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AbstractÐIn this paper, we develop integrated techniques that unify physics-based modeling with geometric subdivision methodology

and present a scheme for dynamic manipulation of the smooth limit surface generated by the (modified) butterfly scheme using

physics-based ªforceº tools. This procedure-based surface model obtained through butterfly subdivision does not have a closed-form

analytic formulation (unlike other well-known spline-based models) and, hence, poses challenging problems to incorporate mass and

damping distributions, internal deformation energy, forces, and other physical quantities required to develop a physics-based model.

Our primary contributions to computer graphics and geometric modeling include: 1) a new hierarchical formulation for locally

parameterizing the butterfly subdivision surface over its initial control polyhedron, 2) formulation of dynamic butterfly subdivision

surface as a set of novel finite elements, and 3) approximation of this new type of finite elements by a collection of existing finite

elements subject to implicit geometric constraints. Our new physics-based model can be sculpted directly by applying synthesized

forces and its equilibrium is characterized by the minimum of a deformation energy subject to the imposed constraints. We

demonstrate that this novel dynamic framework not only provides a direct and natural means of manipulating geometric shapes, but

also facilitates hierarchical shape and nonrigid motion estimation from large range and volumetric data sets using very few degrees of

freedom (control vertices that define the initial polyhedron).

Index TermsÐDynamic modeling, physics-based geometric design, geometric modeling, CAGD, subdivision surfaces, deformable

models, finite elements, interactive techniques.

æ

1 INTRODUCTION

IN visual computing areas, subdivision surfaces are
extensively employed to model smooth shapes of

arbitrary topology for interactive graphics, computer
animation, and geometric design applications. A typical
recursive subdivision scheme produces a visually pleasing
smooth surface in the limit by repeated application of a
fixed set of refinement rules on a user-defined initial control
mesh. Despite the presence of a variety of subdivision
schemes in the computer graphics and geometric modeling
literature, there is no direct and natural way of manipulat-
ing the limit surface. The current state-of-the-art only
permits modelers to interactively obtain the desired effects
on the smooth surface by kinematically manipulating the
vertex positions at various levels of subdivision hierarchy.
This paper tackles the challenging problem of direct
manipulation of the limit subdivision surface at arbitrary
locations/areas and offers a novel solution to this problem
by embedding the modified butterfly subdivision scheme in
a physics-based modeling framework. Consequently, our
methodology and algorithms permit the user to physically
modify the shape of subdivision surfaces at desired

locations via application of forces, augmenting the conven-
tional geometric solutions that only allow the operations on
control vertices. This provides the user an intuitive and
natural feeling that is produced while modeling with real
clay/play-dough. We also demonstrate that the proposed
model efficiently recovers static and dynamic shapes from
large range and volumetric data sets. Our motivation is to
integrate the advantages of subdivision surface-based and
physics-based modeling techniques to solve important
theoretical and practical problems. In particular, the
existing ªdirectº editing tools for subdivision surfaces
provide direct manipulation of control points, whereas we
provide interaction tools that directly manipulate the
smooth limit surface instead of the control points. First,
we will briefly review the previous work on subdivision
surfaces.

2 BACKGROUND REVIEW

Chaikin [1] first introduced the concept of subdivision to
the graphics community for generating a smooth curve
from a given control polygon. During the last two decades,
a wide variety of subdivision schemes for modeling smooth
surfaces of arbitrary topology have been derived following
Chaikin's pioneering work on curve generation. In general,
these subdivision schemes can be categorized into two
distinct classes: 1) approximating subdivision techniques
and 2) interpolating subdivision techniques.

Among the approximating schemes, the techniques of
Doo [2] and Sabin [3] and Catmull and Clark [4] generalize
the idea of obtaining uniform biquadratic and bicubic
B-spline patches, respectively, from a rectangular control
mesh. Catmull and Clark [4] developed a method for
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recursively generating a smooth surface from a polyhedral
mesh of arbitrary topology. The Catmull-Clark subdivision
surface, defined by an arbitrary initial mesh, can be reduced
to a set of standard B-spline patches except at a finite
number of degenerate points. Loop [5] presented a similar
subdivision scheme based on the generalization of quartic
triangular B-splines for triangular meshes. Hoppe et al. [6]
extended his work to produce piecewise smooth surfaces
with selected discontinuities. Halstead et al. [7] proposed an
algorithm to construct a Catmull-Clark subdivision surface
that interpolates the vertices of a mesh of arbitrary
topology. Peters and Reif [8] proposed a simple subdivision
scheme for smoothing polyhedra. Most recently, nonuni-
form Doo-Sabin and Catmull-Clark surfaces that generalize
nonuniform tensor product B-spline surfaces to arbitrary
topologies were introduced by Sederberg et al. [9]. All the
schemes mentioned above generalize recursive subdivision
schemes for generating limit surfaces with a known
parameterization. Various issues involved with character
animation using these approximating subdivision schemes
were discussed at length by DeRose et al. [10].

The most well-known interpolation-based subdivision
scheme is the ªbutterflyº algorithm proposed by Dyn et al.
[11]. Butterfly subdivision method, like other subdivision
schemes, makes use of a small number of neighboring
vertices for subdivision. It requires simple data structures
and is extremely easy to implement. However, it needs a
topologically regular setting of the initial (control) mesh in
order to obtain a smooth C1 limit surface. A variant of this
scheme with better smoothness properties can be found in
Dyn et al. [12]. Zorin et al. [13] have developed an improved
interpolatory subdivision scheme (which we call the
modified butterfly scheme) that retains the simplicity of the
butterfly scheme and results in much smoother surfaces
even from irregular initial meshes. These interpolatory
subdivision schemes have extensive applications in wave-
lets on manifolds, multiresolution decomposition of poly-
hedral surfaces, and multiresolution editing.

The derivation of various mathematical properties of the
smooth limit surface generated by the subdivision algo-
rithms is rather complex. Doo and Sabin [14] first analyzed
the smoothness behavior of the limit surface using the
Fourier transform and an eigen-analysis of the subdivision
matrix. Ball and Storry [15], [16] and Reif [17] further
extended Doo and Sabin's prior work on continuity proper-
ties of subdivision surfaces by deriving various necessary
and sufficient conditions on smoothness for different
subdivision schemes. Micchelli and Prautzsch [18] dis-
cussed the mathematical properties such as convergence,
continuity, and differentiability for curves derived via
uniform subdivision. Cavaretta et al. [19] presented a
detailed and systematic study of stationary subdivision
algorithms in a multidimensional �Rn� setting. Algebraic
properties and numerical issues such as necessary and
sufficient conditions for the convergence of subdivision
algorithms and the smoothness of the limiting functions are
derived and analyzed using mathematical tools of Fourier
and functional analysis. Specific subdivision schemes were
analyzed by Schweitzer [20], Habib and Warren [21], Peters
and Reif [22], and Zorin [23]. Most recently, Stam [24]

presented a method for exact evaluation of Catmull-Clark
subdivision surfaces at arbitrary parameter values.

A variational approach for subdivision surfaces has been
proposed by Kobbelt [25], [26] and by Kobbelt and SchroÈder
[27]. In this approach, the goal is to find appropriate
subdivision rules that minimize certain energy functionals
and the vertex positions in the refined mesh at each
subdivision step are obtained by solving an optimization
problem. Therefore, these schemes are global, i.e., every
new vertex position depends on all the vertex positions of
the coarser level mesh. The local refinement property which
makes the subdivision schemes attractive for implementa-
tion in the graphics applications is not retained in the
variational approach. Weimer and Warren [28] have
derived a family of subdivision schemes for surfaces that
approximate the behavior of thin plate splines. However,
their subdivision rules are only applicable to regular grids
with rectangular structures that are equivalent to tensor-
product splines defined onR2. Our physics-based approach
significantly differs from the existing variational techniques
because we do not intend to seek a set of subdivision rules
minimizing certain energy functionals. Instead, we impose
physical properties on the smooth limit surface (generated
by the fixed set of subdivision rules) to make it behave in a
physically plausible way in response to the application of
physics-based force tools.

In recent years, researchers have proposed subdivision-
based modeling tools for hierarchical and variational
operations. Kurihara [29] has proposed a hierarchical
editing method for subdivision surfaces generated by Doo
and Sabin's scheme. The method is essentially based on
hierarchical B-splines and allows users to directly edit
discrete control points (and not the limit surface) within a
subdivision hierarchy. Pulli and Lounsbery [30] have
proposed a similar system which supports hierarchical
and direct editing of control points used to generate
subdivision limit surface. Zorin et al. [31] have presented
an interactive system that supports multiresolution editing
on control points and meshes with the help of synthesis and
analysis filters. The fine meshes they use are obtained after
several level of Loop's subdivision. Therefore, their meshes
must maintain subdivision connectivity. Kobbelt et al. [32]
have generalized their techniques to arbitrary triangular
meshes without requiring subdivision connectivity. They
introduced the concept of discrete fairing and allowed
energy functionals to be defined over the discrete setting of
triangular meshes and control points (polygons) at various
levels of subdivision can be smoothed using these discrete
energy functionals. Note that these existing subdivision
surface editing tools support direct manipulation of the
control points governing the limit surface, whereas our
methodology permits direct sculpting on the limit surface
itself.

3 RATIONALE

Although recursive subdivision surfaces are powerful for
representing smooth geometric shapes of arbitrary topol-
ogy, they constitute a purely geometric representation. In
addition, conventional geometric modeling with subdivi-
sion surfaces may be difficult for representing extremely
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complicated objects. For example, modelers are faced with
the tedium of indirect shape modification and refinement
through time-consuming operations on a large number of
(often irregular) control vertices when using typical
subdivision surface-based modeling schemes. Despite the
advent of advanced 3D graphics interaction tools, these
indirect geometric operations remain nonintuitive and
laborious in general. In contrast, physics-based modeling
provides a shape modeling approach that can overcome
most of the limitations associated with traditional geometric
modeling techniques. Free-form deformable models gov-
erned by the laws of continuum mechanics are of particular
interest in this context. These dynamic models respond to
externally applied forces in a very intuitive manner. The
dynamic formulation marries the model geometry with
time, mass, damping, and constraints via a force balance
equation. Dynamic models produce smooth, natural mo-
tions which are intuitive to control. In addition, they
facilitate interactionÐespecially direct manipulation of
complex geometries. Furthermore, the equilibrium state of
the model is characterized by a minimum of the deforma-
tion energy of the model subject to the imposed constraints.
The deformation energy functionals can be formulated to
satisfy local and global modeling criteria and geometric
constraints relevant to shape design can also be imposed.
The dynamic approach subsumes all of the aforementioned
modeling capabilities in a formulation which grounds
everything in real-world physical behavior.

Free-form deformable models were first introduced to
computer graphics by Terzopoulos et al. [33] and further
developed by Terzopoulos and Fleischer [34], Pentland and
Williams [35], Metaxas and Terzopoulos [36], and Vemuri
and Radisavljevic [37]. Celniker and Gossard [38] devel-
oped a system for interactive free-form design based on the
finite element optimization of energy functionals proposed
in [34]. Bloor and Wilson [39], [40], Celniker and Welch [41],
and Welch and Witkin [42] proposed deformable B-spline
curves and surfaces which can be designed by imposing the
shape criteria via the minimization of the energy functionals
subject to hard or soft geometric constraints through
Lagrange multipliers or penalty methods. Qin and Terzo-
poulos [43], [44], [45] developed dynamic NURBS
(D-NURBS) which are very sophisticated models suitable
for representing a wide variety of free-form as well as
standard analytic shapes. The D-NURBS have the advan-
tage of interactive and direct manipulation of NURBS
curves and surfaces, resulting in physically meaningful,
hence intuitively predictable, motion and shape variation.

A severe limitation of the existing deformable models,
including D-NURBS, is that they are defined on a
rectangular parametric domain. Hence, it can be very
difficult to model surfaces of arbitrary genus using these
models. DeRose et al. [10] assigned material properties to
control meshes at various subdivision levels in order to
simulate cloth dynamics using subdivision surfaces. Note
that they assign physical properties on the control meshes at
various levels of subdivision and not on the limit surface
itself and, hence, cannot solve the modeling goal we are
trying to achieve. Previously, we introduced a dynamic
Catmull-Clark subdivision surface model [46], [47] which

combined the benefits of subdivision surfaces for modeling
arbitrary topology, as well as that of dynamic splines for
interactive shape manipulation, by applying synthesized
forces. The dynamic (modified) butterfly subdivision sur-
face model formulated and developed in this paper aims to
achieve the same long-term objective, i.e., a formal mechan-
ism of allowing the modeler to directly and intuitively
manipulate the smooth limit surface of arbitrary topology
as if they were seamlessly sculpting a piece of real-world
ªclay.º However, this new model is superior to our
previously reported research in several significant aspects
which will be detailed in Section 4. In particular, we derive
a novel technique for locally parameterizing the smooth
limit surface generated by the modified butterfly subdivi-
sion surface algorithm which embeds the proposed model
in a dynamic framework in a straightforward manner. The
model can be initialized interactively by a user-defined
control mesh and is amenable to further sculpting via direct
application of synthesized forces to any region of object
surface.

The dynamic subdivision surface model has been
developed primarily for modeling arbitrary (known) topol-
ogy where modelers can directly manipulate the limit
surface by applying synthesized forces in an intuitive
fashion. However, as we have shown in our earlier work
[48], another important application of the dynamic subdivi-
sion surfaces is in nonrigid shape reconstruction/recovery.
Accurate shape recovery requires distributed parameter
models which typically possess a large number of degrees
of freedom. On the other hand, efficient shape representa-
tion imposes the requirement of geometry compression, i.e.,
models with fewer degrees of freedom. These requirements
are conflicting and numerous researchers have been seeking
to strike a balance between these contradicting require-
ments [37], [45], [48], [49], [50], [51], [52], [53], [54]. Another
important criterion in shape design is that the initialization
of the model during the shape recovery process should not
be restricted to globally parameterized input meshes since it
may be infeasible to globally parameterize shapes of
arbitrary topology. A physics-based model best satisfying
the above mentioned criteria is an ideal candidate for a
solution to the shape recovery problem for obvious reasons.

Deformable models, which come in many varieties, have
been used to solve the problem in the physics-based
modeling paradigm. These models involve the use of either
fixed size [37], [50], [55], [56], [57] or adaptive size [51], [53],
[58], [59], [60], [61] grids. The models with fixed grid size
generally use a fewer number of degrees of freedom for
representation at the cost of accuracy of the recovered
shape. On the other hand, models using adaptive grids
generally need a large number of degrees of freedom to
recover the shapes accurately. Note that the shapes being
recovered from the image data are smooth in most of the
medical applications, i.e., the anatomical structures, even
with a considerable amount of details, have more or less aC1

surface. Under these circumstances, the finite element
approaches as in Cohen and Cohen [50] and McInerney and
Terzopoulos [53] need a large number of degrees of freedom
for deriving a smooth and accurate representation. In
addition, they cannot represent shapes with known arbitrary
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topology. Moreover, almost all of these schemes require a

globally parameterized mesh, as their input which may be

infeasible at times.
Our previous dynamic subdivision surface model [46],

[47], [48] offered a novel solution to the above-mentioned

problem as it could recover complex shapes in a hierarch-

ical fashion using very few degrees of freedom without

requiring parameterized input mesh. However, the model

proposed in this paper outperforms the previous one in

the compactness of the model representation. We will

show experimental results in support of this claim. We

will also demonstrate the potential of this model in

motion tracking and visualization of a dynamically

deforming shape from a time sequence of volumetric

data sets. Like the previous model, the dynamic modified

butterfly subdivision surface model also deforms under

the influence of synthesized forces to fit the underlying

shape in the given range or volumetric data set via the

principle of energy minimization.

4 CONTRIBUTIONS

We summarize our contributions along with the advantages

of the proposed dynamic modified butterfly subdivision

surface model over the dynamic Catmull-Clark subdivision

surface model [46], [47]. The primary contributions are as

follows:

. We systematically derive a local parameterization
scheme for the modified butterfly subdivision
surfaces in a hierarchical fashion and, subsequently,
the initial control polyhedron can be viewed as the
parametric domain of the physics-based smooth
limit surface.

. We treat the dynamic subdivision surface in the limit
as a ªrealº physical object and represent the smooth
limit surface as a set of novel finite elements whose
shape (basis) functions are derived using the
modified butterfly subdivision scheme. We envision
that this new finite element method will prove to be
useful not only in the areas of computer graphics
and geometric design, but also in engineering
analysis.

. With the aid of the modified butterfly subdivision
technique, we create a surface model that incorpo-
rates mass and damping distributions, internal
deformation energy, forces, and other physical
quantities. We also systematically formulate the
motion equations for this (modified) butterfly sub-
division surface whose degrees of freedom are the
collection of initial user-specified control vertices.
Therefore, the advantages of both the physics-based
modeling philosophy and the geometric subdivision
schemes are assimilated within a single unified
framework.

. Users will be able to manipulate this physics-based
model in an arbitrary region and the model responds
naturally (just like the real-world object) to various
force distributions. The shape deformation is quan-
titatively characterized by the time-varying

displacement of control points that uniquely define
the geometry of the limit surface.

. We develop algorithms and procedures which
approximate our novel finite elements using a
collection of linear and/or bilinear finite elements
subject to the implicit geometric constraints enforced
by the butterfly subdivision rules. This hierarchically
structured approximation is capable of achieving
any user-specified error tolerance.

Although the long-term goals inherent in the previously-
developed dynamic Catmull-Clark model [46], [47] are the
same as in our current endeavor of deriving the dynamic
modified butterfly subdivision scheme, the research pre-
sented in this paper achieves them in a much more elegant
fashion. First, the finite element implementation of the
dynamic Catmull-Clark subdivision surface is specific to
the subdivision technique involved where a diversity of
complicated finite elements must be employed in order to
account for the special cases and cannot be readily general-
ized to other approximating subdivision schemes in a
straightforward way. However, the finite element techni-
ques developed in this paper can be easily generalized to
other interpolatory (as well as approximating) subdivision
schemes involving triangular (or n-sided) meshes. Second,
for some specific cases, the thin-plate energy of Catmull-
Clark subdivision surface diverges as shown in [7], hence
various case analysis needs to be performed to derive the
internal energy of the dynamic Catmull-Clark subdivision
surface model. In contrast, the internal deformation energy
of the dynamic butterfly scheme can be derived in an
unified fashion for a variety of scenarios. Third, for both
models, we need to derive the closest point on the limit
surface from a given point in 3D for force applications. The
calculation overhead involved in this process is signifi-
cantly less for the butterfly case as it is an interpolatory
scheme where all vertices at various levels of subdivision lie
on the limit surface and the search space can be reduced
rapidly in a hierarchical fashion. The situation is quite
different for Catmull-Clark subdivision scheme since it is an
approximating scheme and the technique used for finding
the closest model point [55] is computationally expensive.
Note that, even though the limiting points of the control
vertices can be derived using the approach proposed by
Halstead et al. [7], it produces significant overhead to
compute these limiting positions for nearest point computa-
tions each time the model is updated. The force application
is vital to any physics-based model and, hence, the adopted
computationally inexpensive method to find the closest
point for the proposed scheme in this paper has very
significant advantages over the previous model. Finally, it
has been empirically found that the recovered shape is more
compact (fewer number of degrees of freedom) when using
the proposed model in comparison with our earlier
reported model for the same data sets and model-fitting
criteria.

5 PHYSICS-BASED FORMULATION

We shall provide a systematic formulation of the dynamic
subdivision surface model. First, we briefly review the
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modified butterfly subdivision scheme. Next, we introduce
a local parameterization scheme which will facilitate the
formulation of the smooth limit surface as a function of the
control point positions defining the initial mesh. This
parameterization scheme is then used to derive the dynamic
model. Note that, these techniques can be generalized to
define and construct a generic dynamic framework for
other triangle-based subdivision surface schemes as well.

5.1 Butterfly Subdivision Geometry

The butterfly subdivision scheme [11] starts with an initial
triangular mesh which is also known as the control mesh.
The vertices of the control mesh are known as the control
points. In each step of subdivision, the initial (control) mesh
is refined through the transformation of each triangular face
into a patch with four smaller triangular faces. After one step
of refinement, the new mesh in the finer level retains the
vertices of each triangular face in the previous level and,
hence, interpolates the coarser mesh in the previous level. In
addition, every edge in each triangular face is split by

adding a new vertex whose position is obtained by an affine

combination of the neighboring vertex positions in the

coarser level. For instance, the mesh in Fig. 1b is obtained by

subdividing the initial mesh shown in Fig. 1a once. Note

that, all the newly introduced vertices (marked in blue)

corresponding to the edges in the original mesh have

valence (degree) 6, whereas the position and valence of the

original vertices (marked in red) do not change in the

subdivided mesh.
In the original butterfly scheme, the new vertices

corresponding to the edges in the previous level are

obtained using an eight-point stencil, as shown in Fig. 2a.

The name of the scheme originated from the ªbutterflyº-like

configuration of the contributing vertices. The weighing

factors for different contributing vertex positions are shown

in Fig. 2b. The vertex ej�1
12 in the j� 1th level of subdivision,

corresponding to the edge connecting vertices vj1 and vj2 at

level j is obtained by
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Fig. 2. (a) The contributing vertices in the jth level for the vertex in the j� 1th level corresponding to the edge between vj1 and vj2; (b) the weighing

factors for different vertices.



ej�1
12 � 0:5�vj1 � vj2� � 2w�vj3 � vj4� ÿ w�vj5 � vj6 � vj7 � vj8�;

�1�
where 0 � w � 1, and vji denotes the position of the ith

vertex at the jth level.
The butterfly subdivision scheme produces a smooth

C1 surface in the limit except at the extraordinary points

corresponding to the extraordinary vertices (vertices with

valence not equal to 6) in the initial mesh [13]. All the

vertices introduced through subdivision have valence 6

and, therefore, the number of extraordinary points in the

smooth limit surface equals the number of extraordinary

vertices in the initial mesh. Recently, this scheme has been

modified by Zorin et al. [13] to obtain better smoothness

properties at the extraordinary points. In Zorin et al. [13], all

the edges have been categorized into three classes : 1) edges

connecting two vertices of valence 6 (a 10 point stencil, as

shown in Fig. 3a, is used to obtain the new vertex positions

corresponding to these edges), 2) edges connecting a vertex

of valence 6 and a vertex of valence n 6� 6 (the correspond-

ing stencil to obtain new vertex position is shown in Fig. 3b,

where q � :75 is the weight associated with the vertex of

valence n 6� 6 and

si � �0:25� cos�2�i=n� � 0:5cos�4�i=n��=n;
i � 0; 1; . . . ; nÿ 1;

are the weights associated with the vertices of valence 6),

and 3) edges connecting two vertices of valence n 6� 6. The

last case cannot occur except in the initial mesh as all the

newly introduced vertices are of valence 6 and the new

vertex position in this last case is obtained by averaging the

positions obtained through the use of stencil shown in

Fig. 3b at each of those two extraordinary vertices.

5.2 Parameterization of the Limit Surface

Often, the smooth limit surface defined by the recursive
subdivision process is of arbitrary topology where a
globally planar parameterization may not be possible.
Nevertheless, we can locally parameterize the limit surface
over the domain defined by the initial mesh following an
approach similar to the one described in Lounsbery et al.
[62]. The idea is to track any arbitrary point on the initial
mesh across the meshes obtained via the subdivision
process (see Fig. 4 and Fig. 5) so that a correspondence
can be established between the point being tracked in the
initial mesh and its image on the limit surface.

The modified butterfly subdivision scheme starts with an
initial mesh consisting of a set of triangular faces. The
recursive application of the subdivision rules smooths out
each triangular face and, in the limit, a smooth surface is
obtained which can also be considered as a collection of
smooth triangular patches. The subdivision process and the
triangular decomposition of the limit surface is depicted in
Fig. 4. Note that the limit surface can be represented by the
same number of smooth triangular patches as that of the
triangular faces in the initial mesh. Therefore, we can
express the limit surface s as

s �
Xn
k�1

sk; �2�

where n is the number of triangular faces in the initial mesh
and sk is the smooth triangular patch in the limit surface
corresponding to the kth triangular face in the initial mesh.

The parameterization process is best explained through
the following example: We choose a simple planar mesh,
shown in Fig. 5a, as the initial mesh. An arbitrary point x
inside the triangular face abc is tracked over the meshes
obtained through subdivision. The vertices in the initial
mesh are drawn in black in Fig. 5. After one step of
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Fig. 4. The smoothing effect of the subdivision process on the triangles of the initial mesh.

Fig. 5. Tracking a point x through various levels of subdivision: (a) initial mesh, (b) the selected section (enclosed by dotted lines) of the mesh in (a)

after one subdivision step, (c) the selected sectoin of the mesh in (b) after another subdivision step.



subdivision, the initial mesh is refined by addition of new

vertices, which are colored green. Another subdivision step

on this refined mesh leads to a finer mesh with the

introduction of magenta-colored new vertices. Note that

any point inside the smooth triangular patch in the limit surface

corresponding to the face abc in the initial mesh depends only on

the vertices in the initial mesh which are within the

2-neighborhood of the vertices a, b, and c due to the local nature

of the subdivision process. For example, the vertex d,

introduced after the first subdivision step, can be obtained

using the 10-point stencil shown in Fig. 3a on the edge ab.

All the contributing vertices in the initial mesh are within

the 1-neighborhood of the vertices a and b. A 10-point

stencil can be used again in the next subdivision step on the

edge db to obtain the vertex g. Some of the contributing

vertices at this level of subdivision, for example, the (green-

colored) 1-neighbors of the vertex b (except d and e) in

Fig. 5b depend on some vertices in the initial mesh which

are within the 2-neighborhood of the vertices a, b, and c in

the initial mesh.
In the rest of the discussion, superscripts are used to

indicate the subdivision level. For example, vjuvw denotes

the collection of vertices at level j which control the smooth

patch in the limit surface corresponding to the triangular

face uvw at the jth level of subdivision. Let v0
abc be the

collection of vertices in the initial mesh which are within the

2-neighborhood of the vertices a, b, and c (marked black in

Fig. 5a). Let the number of such vertices be r. Then, the

vector v0
abc, which is the concatenation of the �x; y; z�

positions for all the r vertices, is of dimension 3r. These

r vertices control the smooth triangular patch in the limit

surface corresponding to the triangular face abc in the initial

mesh. Now, there exist four �3r� 3r� subdivision matrices

�Aabc�t, �Aabc�l, �Aabc�r, and �Aabc�m such that:

v1
adf � �Aabc�tv0

abc;

v1
bed � �Aabc�lv0

abc;

v1
cfe � �Aabc�rv0

abc;

v1
def � �Aabc�mv0

abc;

�3�

where the subscripts t, l, r, and m denote top, left, right, and

middle triangle positions, respectively (indicating the

relative position of the new triangle with respect to the

original triangle), and v1
adf , v1

bed, v1
cfe, and v1

def are the

concatenation of the �x; y; z� positions for the vertices in the

2-neighborhood of the corresponding triangle in the newly

obtained subdivided mesh. The new vertices in this level of

subdivision are marked green in Fig. 5b. The 2-neighbor-

hood configuration of the vertices in the newly obtained

triangles is exactly the same as that of the original triangle,

hence, local subdivision matrices are square and the vector

dimensions on both sides of (3) are the same. This concept is

further illustrated in Fig. 6.
Carrying out one more level of subdivision, along with

the old vertices, we get a new set of vertices, which are

marked in magenta in Fig. 5c. Adopting a similar approach

as in the derivation of (3), we obtain

v2
dgi � �Abed�tv1

bed

v2
bhg � �Abed�lv1

bed

v2
eih � �Abed�rv1

bed

v2
ghi � �Abed�mv1

bed:

�4�

The relative position of the triangular face dgi in Fig. 5c

with respect to the triangular face bed is topologically the

same as of the triangular face adf in Fig. 5b with respect to

the triangular face abc. Therefore, we can write

�Abed�t � �Aabc�t. Using similar reasoning, (4) can be

rewritten as

v2
dgi � �Abed�tv1

bed � �Aabc�tv1
bed

v2
bhg � �Abed�lv1

bed � �Aabc�lv1
bed

v2
eih � �Abed�rv1

bed � �Aabc�rv1
bed

v2
ghi � �Abed�mv1

bed � �Aabc�mv1
bed:

�5�

Combining (3) and (5), we get

v2
dgi � �Aabc�t�Aabc�lv0

abc;

v2
bhg � �Aabc�l�Aabc�lv0

abc;

v2
eih � �Aabc�r�Aabc�lv0

abc;

v2
ghi � �Aabc�m�Aabc�lv0

abc:

�6�

Let x be a point with barycentric coordinates

��0
abc; �

0
abc; 


0
abc� inside the triangular face abc. When the

initial mesh is subdivided, x becomes a point inside the

triangular face bed with barycentric coordinates

��1
bed; �

1
bed; 


1
bed�. Another level of subdivision causes x to

be included in the triangular face dgi with barycentric

coordinates ��2
dgi; �

2
dgi; 


2
dgi�. Let sjabc denote the jth level

approximation of the smooth triangular patch sabc in the

limit surface corresponding to the triangular face abc in the

initial mesh. Now, v0
abc can be written as

v0
abc � �ax; bx; cx; . . .

z���������}|���������{r

; ay; by; cy; . . .
z��������}|��������{r

; az; bz; cz; . . .
z��������}|��������{r

�T ;
where the subscripts x, y, and z indicate the x, y, and z

coordinates, respectively, of the corresponding vertex

position. The expressions for v1
bed and v2

dgi can also be

written in a similar manner. Next, we construct the matrix

B0
abc as follows:

B0
abc�x� �

�0
abc; �

0
abc; 


0
abc; 0; . . . ; 0

z������������������}|������������������{r

; 0; . . . ; 0
z����}|����{r

; 0; . . . ; 0
z����}|����{r

0; . . . ; 0
z����}|����{r

; �0
abc; �

0
abc; 


0
abc; 0; . . . ; 0

z������������������}|������������������{r

; 0; . . . ; 0
z����}|����{r

0; . . . ; 0
z����}|����{r

; 0; . . . ; 0
z����}|����{r

; �0
abc; �

0
abc; 


0
abc; 0; . . . ; 0

z������������������}|������������������{r

266666664

377777775:

The matrices B1
bed and B2

dgi can also be constructed in a

similar fashion. We can now write s0
abc�x�, s1

abc�x�, and

s2
abc�x� as
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s0
abc�x� � B0

abc�x�v0
abc;

s1
abc�x� � B1

bed�x�v1
bed � B1

bed�x��Aabc�lv0
abc;

s2
abc�x� � B2

dgi�x�v2
dgi � B2

dgi�x��Aabc�tv1
bed

� B2
dgi�x��Aabc�t�Aabc�lv0

abc:

�7�

Proceeding in a similar way, the expression for sjabc�x�,
jth level approximation of sabc�x�, is given by

sjabc�x� � Bj
uvw�x� �Aabc�m . . . �Aabc�t�Aabc�l

z����������������������}|����������������������{j

v0
abc

� Bj
uvw�x��Aj

abc�v0
abc

� Bj
abc�x�v0

abc;

�8�

where x is inside the triangular face uvw at level j (with an

assumption that uvw is the triangular face in the middle with

respect to its coarser level original triangular face in the

previous level), �Aj
abc� � �Aabc�m . . . �Aabc�t�Aabc�l and
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Bj
abc�x� � Bj

uvw�x��Aj
abc�. Note that the sequence of applying

�Aabc�t, �Aabc�l, �Aabc�r, and �Aabc�m depends on the triangle

inside which the tracked point x falls after each subdivision

step. Finally, we complete the local parameterization

process and obtain

sabc�x� � � lim
j!1

Bj
abc�x��v0

abc � Babc�x�v0
abc; �9�

where Babc is the collection of basis functions at the vertices

of v0
abc. Note that the modified butterfly subdivision scheme

is a stationary subdivision process and, hence, new vertex

positions are obtained by affine combinations of nearby

vertices. This guarantees that each row of the matrices

�Aabc�t, �Aabc�l, �Aabc�r, and �Aabc�m sums to one. The largest

eigenvalue of such matrices is 1 and, therefore, the limit in

(9) exists. Now, if we assume that the triangular face abc is

the kth face in the initial mesh, then (9) can be rewritten as

sk�x� � Bk�x�v0
k � Bk�x�Akp; �10�
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where p is the concatenation of the (x, y, z) positions of all
the vertices in the initial mesh and the matrix Ak, when
postmultiplied by p, selects the vertices v0

k controlling the
kth smooth triangular patch in the limit surface. If there are
t vertices in the initial mesh and r of them control the kth
patch, then p is a vector of dimension 3t, Ak is a �3r� 3t�
matrix, and Bk�x� is a �3� 3r� matrix.

Combining (2) and (10), we get

s�x� �
Xn
k�1

Bk�x�Ak

 !
p;� J�x�p; �11�

where the �3� 3t� matrix J is the collection of basis
functions for the corresponding vertices in the initial mesh.
The basis function (at various resolutions) corresponding to
a vertex of degree 5 is shown in Fig. 7. The vector p is also
known as the degrees of freedom (DOF) vector of the
smooth limit surface s.

5.3 Kinematics and Dynamics

We now treat the vertex positions in the initial mesh
defining the smooth limit surface s as a function of time in
order to embed the modified butterfly subdivision model in
a dynamic framework. The velocity of this surface model
can be expressed as

_s�x;p� � J�x� _p; �12�
where an overstruck dot denotes a time derivative and
x 2 S0, S0 being the domain defined by the initial mesh.
The physics of the dynamic subdivision surface model is
based on the work-energy relationship of Lagrangian
dynamics [63] and is formulated in an analogous way to
that in [46], [47].

In an abstract physical system, let pi�t� be a set of
generalized coordinates which are functions of time and are
assembled into the vector p. Let fi�t� be the generalized
force assembled into the vector fp and acting on pi. Then,
the Lagrangian equation of motion can be expressed as

d

dt

@T

@ _pi
ÿ @T
@pi
� @F
@ _pi
� @U
@pi
� fi; �13�

where T , F , and U are the kinetic, dissipation, and potential
energy, respectively.

Let � be the mass density function of the surface. Then,
the kinetic energy of the surface is

T � 1

2

Z
x2S0

��x� _sT �x� _s�x�dx � 1

2
_pTM _p; �14�

where (using (12)) M � Rx2S0 ��x�JT �x�J�x�dx is the �3t� 3t�
mass matrix. Similarly, let 
 be the damping density
function of the surface. The dissipation energy is

F � 1

2

Z
x2S0


�x� _sT �x� _s�x�dx � 1

2
_pTD _p; �15�

where D � Rx2S0 
�x�JT �x�J�x�dx is the �3t� 3t� damping
matrix. The potential energy of the smooth limit surface can
be expressed as

U � 1

2
pTKp; �16�

where the �3t� 3t� stiffness matrix K is obtained by
assigning various internal energies to a discretized approx-
imation of the limit surface and is detailed in Section 6.

Using the expressions for the kinetic, dissipation, and
potential energy in (13), we get the motion equation given
by

M�p�D _p�Kp � fp: �17�
The generalized force vector f p, which can be obtained
through the principle of virtual work [63], is expressed as

fp �
Z

x2S0

JT �x�f�x; t�dx: �18�

We can apply various types of forces on the smooth limit
surface and the limit surface would evolve over time,
according to (17), to obtain an equilibrium position
characterized by a minimum of the total model energy.

It may be noted that our newly developed butterfly finite
elements are different from conventional finite elements,
which are primarily founded upon polynomials. In addi-
tion, our finite element analysis and synthesis techniques
are different from the traditional finite element method in
which the unknowns are displacement distribution with
respect to the initial undeformed shape. However, consider
d�x;p� as a companion displacement function over the limit
geometry s�x;p�, all the finite element procedures ex-
plained in this paper will be amenable to the conventional
finite element analysis for mechanical engineering applica-
tions without extra difficulties. Therefore, our formulation
and accompanying algorithms are useful for geometric
design, dynamic sculpting, as well as traditional analysis on
mechanical properties.

5.4 Hierarchical Structure and Multilevel Dynamics

We have developed a dynamic framework where the
smooth limit surface evolves over time in response to the
applied forces. The entire process can be described as
follows: Given an initial mesh, a smooth surface is obtained
in the limit. Users can directly apply synthesized forces to
this smooth limit surface to enforce various functional and
aesthetic constraints. This direct manipulation is then
transferred back as virtual forces acting on the initial mesh
through a transformation matrix (18) and the initial mesh
(as well as the underlying smooth limit surface) deforms
continuously over time until an equilibrium position is
obtained. The deformation of the surface in response to the
applied forces is governed by the motion equation (17).
Within our physics-based modeling framework, the limit
surface evolves as a consequence of the evolution of the
initial mesh. One can apply various types of forces on the
limit surface to obtain a desired effect, but the possible level
of details appearing in a shape that can be obtained through
evolution is constrained by the number of control vertices in
the initial mesh. It might be necessary to increase the
number of control vertices in the initial mesh in order to
obtain a detailed shape through this evolution process.

The number of control vertices defining the same smooth

limit surface can be increased by simply replacing the initial

mesh with a mesh obtained after one subdivision step

applied to the initial mesh. This new mesh has a greater
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number of vertices, but defines the same limit surface. For

example, after one step of modified butterfly subdivision,

the initial degrees of freedom p (refer to (11) and (12)) in the

dynamic system will be replaced by a larger number of

degrees of freedom q, where q � Ap (and, therefore,

_q � A _p, �q � A�p). A is a global subdivision matrix of size

�3s� 3t� whose entries are uniquely determined by the

weights used in the modified butterfly subdivision scheme

(see Section 5.1 for the weights). Thus, p, expressed as a

function of q, can be written as

p � �ATA�ÿ1
ATq � Ayq; �19�
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Fig. 7. The butterfly basis function corresponding to a control vertex of degree 5 at various resolution: (a) level 0, (b) level 1, (c) level 2, (d) level 3,

and (e) level 4.



where Ay � �ATA�ÿ1
AT . Therefore, we can rewrite (11)

and (12) as

s�x� � �J�x�Ay�q �20�
and

_s�x;q� � �J�x�Ay� _q; �21�
respectively. Note that the new transformation matrix
�J�x�Ay� can be computed directly from q as well with
the help of new associated parameterization because the
new control mesh with more degrees of freedom produces
the same limit surface. Now, we can easily derive the
equation of motion for this new subdivided model invol-
ving a larger number of control vertices, namely q. We need
to recompute the mass, damping, and stiffness matrices for
this ªfinerº level. The structure of the motion equation as
given by (17) remains unchanged, but the dimensionality
and the entries of M;D;K;p and fp change correspond-
ingly in this newly obtained subdivided level. In particular,
the motion equation, explicitly expressed as a function of q,
can be written as

Mq�q�Dq _q�Kqq � f q; �22�
where Mq �

R
x2S1 ��x��Ay�TJT �x�J�x�Aydx, S1 being the

domain defined by the newly obtained subdivided mesh.
The derivation of Dq, Kq, and f q follow suit.

Note that further increase in the number of control
vertices, if necessary, can be obtained via another level of
subdivision. Therefore, multilevel dynamics is achieved
through recursive subdivision on the initial set of control
vertices. Users can interactively choose any subdivided
mesh as the control mesh for the dynamic model,
depending on their needs. Alternatively, the system can
automatically determine the most suitable control mesh
for certain applications based on an application-specific
criteria.

6 FINITE ELEMENT IMPLEMENTATION

In this section, we describe the implementation of this
physical model using the finite element method. Previously,
in Section 5, we pointed out that the smooth limit surface
obtained by the recursive application of the modified
butterfly subdivision rules can be represented by a set of
smooth triangular patches, each of which is represented by
a finite element. The shape (basis) function of this finite
element is obtained by smoothing a hat function through
repeated application of the modified butterfly subdivision
rules. The number of finite elements in the smooth limit
surface is equal to the number of triangular faces in the
initial mesh as mentioned earlier (refer to Fig. 4 and Fig. 8).
We now provide a detailed discussion on how to derive the
mass, damping, and stiffness matrices for these elements.
These elemental matrices can be assembled to obtain the
global physical matrices M, D, and K, and a numerical
solution to the governing second-order differential equation
as given by (17) can be obtained using finite element
analysis techniques [64]. We use the same example as in
Section 5 (refer to Fig. 5) to develop the related concepts.
The concept of elements, along with the control vertices and

their corresponding domains, is further illustrated in Fig. 8.
We will now show how to derive the mass, damping and
stiffness matrices for the element corresponding to the
triangular face abc in Fig. 5. The derivations hold for any
element in general.

6.1 Elemental Mass and Damping Matrices

The mass matrix for the element given by sabc (9) can be
written as

Mabc �
Z

x2sabc

��x�fBabc�x�gTfBabc�x�gdx: �23�

However, from (9), we know that the basis functions
corresponding to the vertices in v0

abc which are stored as
entries in Babc are obtained as a limiting process. These
basis functions do not have any analytic form, hence,
computing the inner product of such basis functions as
needed in (23) is a challenging problem. In [62], an outline is
provided on the computation of these inner products
without performing any integration. In this paper, we
develop a different and simpler approach to solve this
problem. The smooth triangular patch in the limit surface
corresponding to the face abc in the initial mesh is
approximated by a triangular mesh with 4j faces obtained
after j levels of subdivision of the original triangular face
abc (each subdivision step splits one triangular face into
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Fig. 8. (a) An initial mesh and (b) the corresponding limit surface. The
domains of the shaded elements in the limit surface are the
corresponding triangular faces in the initial mesh. The encircled vertices
in (a) are the degrees of freedom for the corresponding element.



four triangular faces). Then, the mass matrix can be
expressed as

Mabc �
X4j
i�1

Z
x2�i

��x�fBj
abc�x�g

TfBj
abc�x�gdx: �24�

The jth level approximation of the corresponding basis
functions can be explicitly evaluated (refer to (8) for an
expression of Bj

abc). An important point to note is that (8)
involves several matrix multiplications and, hence, can be
very expensive to evaluate. However, the matrix �Aj

abc���
�Aabc�m . . . �Aabc�t�Aabc�l� in (8) encodes how vertices in the
2-neighborhood of the triangular face uvw at level j are
related to the vertices in the 2-neighborhood of the
triangular face abc in the initial mesh. In the implementa-
tion, we keep track of how a new vertex is obtained from
the contributing vertices in its immediate predecessor
level. If we move up from level j to level 0, we get the
information stored in �Aj

abc� without forming any local
subdivision matrices and thus avoiding subsequent
matrix multiplications.

By choosing a sufficiently high value of j, we achieve a
reasonably good approximation of the elemental mass
matrices. We eliminate the computations involved in
evaluating the integrals in (24) by using the discrete mass
density function, which has nonzero values only at the
vertex positions of the jth subdivision level mesh. There-
fore, the approximation of the mass matrix for the element
can be written as

Mabc �
Xk
i�1

��vji�fBj
abc�vji�g

TfBj
abc�vji�g; �25�

where k is the number of vertices in the triangular mesh
with 4j faces. This approximation has been found to be very
effective and efficient for implementation purposes. The
elemental damping matrix can be obtained in a similar
fashion.

6.2 Elemental Stiffness Matrix

We now define the internal (e.g., elastic) energy of the
subdivision-based dynamic model by assigning deforma-
tion energy to each element. We take a similar approach as
shown above and consider the jth level approximation of
the element. We assign spring-like energy, because of its
simplicity and efficient computation, to the approximated
model. The energy at the jth level of approximation can be
defined as

Eabc � Ej
abc �

1

2

X



klm�jvjl ÿ vjmj ÿ `lm�2
jvjl ÿ vjmj2

�vjl ÿ vjm�2; �26�

where klm is the spring-controlling variable, vjl and vjm, the
lth and mth vertex in the jth level mesh, are in the
1-neighborhood of each other, 
 is the domain defined by
all such vertex pairs, `lm is the natural length of the spring
connected between vjl and vjm. Let vjabc be the concatenation
of the (x, y, z) positions of all the vertices in the jth
subdivision level of the triangular face abc in the initial
mesh, so the internal force due to the above energy is

f int � @E
j
abc

@vjabc
� �Kj

abc�fvjabcg:

Note that the vertex positions in vjabc are obtained by a
linear combination of the vertex positions in v0

abc and,
hence, we can write vjabc � �Aj

abc�v0
abc, where �Aj

abc� is the
transformation (subdivision) matrix. Therefore, the ex-
pression for the elemental stiffness matrix is given by
Kabc � �Aj

abc�
T �Kj

abc��Aj
abc�. There is no theoretical way of

assigning the natural length `lm. We use the initialized
model as the natural (rest) shape and, therefore, the
distance between two vertices of the initialized model is
used as the natural length of the spring connected between
those vertices. Note that this approach is applicable for
modeling isotropic, as well as anisotropic phenomena,
because klm, the spring-controlling variable, can be a time-
dependent function in general. In addition, the entries in
Kj
abc depend on the distance between the connected

vertices. Therefore, unlike other elemental matrices, the
stiffness matrix is a function of time which requires the
recomputation at each time step in principle. Note that the
above spring-like energy is only one simple candidate of
many possible choices. A large variety of functional
formulations (such as simple thin-plate-under-tension energy
or complex curvature-based energy) can be employed to
describe a wide range of material and physical behaviors
such as linear elastic deformation and/or nonlinear plastic
deformation.

6.3 Force Distribution

The force f�x; t� in (18) represents the net effect of all
externally applied forces. The current implementation
supports spring, inflation as well as image-based forces.
However, other types of forces, like repulsion forces,
gravitational forces, etc., can easily be implemented.

To apply spring forces, a spring of stiffness k can be
connected from a point d0 to a point x0 on the limit surface
(or to the jth level approximation mesh), the net applied
spring force being

f�x; t� �
Z

x2Sj
k�d0 ÿ s�x; t����xÿ x0�dx; �27�

where � is the unit impulse function implying f�x0; t� �
kjd0 ÿ s�x0; t�j and vanishes elsewhere on the surface.
However, the � function can be replaced with a smooth
kernel to spread the force over a greater portion of the
surface. The spring forces can be applied interactively using
the computer mouse or the points from which forces need
to be applied can be read in from a file.

It may be noted that the real force distribution is applied
to the finest level and then transferred back to the initial
DOFs on the coarsest resolution through the use of Jacobian
matrix and the principle of virtual work. The computational
expense to figure out the surface point on which the force is
applied is O�n�, where n is the number of DOFs. We first
figure out the nearest DOF in the coarsest level from the
point of force application and then recursively find out the
nearest point in the next higher resolution level by
searching only the 2-neighbors of the previously selected
nearest point. The recursive iteration is stopped at the
highest resolution level used in the implementation. The
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computational cost involved in applying the force back on
the initial DOFs is also O�n�, as this effectively involves
sparse matrix multiplication that does not need to be
explicitly carried out.

To recover shapes from 3D image data, we synthesize
image-based forces. A 3D edge detection is performed on a
volume data set using the 3D Monga-Deriche (MD)
operator [65] to produce a 3D potential field P �x; y; z�,
which we use as an external potential for the model. The
force distribution is then computed as

f�x; y; z� � � 5P �x; y; z�
k 5P �x; y; z� k ; �28�

where � controls the strength of the force. The applied
force on each vertex at the jth approximation level is
computed by trilinear interpolation for evaluating (18) in
Cartesian coordinates. More sophisticated image-based
forces which incorporate region-based information, such
as gradients of a thresholded fuzzy voxel classification,
can also be used to yield better and more accurate shape
recovery. Note that we can apply spring forces in
addition with the image-based forces by placing points
on the boundary of the region of interest in each slices of
the 3D volume (MR, CT, etc.) image data.

6.4 Discrete Dynamic Equation

The differential equation given by (17) is integrated through
time by discretizing the time derivative of p over time steps
�t. The state of the dynamic subdivision surface at time
t��t is integrated using prior states at time t and tÿ�t.
An implicit time integration method is used in the current
implementation, where discrete derivatives of p are
calculated using

�p�t��t� � p�t��t� ÿ 2p�t� � p�tÿ�t�
�t2

�29�

and

_p�t��t� � p�t��t� ÿ p�tÿ�t�
2�t

: �30�

The elemental mass, damping, and stiffness matrices can be
assembled to get the global mass, damping, and stiffness
matrix for the smooth subdivision surface model. However,
we do not assemble these global sparse matrices explicitly
for efficiency reasons. For the time-varying stiffness matrix,
we recompute K at each time step. Using (17), (29), and (30),
the discrete equation of motion is obtained as

�2M�D�t� 2�t2K�p�t��t� �
2�t2f p�t��t� � �D�tÿ 2M�p�tÿ�t� � 4Mp�t�: �31�

This linear system of equations is solved iteratively
between each time step using the conjugate gradient
method [66], [67].

6.5 Physics-Based Subdivision

The initialized model grows dynamically according to the
equation of motion (17). The degrees of freedom of the
initialized model is equal to the number of control vertices
in the initial mesh as mentioned earlier. When an

equilibrium is achieved for the model, the number of
control vertices can be increased by replacing the original
initial mesh by a new initial mesh obtained through one
step of butterfly subdivision. This increases the number of
degrees of freedom to represent the same (deformed)
smooth limit surface and a new equilibrium position for
the model can be obtained. This process is depicted
schematically in Fig. 9. Model subdivision might be needed
to obtain a very localized effect on a smooth limit surface.
For a shape recovery application, one may start with a very
simple initial model and, when an approximate shape is
recovered, the degrees of freedom can be increased to
obtain a new equilibrium position for the model with a
better fit to the given data set. The error of fit criteria for the
discrete data is based on distance between the data points
and the points on the limit surface where the corresponding
springs are attached. In the context of image-based forces, if
the model energy does not change between successive
iterations, indicating an equilibrium for the given resolu-
tion, the degrees of freedom for the model can be increased
by the above-mentioned replacement scheme until the
model energy is sufficiently small and the change in model
energy between successive iterations becomes less than a
prespecified tolerance.

7 RESULTS AND DISCUSSION

Our dynamic butterfly subdivision surface model can be
used to represent a wide variety of smooth shapes with
arbitrary genus. The smooth limit surface can be sculpted
by applying synthesized forces in a direct and intuitive way
in shape design applications. The underlying shape in a
range or volume data set can also be recovered hierarchi-
cally using our dynamic butterfly subdivision surface
model. To recover shapes from a given set of points in
3D, the existing subdivision surface-based techniques resort
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Fig. 9. Model subdivision to increase the degrees of freedom: (a)

evolution of the initial mesh and (b) the corresponding limit surface

evolution perceived by the user.



to complex techniques to derive a mesh for the underlying

shape and then, typically, mesh optimization techniques are

used to obtain a compact representation of the same. Our

model recovers the shape from a set of points in an efficient

hierarchical wayÐany simple mesh of the same topology

can be used as an initial mesh which will evolve over time

to fit the given data and, depending on the error of fit

achieved, it will automatically refine itself until the

prescribed error of fit is obtained. We would also like to

point out that, in all our fitting examples, the final fit is

relatively insensitive to the model initialization as is evident

from the examples. Note that the initialization is very far

from the true/expected solution. This is not so in the case of

conventional geometry-based fitting algorithms. Most of

these fitting methods rely on a nonlinear least squares

technique or a quasi-Newton type numerical solver. These
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Fig. 10. First column: Initial shapes along with attached springs for deformation. Second column: Deformation of initial shapes due to spring

forces. Third column: The final deformed shape. Fourth column: Another view of the final deformed shape.



methods, although known to be quite stable in general,
require a good model initialization for the fitting problem.
In the dynamic model, it is possible for the mass term to
provide enough momentum to push the model out of
undesirable local minima during the fitting. This in turn can
increase the convergence range of the fitting algorithm. In
the rest of this section, we elaborate on these points via
examples.

In a shape modeling application, the user can specify any
mesh as the initial (control) mesh and the corresponding
limit surface can be sculpted interactively by applying
synthesized forces. In Fig. 10, we show several initial
surfaces obtained from different control meshes and the
corresponding modified surfaces after interactive sculpting.
To change the shape of an initial surface, the user can attach
springs from different points in 3D to the nearest points on
the limit surface such that the limit surface deforms towards
these points to generate the desired shape. Note that, the
user can specify these data points in several waysÐdirectly
in 3D, on a 2D plane at a fixed height (using mouse input),
or from a file containing (x, y, z) coordinates of the points in
3D. Also, the distance between two control vertices of the
initialized mesh is used as the natural (rest) length of the
spring attached between those vertices.

The various parameter values used in editing examples
of Fig. 10 are tabulated in Table 1. Note that no theory exists
in guiding us to choose a set of parameter values, like force
constant, time step, etc., in the physics-based modeling
paradigm. The chosen set of values is found to work well
for the examples shown and it is determined in a trial and

error fashion. The magnitude of the force applied to the
smooth limit surface is proportional to the length of the
springs attached. When the model deforming under the
influence of spring forces reaches an equilibrium, the
control mesh can be subdivided to obtain another control
mesh with more degrees of freedom for the same smooth
limit surface if the error is unacceptable. For modeling
purposes, error is defined as the maximum distance
between a data point and the nearest point on the limit
surface expressed as a percentage of the diameter of the
smallest sphere enclosing all the data points. The time
needed for the initialized model to deform into the final
shape depends on the number of degrees of freedom of the
model, as well as on the number of data points exerting
force on the model. Generally speaking, fewer number of
degrees of freedom leads to faster deformation (a smaller
system of equations is solved). For the examples shown in
Fig. 10, the deformations took approximately 30-45 seconds
under normal system load on an Ultra-SPARC 30 machine.
A small time step is used for stability and one conjugate
gradient iteration was necessary between each Euler step.
The initial error, final error, number of time updates, and
subdivision steps required are listed in Table 1 for the
examples shown in Fig. 10.

We have performed several experiments testing the
applicability of our model to recover the underlying shapes
in range and volume data sets. We use the distance between
two control vertices of the initialized mesh as the natural
(rest) length of the spring attached between those vertices
(as in the editing examples). In all the fitting experiments,

MANDAL ET AL.: DYNAMIC MODELING OF BUTTERFLY SUBDIVISION SURFACES 281

TABLE 1
Editing Example Parameters

Fig. 11. (a) Range data of a bulb along with the initialized model, (b) model deformation, (c) the fitted dynamic butterfly subdivision model, and (d)

visualization of the shape from another view point.



the initialized model has a control mesh comprising of
24 triangular faces and 14 vertices, whereas the control
mesh of the fitted model has 384 triangular faces and
194 vertices. Once an approximate shape is recovered, the
model is refined depending on the data-fitting criteria,
thereby increasing the degrees of freedom of the recovered
shape only when necessary. For an error in fit of
approximately 3 percent, the initialized model is refined
twice, following the technique described in Section 6.5.
Also, the limit surface of any control mesh (of the desired
genus) can be used as the initialized model. However, an
initial mesh with few degrees of freedom usually performs
better in terms of recovering a compact representation of
the underlying shape. The time needed to recover the
shapes is approximately 3-4 minutes under normal system
load on an Ultra-SPARC 30 machine. Note that the data sets
we had for fitting examples do not contain high resolution
features.

In the first shape recovery experiment, we depict the
laser range data acquired from multiple views of a light
bulb in Fig. 11a. Prior to applying our algorithm, the data
were transformed into a single reference coordinate system.
The model was initialized inside the 1,000 range data points
on the surface of the bulb. The fitted dynamic (modified)
butterfly subdivision surface model is shown in Fig. 11b
and Fig. 11c. In the next experiment, the shape of a
mechanical part is recovered from a range data set having
2,031 data points (Fig. 12). We also recover the shape of a
human head from a range data set, as shown in Fig. 13. The
head range data set has 1,779 points in 3D. Note that the
final shape, with a very low error tolerance, is recovered

using very few number of control points in comparison to
the number of data points present in the original range data
set.

We also present the recovery of the caudate nucleus (a
cortical structure in the human brain) from 64 MRI slices,
each of size 256� 256 in our next experiment. An expert
neuroscientist (sparsely) placed points on the boundary of
the shape of interest in each MRI slice. Fig. 14a depicts the
sparse data points (placed in each of the slices depicting the
boundary of the shape of interest) in 3D along with the
initialized model. Note that points had to be placed on the
boundary of the caudate nucleus due to lack of image
gradients delineating the caudate from the surrounding
tissue in parts of the image. Continuous image-based forces,
as well as spring forces, are applied to the model and the
model deforms under the influence of these forces until
maximal conformation to the data is achieved. The final
fitted model is shown in Fig. 14c. Note that the recovered
shape in [48], using our previous dynamic subdivision
surface model for the same data set, has 386 degrees of
freedom and, therefore, we achieve a factor of 2 improve-
ment in the number of degrees of freedom required to
represent the model in this particular example.

The various parameter values used for model fitting are
tabulated in Table 2. As in the editing examples, the
parameter values, like time step, force constant etc., are
chosen by a trial and error basis. We also plot the number of
time updates versus error in fit in Fig. 15. When an
equilibrium is reached for a given number of degrees of
freedom, a new control mesh with more degrees of freedom is
obtained for the same smooth limit surface via subdivision.
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Fig. 12. (a) Range data of a mechanical part along with the initialized model, (b) model deformation, (c) the fitted dynamic butterfly subdivision model,

and (d) visualization of the shape from another view point.

Fig. 13. (a) Range data of a head along with the initialized model, (b) model deformation, (c) the fitted dynamic butterfly subdivision model, and (d)

visualization of the shape from another view point.



The time update points when subdivision became neces-

sary are depicted in Fig. 15 for the fitting examples shown

in this paper. Note that the user always perceives evolution

of a smooth surface, but the amount of details that can be

recovered depends on the degrees of freedom of the

governing control mesh.

In the last experiment, we animate the motion of the

left-ventricular chamber of a canine heart over a complete

cardiac cycle. The data set comprised of 16 3D CT

images, with each volume image having 118 slices of

128� 128 pixels. First, we have recovered the shape from

one data set using image-based (gradient), as well as
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Fig. 14. (a) Data points (from all slices) in 3D along with the initialized model, (b) model deformation, (c) the fitted dynamic butterfly subdivision

model, and (d) visualization of the shape from another view point.

TABLE 2
Fitting Example Parameters

Fig. 15. Number of time updates vs. relative error plot for the fitting examples.



point-based forces. Once the shape is recovered from one
data set, this fitted model is used as an initialization for
the next data set to track the shape of interest. The
snapshots from motion tracking are shown in Fig. 16 for
the 16 volume data sets. It may be noted that the control
mesh describing the smooth surfaces shown in Fig. 16 has
only 384 triangular faces with a total of 194 vertices, as
mentioned earlier. This experiment clearly shows that our
model can be used to track a shape of interest from a set
of time dependent volume data sets in an efficient
manner. Note that no other existing purely geometric

subdivision surface technique can be used with (time varying)

continuous data sets.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel finite element

method to derive and analyze the new dynamic model

based on the modified butterfly subdivision surface

scheme. The new physics-based surface model provides a

direct and intuitive way of manipulating smooth shapes of

arbitrary topology and is very useful for directly extracting
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Fig. 16. Snapshots from the animation of canine heart motion over a cardiac cycle using the dynamic butterfly subdivision model.



and visualizing shapes of interest in large range and
volume data sets. The proposed model has also been used
successfully for nonrigid motion tracking from a temporal
sequence of volume data sets. We have developed a
hierarchical local parameterization of the subdivision
scheme which is critical to the formulation of our dynamic
model. We have combined material properties with
geometric entities, formulated the motion equations for
our dynamic model, and incorporated the advantages of
free-form deformable models into conventional subdivision
schemes. Further, we have introduced a hierarchical
dynamic control for various applications. Our experiments
indicate a promising future for the proposed model in
computer graphics, geometric modeling, and scientific
visualization. Also, the finite element techniques proposed
in this paper should be of great interest to the engineering
design and analysis community as well.

Several features/enhancements can be incorporated into
the proposed model. First, adaptive local subdivision of the
control mesh will provide a useful enhancement to our
model. Such a subdivision will introduce new degrees of
freedom only in the regions needing refinement, making it
more desirable in certain situations, such as geometry
compression, local feature description, etc. Second, new
algorithms that support automatic change of topology and
automatic rule changing in order to reverse-engineer sharp
features should be investigated. Additionally, various
constraint imposition techniques, as well as rigorous finite
element analysis of the butterfly shape functions need to be
investigated. Novel force-based sculpting toolkits should
enhance the functionalities of our dynamic system. We are
currently pursuing these directions of research.
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