaussian quadrature [19]. Assuming the parametric
domain of the element is
, the expression for entrymij of
the mass matrix takes the integral form

mij =

Z



�(x)fij(x)dx:

Given integersNg , we can find Gauss weightsag , and ab-
scissasxg within 
 such thatmij can be approximated by

mij �

NgX
g=1

ag�(xg)fij(xg):

The computation of damping and stiffness matrices follows
suit. Note that, the efficient assembly of the above material
matrices (and associated quadrature computation) requires
the rapid and precise evaluation of subdivision splines at ar-
bitrary location in their parametric domain. For Catmull-
Clark surfaces and Loop subdivision schemes, all basis
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(b)

Figure 3. Basis functions of arbitrary subdivi-
sion schemes: (a) Catmull-Clark subdivision;
(b) Butterfly subdivision.

functions as well as their derivatives up to ordern can be
evaluated (at least in an approximate sense if no closed-form
analytic expression exists) [25, 24, 20].

Alternatively, the continuum of elementsi may be dis-
cretized into a user-defined point setd and the associated
mass-spring mesh:

d =
�
� � � d

>
i � � �

�>
= Ap;

whereA is a discretized JacobianJ(x) of si (evaluated at
d). Assuming a discrete mass density function�(di) which
is non-zero only atdi, we can construct a diagonal matrix
Md for mass-setd, whose non-zero diagonal entries take
the form: �(di). The elemental mass matrixM of si can
be approximated through:

M = A
>
MdA: (7)

The elemental damping and stiffness matrices can be de-
rived analogously. The mass-spring approximation of sub-
division splines is proven to be feasible in order to achieve
the goal of real-time interaction without sacrificing the ac-
curacy of the model.

To solve (2) within an interactive modeling environment,
the state of a subdivision spline finite element at timet+�t

can be integrated using prior states at timet andt��t. To
maintain the stability of the integration scheme, we use an
implicit time integration method, which employs

�
2M+�tD+ 2�t2K

�
p
(t+�t) =

2�t2(fp) + 4Mp
(t)
� (2M ��tD)p(t��t); (8)

where the superscripts denote evaluation of the quantities
at the indicated times. The matrices and forces are evalu-
ated at timet. The conjugate gradient method can then be
employed to obtain an iterative solution.

Our dynamic subdivision splines not only permit design-
ers to manipulate the individual DOF with conventional ge-
ometric methods, but they also allow users to modify its
shape with interactive sculpting forces. Fig. 1 illustrates the
results of four interactive sculpting sessions using simple
spring forces (also refer to Fig. 4 for more complex shapes).
More importantly, the FEM-based design methodology pro-
vides designers an intuitively natural way to automatically
determine topologically irregular control vertices in accor-
dance with functional constraints and dynamic sculpting.

5 Conclusion

The novel, dynamic framework of FEM-based subdi-
vision splines will not only augment (rather than replace)
well established NURBS-based modeling technologies but
also generalize newly-developed theory and methodology
of physics-based modeling (e.g., D-NURBS) in industrial
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Figure 4. Four interactive sculpting sessions
of subdivision splines objects using simple
spring forces.

practice. In particular, the FEM-based subdivision splines
can (1) contribute both to the geometric design and finite el-
ement analysis communities, (2) integrate their superior ge-
ometric features with the many demonstrated conveniences
of physics-based interaction, (3) promise a greater potential
to bridge the large gaps among interactive modeling, geo-
metric design, finite element analysis, and manufacturing,
(4) serve as a solid basis for future theories and techniques
which can eventually unify all aspects of modeling, design,
and manufacturing, and (5) further foster the applicability
of subdivision geometry in a wider range of visual comput-
ing applications such as visualization, virtual reality, com-
puter vision, robotics, and medical imaging. Our methodol-
ogy and its associated empirical system with physics-based
sculpting capabilities will appeal to a spectrum of users
ranging from highly-trained engineering designers, com-
puter professionals, artists, to naive users.
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