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Abstract—Recursive subdivision schemes have been extensively used in computer graphics, computer-aided geometric design,
and scientific visualization for modeling smooth surfaces of arbitrary topology. Recursive subdivision generates a visually pleasing
smooth surface in the limit from an initial user-specified polygonal mesh through the repeated application of a fixed set of subdivision
rules. In this paper, we present a new dynamic surface model based on the Catmull-Clark subdivision scheme, a popular technique
for modeling complicated objects of arbitrary genus. Our new dynamic surface model inherits the attractive properties of the Catmull-
Clark subdivision scheme, as well as those of the physics-based models. This new model provides a direct and intuitive means of
manipulating geometric shapes, and an efficient hierarchical approach for recovering complex shapes from large range and volume
data sets using very few degrees of freedom (control vertices). We provide an analytic formulation and introduce the “physical”
quantities required to develop the dynamic subdivision surface model which can be interactively deformed by applying synthesized
forces. The governing dynamic differential equation is derived using Lagrangian mechanics and the finite element method. Our
experiments demonstrate that this new dynamic model has a promising future in computer graphics, geometric shape design, and
scientific visualization.

Index Terms—Computer graphics, CAGD, visualization, subdivision surfaces, deformable models, dynamics, finite elements,
interactive techniques.
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1 INTRODUCTION

ENERATING smooth surfaces of arbitrary topology is a
grand challenge in geometric modeling, computer

graphics, and scientific visualization. The recursive subdi-
vision scheme is well suited for this purpose. In [1], Chaikin
introduced the idea of subdivision to the computer graphics
community for generating a smooth curve from a given
control polygon. During the last two decades, a wide vari-
ety of subdivision schemes for modeling smooth surfaces of
arbitrary topology have been derived in geometric model-
ing after Chaikin’s pioneering work on curve generation. A
recursive subdivision algorithm typically generates a
smooth surface which is the limit of a sequence of recur-
sively refined polyhedral surfaces based on a user-defined
initial control mesh. At each step of the subdivision, a finer
polyhedral surface with more vertices and faces will be
constructed from the previous one via a refinement process.
In general, these subdivision schemes can be categorized
into two distinct classes, namely,

1)�approximating subdivision techniques and
2)� interpolating subdivision techniques,

which are discussed briefly in the next section.

1.1 Background
Among the approximating schemes, the techniques of Doo
and Sabin [2], [3], and Catmull and Clark [4] generalize the

idea of obtaining biquadratic and bicubic B-spline patches,
respectively, from a rectangular control mesh. In [4], Cat-
mull and Clark developed a method for recursively gener-
ating a smooth surface from a polyhedral mesh of arbitrary
topology. The Catmull-Clark subdivision surface, defined
by an arbitrary nonrectangular mesh, can be reduced to a
set of standard B-spline patches except at a finite number of
degenerate points which are also known as extraordinary
points. The extraordinary points on the limit surface corre-
spond to the extraordinary vertices (vertices whose degree is
not equal to four) in the control mesh. In [5], Loop pre-
sented a similar subdivision scheme based on the generali-
zation of quartic triangular B-splines for triangular meshes.
Hoppe et al. [6] extended his work to produce piecewise
smooth surfaces with selected discontinuities. Halstead et
al. [7] proposed an algorithm to construct a Catmull-Clark
subdivision surface that interpolates the vertices of a mesh
of arbitrary topology. Recently, Peters and Reif [8] have
proposed a simple subdivision scheme for smoothing poly-
hedra. All the schemes mentioned above generalize recur-
sive subdivision schemes for generating limit surfaces with
known parameterization.

The most well-known interpolation-based subdivision
scheme is the “butterfly” algorithm proposed by Dyn et al.
[9]. Butterfly subdivision method, like other subdivision
schemes, makes use of a small number of neighboring ver-
tices for subdivision. It requires simple data structures and
is extremely easy to implement. However, it needs a topo-
logically regular setting of the initial (control) mesh in order
to obtain a smooth C1 limit surface. A variant of this scheme
with better smoothness properties can be found in [10].
Zorin et al. [11] have developed an improved interpolatory
subdivision scheme that retains the simplicity of the butter-
fly scheme and results in much smoother surfaces even
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from irregular initial meshes. These interpolatory subdivi-
sion schemes have wide applications in wavelets on mani-
folds, multiresolution decomposition of polyhedral surfaces,
and multiresolution editing. A variational approach for in-
terpolatory refinement has been proposed by Kobbelt [12],
[13] and by Kobbelt and Schröder [14]. In this approach, the
vertex positions in the refined mesh at each subdivision
step are obtained by solving an optimization problem.
Therefore, these schemes are global, i.e., every new vertex
position depends on all the vertex positions of the coarser
level mesh, thereby destroying the local refinement prop-
erty which makes the subdivision schemes attractive for
implementation in the computer graphics applications.

The mathematical derivation of the smooth limit surface
generated by the subdivision algorithms is rather complex.
Doo and Sabin [15] first analyzed the smoothness behavior
of the limit surface using Fourier transforms and an eigen-
analysis of the subdivision matrix. Ball and Storry [16], [17]
and Reif [18] further extended Doo and Sabin’s prior work
on continuity properties of subdivision surfaces by deriving
various necessary and sufficient conditions on smoothness
for different subdivision schemes. Most recently, specific
schemes were analyzed by Schweitzer [19], Habib and War-
ren [20], Peters and Reif [21], and Zorin [22].

1.2 Motivation
Although recursive subdivision surfaces are extremely
powerful to represent smooth geometric shapes of arbitrary
topology, they constitute a purely geometric representation
and, furthermore, conventional geometric modeling with
subdivision surfaces may be difficult for representing
highly complicated objects. For example, modelers are
faced with the tedium of indirect shape modification and
refinement through time-consuming operations on a large
number of (most often irregular) control vertices when us-
ing typical subdivision surface-based modeling schemes.
Despite the advent of advanced 3D graphics interaction
tools, these indirect geometric operations remain laborious
in general. In addition, it may not be enough to obtain the
most “fair” surface that interpolates a set of (ordered or
unorganized) data points. A certain number of local fea-
tures, such as bulges or inflections, may be strongly desired
while making geometric objects satisfy global smoothness
requirements in geometric modeling and computer graph-
ics applications. In contrast, physics-based modeling pro-
vides a superior approach to shape modeling that can over-
come most of the limitations associated with traditional
geometric modeling approaches. Free-form deformable
models governed by physical laws are of particular interest
in this context. These models respond dynamically to ap-
plied forces in a very intuitive manner. Time is fundamental
to the dynamic formulation. The dynamic formulation mar-
ries the geometry with time, mass, force, and constraint.
Dynamic models produce smooth, natural motions which
are familiar and easy to control. In addition, they facilitate
interaction—especially direct manipulation of complex
geometric models. Furthermore, the equilibrium state of the
model is characterized by a minimum of the potential en-
ergy of the model subject to imposed constraints. The po-
tential energy functionals can be formulated to satisfy local

and global modeling criteria, and geometric constraints
relevant to shape design can also be imposed. The dynamic
approach subsumes all of the modeling capabilities in an
elegant formulation which grounds everything in real-
world physics.

Free-form deformable models were first introduced to
computer graphics and visualization in Terzopoulos et al.
[23] and further developed by Terzopoulos and Fleischer
[24], Pentland and Williams [25], Metaxas and Terzopoulos
[26], and Vemuri and Radisavljevic [27]. Celniker and Gos-
sard [28] developed a system for interactive free-form de-
sign based on the finite element optimization of energy
functionals proposed in [24]. Bloor and Wilson [29], [30],
Celniker and Welch [31], and Welch and Witkin [32] pro-
posed deformable B-spline curves and surfaces which can
be designed by imposing the shape criteria via the minimi-
zation of the energy functionals subject to hard or soft geo-
metric constraints through Lagrange multipliers or penalty
methods. Recently, Qin and Terzopoulos [33], [34], [35] have
developed dynamic NURBS (D-NURBS) which are very
sophisticated models suitable for representing a wide vari-
ety of free-form as well as standard analytic shapes. The D-
NURBS have the advantage of interactive and direct ma-
nipulation of NURBS curves and surfaces, resulting in physi-
cally meaningful, hence, intuitively predictable, motion and
shape variation.

A severe limitation of the existing deformable models,
including D-NURBS, is that they are defined on a paramet-
ric domain. Hence, it can be very difficult to model surfaces
of arbitrary genus using these models. In this paper, we
develop a dynamic generalization of a recursive subdivi-
sion scheme based on Catmull-Clark subdivision surfaces.
Our new dynamic model combines the benefits of subdivi-
sion surfaces for modeling arbitrary topology as well as
those of the dynamic splines for direct and interactive
shape manipulation by applying synthesized forces. Note
that the derivation of our dynamic subdivision surface
poses a significant technical challenge because of the fact
that no closed-form parameterization of the limit surface
exists near the extraordinary points. The primary contribu-
tion of this paper is to develop a dynamic framework based
on subdivision schemes for directly manipulating the
smooth limit surfaces of arbitrary topology, so that the us-
ers do not have to be concerned about how to position
and/or refine control vertices. We present the details of our
formulation in a later section.

The dynamic Catmull-Clark subdivision surface has
been developed primarily for modeling arbitrary topology.
However, another important application of the developed
model is in shape recovery. In a typical shape reconstruc-
tion application, we need to recover shapes of arbitrary
topology from large data sets. Physics-based models are
often used for this purpose. However, the model used for
fitting should be able to recover the shape accurately. At the
same time, the number of degrees of freedom for model
representation should be kept low. Another important crite-
rion is that the model initialization should not be restricted
to parameterized input meshes since it is infeasible to glob-
ally parameterize shapes of arbitrary topology over a rec-
tangular domain. A physics-based model satisfying the
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aforementioned criteria is a good candidate for a solution to
the shape recovery problem.

Physics-based deformable models used to solve shape
recovery problems involve either fixed size [27], [36], [37],
[38], [39] or adaptive size [40], [41], [42], [43], [44], [45]
grids. The models with fixed grid size generally use fewer
degrees of freedom for representation, but the accuracy of
the recovered shape is lacking in many cases. On the other
hand, the number of degrees of freedom used for shape
representation is generally very high, and computationally
expensive ad hoc schemes are used in models with adap-
tive grid size methods. However, the recovered shapes are
accurate. The hierarchical shape representation using lo-
cally adaptive finite elements discussed in [42] can effi-
ciently represent the shape of an object of genus zero with a
small number of nodal points, but this scheme cannot be
easily extended to cope with arbitrary shapes. The balloon
model for describing the shape of complex objects [40] also
adapts the mesh surface to local surface shapes and is
purely driven by an applied inflation force toward the ob-
ject surface from the interior of the object. This scheme in-
volves a large number of nodal points for representing
complex shapes. Moreover, all the existing models using either
a fixed or an adaptive grid size require a globally parameterized
mesh as their input.

The proposed model solves the shape recovery problem
very effectively, as it can recover shapes from large range
and volume data sets using very few degrees of freedom
(control vertices) for its representation and can cope with
any arbitrary input mesh, not necessarily parameterized,
with an arbitrary number of extraordinary points. The ini-
tialized model deforms under the influence of synthesized
forces to fit the data set by minimizing its energy. Once the
approximate shape is recovered, the model is further sub-
divided automatically and a better approximation to the
input data set is achieved using more degrees of freedom.
The process of subdivision after achieving an approximate
fit is continued until a prescribed error criteria for fitting
the data points is achieved.

In a nutshell, the dynamic Catmull-Clark subdivision
surface model can be efficiently used to model arbitrary
topology where modelers can directly manipulate the
smooth limit surface in an intuitive fashion by applying
synthesized forces, and to recover the underlying shapes
from large range and volume data sets.

1.3 Overview
The rest of the paper is organized as follows: Section 2 pres-
ents the detailed formulation of the dynamic Catmull-Clark
subdivision surfaces. The implementation details are pro-
vided in Section 3. Experimental results can be found in
Section 4. Finally, we make concluding remarks and point
out future directions of research in Section 5.

2 FORMULATION

In this section, we present a systematic formulation of our
new dynamic model based on Catmull-Clark subdivision
surfaces. First, we briefly review the Catmull-Clark sub-
division scheme. Then, we demonstrate how to assign a

bicubic patch in the limit surface to a nonboundary face in
a rectangular setting. We further generalize this idea to as-
sign the infinite number of bicubic patches in the limit sur-
face to faces that are in the vicinity of an extraordinary
point/vertex. Next, we formulate a closed-form analytical
representation of the smooth limit surface which can be
viewed as a function of its (initial) polyhedral control verti-
ces. Finally, we introduce physical quantities in our dy-
namic model to derive its motion equation.

2.1 Catmull-Clark Subdivision Surfaces
Catmull-Clark subdivision scheme, like any other subdivi-
sion scheme, starts with a user-defined mesh of arbitrary
topology. It refines the initial mesh by adding new vertices,
edges and faces with each step of subdivision following a
fixed set of subdivision rules. In the limit, a sequence of
recursively refined polyhedral meshes will converge to a
smooth surface. The subdivision rules are as follows:

•� For each face, introduce a new face point which is the
average of all the old vertices defining the face.

•� For each (nonboundary) edge, introduce a new edge
point which is the average of the following four
points: two old vertices defining the edge and two
new face points of the faces adjacent to the edge.

•� For each (nonboundary) vertex V, introduce a new
vertex whose position is F

n
E
n

n V
n+ + -2 3( ) , where F is

the average of the new face vertices of all faces adja-
cent to the old vertex V, E is the average of the mid-
points of all edges incident on the old vertex V, and n
is the number of the edges incident on the vertex.

•� Form new edges by connecting each new face point to
the new edge points of the edges defining the old face
and by connecting each new vertex point to the new
edge points of all old edges incident on the old vertex
point.

•� Define new faces as those enclosed by new edges.

The most important property of Catmull-Clark subdivi-
sion surfaces is that a smooth surface can be generated from
a control mesh of arbitrary topology. Therefore, this subdi-
vision scheme is extremely valuable for modeling various
complicated geometric objects of arbitrary topology. Cat-
mull-Clark subdivision surfaces include standard bicubic
B-spline surfaces as their special case (i.e., the limit surface
is a tensor-product B-spline surface for a rectangular mesh
with all nonbounding vertices of degree 4). In addition, the
aforementioned subdivision rules generalize the recursive
bicubic B-spline patch subdivision algorithm. For nonrec-
tangular meshes, the limit surface converges to a bicubic B-
spline surface except at a finite number of extraordinary
points. Note that, after the first subdivision, all faces are
quadrilaterals, hence, all new vertices created subsequently
will have four incident edges. The number of extraordinary
points on the limit surface is a constant, and is equal to the
number of extraordinary vertices in the refined mesh ob-
tained after applying one step of the Catmull-Clark subdi-
vision on the initial mesh. The limit surface is curvature-
continuous everywhere except at extraordinary vertices
where only tangent plane continuity is achieved. In spite of
the popularity of Catmull-Clark subdivision surfaces for
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representing complex geometric shapes of arbitrary topol-
ogy, these subdivision surfaces may not be easily parame-
terizable and deriving a closed-form analytic formulation of
the limit surface can be very difficult. These deficiencies
preclude their immediate pointwise manipulation and,
hence, may restrain the applicability of these schemes. We
develop a new dynamic model based on Catmull-Clark
subdivision surfaces which offers a closed-form analytic
formulation and allows users to manipulate the model di-
rectly and intuitively.

To develop the dynamic model which treats the limit
smooth surface as a function of its control mesh in a hierar-
chical fashion, we need to update control vertex positions
continually at any given level. However, all the vertices
introduced through subdivision are obtained as an affine
combination of control vertex positions of the initial mesh.
Therefore, we can control the dynamic behavior of the limit
surface by formulating the dynamic model on the initial
mesh itself, the only exception being the case when the ini-
tial mesh has nonrectangular faces. This problem can be
circumvented by taking the mesh obtained through one
step of subdivision as the initial mesh. To define the limit
surface using the vertices of the initial mesh, the enumera-
tion of the bicubic patches in the limit surface is necessary.
In the next two sections, we present a scheme of assigning
the bicubic patches to various faces of the initial mesh. It
may be noted that an additional subdivision step may be
needed in some cases to isolate the extraordinary points
and the resulting mesh is treated as the initial mesh (a typi-
cal example is when the initial mesh is a tetrahedron).

2.2 Assigning Patches to Regular Faces
In Fig. 1, a rectangular control mesh is shown along with
the bicubic B-spline surface (four patches) in the limit after
an infinite number of subdivision steps. Note that each of
the bicubic patches in the limit surface is defined by a rec-
tangular face with each vertex of degree four, thereby ac-
counting for 16 control points (from its eight-connected
neighborhood) needed to define a bicubic surface patch in
the limit. Therefore, for each rectangular face in the initial
mesh with a degree of four at each vertex, the correspond-
ing bicubic surface patch can be assigned to it in a straight-
forward way. In Fig. 1, the surface patches S1, S2, S3, and S4
are assigned to face F1, F2, F3, and F4, respectively. The 16
control points for the patch S1, corresponding to face F1, are
highlighted in Fig. 1. Note that the initial control mesh can
be viewed as the parametric domain of the limit surface.
Therefore, face F1 can be thought of as the portion of the
parametric domain over which the patch S1 is defined, i.e.,
has nonzero values. Nevertheless, each rectangular face
(e.g., F1) can be parametrically defined over [0, 1]2, and
hence, all bicubic B-spline patches defined by 16 control
points are locally parameterized over [0, 1]2.

2.3 Assigning Patches to Irregular Faces
In Fig. 2, a mesh containing an extraordinary point of de-
gree three and its limit surface are shown. The faces F0, F1,
…, F8 are assigned to bicubic patches S0, S1, …, S8, respec-
tively (as they all have vertices of degree four) following
the aforementioned scheme. However, the central smooth

surface enclosed by the patches S0, S1, …, S8 consists of infi-
nite number of bicubic patches converging to a point in the
limit. We need to develop a recursive way of enumerating
these bicubic patches and assigning them to various faces at
different levels in order to develop the dynamic subdivision
surface model.

The idea of enumerating the bicubic patches corre-
sponding to faces having an extraordinary vertex is shown
in Fig. 3, where a local subdivision of the mesh consisting of
faces F0, F1, ..., F8, P0, P1, P2 (and not the other boundary
faces) of Fig. 2 is carried out. Topologically, the resulting
local subdivision mesh (shown as dotted mesh) is exactly
the same as the mesh in Fig. 2 and, hence, exactly the same
number of bicubic patches can be assigned to its faces with
vertices of degree four, as is evident from Fig. 3 (the new
faces and the corresponding patches are marked by “p” and
“n,” respectively). This process of local subdivision and
assignment of bicubic patches around an extraordinary
point can be carried out recursively and, in the limit, the
enclosed patch corresponding to faces sharing the extraor-
dinary point will converge to a point. However, there is no
need to carry out an infinite number of subdivision steps.
This description is for formulation purposes only and the
exact implementation will be detailed in a later section.

2.4 Kinematics of the Limit Surface
In this section, we develop the mathematics for the kine-
matics of the limit surface via illustrative examples and
then present the generalized formulas. We start the illustra-
tion with a single bicubic B-spline patch which is obtained
as the limiting process of the Catmull-Clark subdivision
algorithm applied to an initial 4 × 4 rectangular control

Fig. 1. A rectangular mesh and its limit surface consisting of four bicu-
bic surface patches.
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mesh. Let sp(u, v), where (u, v) ∈ [0, 1]2, denote this bicubic
B-spline patch which can be expressed analytically as

s dp
T

i j i j
ji

u v x u v y u v z u v B u B v, , , , , , , , ,0 5 0 5 0 5 0 52 7 0 5 0 5= =
==
ÂÂ 4 4

0

3

0

3

, (1)

where di,j represents a three-dimensional position vector at
the (i, j)th control point location and Bi,4(u) and Bj,4(v) are
the cubic B-spline basis functions. The subscript p on s de-
notes the patch under consideration. Expressing (1) in a
generalized coordinate system, we have

sp = Jpqp , (2)

where Jp is a transformation matrix storing the basis func-
tions of a bicubic B-spline patch, and is of size (3, 48). Vector
qp is the concatenation of all control points defining a B-
spline patch in 3D. Note that, in the concatenation of the
control points, each control point has an (x, y, z) compo-
nent. For example, the (x, y, z) components of the control
point (i, j) correspond to positions 3k, 3k + 1, 3k + 2—where
k = 4i + j—respectively, in the vector qp. We can express the
entries of Jp explicitly in the following way: Jp(0, k) = Jp(1, k
+ 1) = Jp(2, k + 2) = Bi,4(u)Bj,4(v) and Jp(0, k + 1) = Jp(0, k + 2) =
Jp(1, k) = Jp(1, k + 2) = Jp(2, k) = Jp(2, k + 1) = 0.

2.4.1  Limit Surface With Many Bicubic Patches From a
Rectangular Initial Mesh

Now, let’s consider a limit surface consisting of many bicu-
bic surface patches obtained after applying an infinite
number of subdivision steps to a rectangular initial mesh.
For example, let the limit surface of Fig. 1 be sm which can
be written as

s s s

s

m m m

m

u v u v u v

u v

, , ,

,

0 5 2 7= + -
�
��

�
��

�
��

�
��

+ -
�
��

�
�� -
�
��

�
��

�
��

�
��

1 2

3

2 2 2
1
2 2

2
1
2 2

1
2

+ -
�
��

�
��

�
��

�
��sm u v

4
2 2

1
2, ,       (3)

where s sm mu v u v
1

2 2( , ) ( , )=  for 0 1
2£ £u v, , and 0 other-

wise. Similarly, s sm m2 3
, , and sm4

 are also equal to sm(u, v)

for an appropriate range of values of u, v and 0 outside. It
may be noted that s s s sm m m m1 2 3 4

, , ,  correspond to patches

S1, S2, S3, S4, respectively, in Fig. 1. Rewriting (3) in gener-
alized coordinates, we have

s J q J q J q J q J qm i i
i

= + + + =
=
Â1 1 2 2 3 3 4 4

1

4

,        (4)

where Jis are the transformation matrices of size (3, 48) and

qis are the (x, y, z) component concatenation of a subset of

the control points of sm defining smi
, i = 1, 2, 3, and 4. A

more general expression for sm is

sm m m m m= + + +J A q J A q J A q J A q1 1 2 2 3 3 4 4

= =
=
Â J A q J qi i m
i

m m
1

4

 ,     (5)

where qm is the 75-component vector of 3D positions of the

25 vertex control mesh defining the limit surface sm. Matri-

ces Ai , 1 ≤ i ≤ 4, are of size (48, 75), each row consisting of a
single nonzero entry (= 1) and the (3, 75)-sized matrix

J J Am i ii
=

=Â 1

4
.

2.4.2  Limit Surface With Many Bicubic Patches From an
Arbitrary Initial Mesh

The stage is now set to define the limit surface s using the
vertices of initial mesh 0 for any arbitrary topology, as-
suming all faces are rectangular and no face contains more
than one extraordinary point as its vertex (i.e., extraordi-
nary points are isolated). As mentioned earlier, if these as-
sumptions are not satisfied, one or two steps of global sub-
division may be required and the resulting mesh can be
treated as the initial mesh. Let the number of vertices in the
initial mesh 0 be a, and let l of these be the extraordinary
vertices. Let us assume that the number of faces in the ini-
tial mesh are b, and that k of these have vertices with degree
four (henceforth termed a “normal face”), and each of the
remaining (b − k) faces have one of the l extraordinary verti-
ces (henceforth termed a “special face”). Let p be the 3a = N

Fig. 2. A mesh with an extraordinary point of degree three and its limit
surface.
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dimensional vector containing the control vertex positions
in 3D. Using the formulations in Section 2.2 and Section 2.3,
the smooth limit surface can be expressed as

s n s= +
= =
Â Âi
i

k

j
j

l

1 1

,      (6)

where ni is a single bicubic patch assigned to each of the
normal faces and sj is a collection of infinite number of
bicubic patches corresponding to each of the extraordinary
points. As s is a surface defined over the faces of the initial
control mesh, each ni can be viewed as a bicubic patch de-
fined over the corresponding regular face in the initial con-
trol mesh. Similarly, each sj can be defined over the corre-
sponding irregular faces in the initial mesh (refer to Figs. 1,
2, and 3 for the detailed description on parametric domains
of subdivision surfaces). For the simplicity of the following
mathematical derivations on our dynamic model, from now
on we will not explicitly provide the parametric domain in
our formulation. Employing the same approach taken be-
fore to derive (5), it can be shown that

n J p J A p J pi
i

k
n

i
n

i
i

k
n

i
n

i
i

k
n

= = =
Â Â Â= =

�
��

�
�� =

1 1 1
4 94 9 4 94 9 4 9 , (7)

where nJi , 
npi , and nAi are the equivalent of Ji , pi in (4) and

Ai in (5), respectively. The presuperscript n is used to indi-
cate that these mathematical quantities describe bicubic
patch in the limit surface corresponding to normal faces.

We will use the following notational convention for de-
scribing various mathematical quantities used in the deri-
vation of the expression for a collection of infinite number
of bicubic patches around an extraordinary vertex. The pre-
superscript s is used to represent a collection of bicubic
patches around an extraordinary vertex, the subscript j is
used to indicate the jth extraordinary point, the postsuper-
script represents the exponent of a mathematical quantity,
and the level indicator (to represent various levels of sub-
division in the local control mesh around an extraordinary
vertex) is depicted via a subscript on the curly braces.

The expression for sj is derived using the recursive na-
ture of local subdivision around an extraordinary vertex, as
shown in Section 2.3. First, sj can be expressed as

sj = {sJj}1 {
spj}1 + {sj}1 ,          (8)

where the first term (8) is the generalized coordinate repre-
sentation of the bicubic B-spline patches corresponding to
the normal faces of the new local subdivision mesh ob-
tained after one subdivision step on the local control mesh
(similar to those patches marked n in Fig. 3). {sj}1 represents

Fig. 3. Local subdivision around the extraordinary point and the limit surface.
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the rest of the infinite bicubic B-spline patches surrounding
the extraordinary point (similar to the central patch en-
closed by patches marked n in Fig. 3). The vertices in the
newly obtained local subdivision mesh {spj}1 can be ex-
pressed as a linear combination of a subset of the vertices of
the initial mesh 0 (which will contribute to the local sub-
division) following the subdivision rules. We can name this
subset of initial control vertices {spj}0. Furthermore, there
exists a matrix {sBj}1 of size (3c, 3d), such that {sBj}1 {

spj}0 =
{spj}1 where {spj}1 and {spj}0 are vectors of dimension 3c and
3d, respectively. Applying the idea of recursive local subdi-
vision again on {sj}1, sj can be further expanded as

s J B p J B p sj
s

j
s

j
s

j
s

j
s

j
s

j j= + +J L J L J L J L J L J L J L
1 1 0 2 2 1 2

~ .   (9)

In the above derivation, { ~ }s
jp 1  is a vector of dimension 3d,

comprised of a subset of the vertices defining the 3c dimen-

sional vector {spj}1. Note that, { ~ }s
jp 1  has the same structure

as {spj}0, therefore, there exists a (3d, 3d) matrix {sCj}1 such

that { } { } { ~ }s
j

s
j

s
jC p p1 0 1= . Each subdivision of a local mesh

with d vertices creates a new local mesh with c vertices
which contributes a fixed number of bicubic B-spline
patches. So, if we proceed one step further, we obtain
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0 3
.      (10)

Because of the intrinsic property of the local recursive
subdivision around the extraordinary point, we have {sJj}1 =
{sJj}2 = … = {sJj}n = … = {sJj}∞. In addition, the subdivision
rules remain the same throughout the refinement process;
we also have {sBj}1 = {sBj}2 = … = {sBj}n = … = {sBj}∞. So, we
can further simplify the above equations leading to
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We can rewrite sj as

sj = (sJj)(
spj), (12)

where s
j

s
j

s
j

s
j

i

i
J J B C= �� ��=

•Â{ } { } { }1 1 10
 and spj = {spj}0. The

idea of local recursive subdivision around an extraordinary
point is illustrated in Fig. 4. Note that each vertex position
in the subdivided mesh is obtained by an affine combina-
tion of some vertices in the previous level and, hence, any

row of {sCj}1 sums to 1. The largest eigenvalue of such a
matrix is 1 and it can be shown that the corresponding infi-
nite series is convergent following a similar approach as in
[7]. The rest of the derivation leading to an expression for s
is relatively straightforward. Using the same approach used
to derive (7), it can be shown that

Fig. 4. Local subdivision around the extraordinary point and the corresponding patches in the limit surface from different levels of subdivision.
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From (6), (7), and (13),

s = (nJ)p + (sJ)p. (14)

Let J = (nJ) + (sJ) and, hence,

s = Jp.          (15)

2.5 Dynamics
We now treat the control point positions (alternatively, the
vertex positions in the initial mesh) defining the limit sur-
face s as a function of time in order to develop our new dy-
namic model. The velocity of the surface model can be ex-
pressed as

& , , &s p Jpu v1 6 = , (16)

where an overstruck dot denotes a time derivative. The
physics of the dynamic subdivision surface model is based
on the work-energy version of Lagrangian dynamics [46]
and is formulated in an analogous way to the dynamic
framework presented in [35].

In an abstract physical system, let pi(t) be a set of gener-
alized coordinates which are functions of time and are as-
sembled into the vector p. Let fi(t) be the generalized force
assembled into the vector fp and acting on pi. The Lagran-
gian equation of motion can then be expressed as

Mp Dp Kp f&& &+ + = p .    (17)

Let µ(u, v) be the mass density function of the surface. Then

M J J= m T dudv   (18)

is an N × N mass matrix. Similarly the expression for
damping matrix is

D J J= g T dudv , (19)

where γ(u, v) is the damping density.
A thin-plate-under-tension energy model [47] is used to

compute the elastic potential energy of the dynamic subdi-
vision surface. The corresponding expression for the stiff-
ness matrix K is

K J J J J J J J J J J= + + + +a a b b b11 22 11 12 22u
T

u v
T

v uu
T

uu uv
T

uv v
T

vv dudv4 9 , (20)

where the subscripts on J denote the parametric partial de-
rivatives. The αii(u, v) and βij(u, v)s are elasticity functions
controlling local tension and rigidity in the two parametric
coordinate directions. Note that, for certain parameteriza-
tions, the thin-plate energy expression may diverge at ex-
traordinary points on the limit surface for Catmull-Clark
subdivision scheme, as shown in [7]. Several methods have
been suggested in [7] to overcome the problem of the di-
vergent series. However, we circumvent the problem by
setting the corresponding rigidity coefficients to be zero at
these points. Therefore, the thin-plate energy at extraordi-
nary points is zero. The effect is negligible to the overall
thin-plate energy as very few extraordinary points are pres-
ent in the smooth limit surface.

The generalized force vector fp can be obtained through
the principle of virtual work [46] done by the applied force
distribution f(u, v, t) and can be expressed as

f J fp
T u v t dudv= , ,0 5 .         (21)

2.5.1 Multilevel Dynamics
Our dynamic Catmull-Clark surface model can be subdi-
vided globally to increase the number of vertices (control
points) of the model. For example, after one step of global
subdivision, the initial degrees of freedom p (refer to (15)
and (16)) in the dynamic system will be replaced by a larger
number of degrees of freedom q, where q = Ap. A is a
global subdivision matrix of size (M, N) whose entries are
uniquely determined by Catmull-Clark subdivision rules
(see Section 2.1 for the details about the rules). Thus, p, ex-
pressed as a function of q, can be written as

p = (ATA)−1ATq = Bq,      (22)

where B = (ATA)−1AT. Therefore, we can rewrite (15) and
(16) as

s = (JB)q           (23)

and

& , , &s q JB qu v1 6 1 6= ,    (24)

respectively. Now, we need to derive the equation of mo-
tion for this new subdivided model involving a larger
number of control vertices, namely q. We need to recom-
pute the mass, damping, and stiffness matrices for this
“finer” level. The structure of the motion equation, as given
by (17), remains unchanged, but the dimensionality and the
entries of M, D, K, p, and fp change correspondingly in this
newly obtained subdivided level. In particular, the motion
equation, explicitly expressed as a function of q, can be
written as

M q D q K q fq q q q&& &+ + = ,       (25)

where M B J JBq
T dudv= m T and the derivation of Dq, Kq,

and fq follow suit.
It may be noted that further subdivision, if necessary,

can be carried out in a similar fashion. Therefore, multilevel
dynamics is achieved through recursive subdivision on the
initial set of control vertices. Users can interactively choose
the level of detail representation of the dynamic model as
appropriate for their modeling and design requirements.
Alternatively, the system can automatically determine the
level of subdivision most suitable for an application de-
pending on some application-specific criteria.

3 FINITE ELEMENT IMPLEMENTATION

The evolution of the generalized coordinates for our new dy-
namic surface model can be determined by the second-order
differential equation, as given by (17). An analytical solution of
the governing differential equation cannot be derived in gen-
eral. However, an efficient numerical implementation can be
obtained using the finite element method [48]. The limit sur-
face of the dynamic Catmull-Clark subdivision model is a
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collection of bicubic patch elements. We use two types of
finite elements for this purpose—normal elements (bicubic
patches assigned to the normal faces of the initial mesh)
and special elements (collection of infinite number of bicu-
bic patches assigned to each extraordinary vertex of the
initial mesh). The shape functions for the normal element
are the basis functions of the bicubic surface patch, whereas
the shape functions for the special element are the collec-
tion of basis functions corresponding to the bicubic patches
in the special element. In the current implementation, the
M, D, and K matrices for each individual normal and spe-
cial elements are calculated and they can be assembled into
the global M, D, and K matrices that appear in the corre-
sponding discrete equation of motion. In practice, we never
assemble the global matrices explicitly in the interest of
time performance. The detailed implementation is ex-
plained in the following sections.

3.1 Data Structures
The limit surface of the dynamic Catmull-Clark subdivision
model is a collection of bicubic patches and, hence, requires
us to keep track of the control polygons defining such
patches. We can get the control polygons for the normal
elements in the limit surface from the initial control mesh
itself. However, we need to locally subdivide the initial
control mesh around the extraordinary vertices to obtain
the control polygons of the bicubic patches in the special
elements on the limit surface.

A subdivision surface defined by a control mesh at any
level is designed as a class which has a pointer to its parent
mesh, a set of pointers to its offspring meshes (arising out

of local subdivision around the extraordinary vertices at
that level), a list of faces, edges, vertices, and normal ele-
ments. Face, edge, vertex, and normal elements are, in turn,
classes which store all the connectivity and other informa-
tion needed to either enumerate all the patches or locally
subdivide around an extraordinary vertex in that level. The
implementation takes the initial mesh as the base subdivi-
sion surface object (with its parent pointer set to NULL)
and locally subdivides the initial mesh upto a user-defined
maximum level around each extraordinary vertex to create
offspring objects at different levels (Fig. 5). At this point,
let’s take a closer look at the normal and special element
data structures and computation of the corresponding local
M, D, and K matrices.

3.1.1 Normal Elements
Each normal element is a bicubic surface patch and, hence,
is defined by 16 vertices (from the eight-connected neigh-
borhood of the corresponding normal face) in the initial
control mesh. Each normal element keeps a set of pointers
to those vertices of the initial mesh which act as control
points for the given element. For a normal element, the
mass, damping, and stiffness matrices are of size (16, 16)
and can be computed exactly by carrying out the necessary
integrations analytically. The matrix J in (18), (19), and (20)
needs to be replaced by Jp (of (2)) for computation of the
local M, D, and K matrices, respectively, of the corre-
sponding normal element.

3.1.2 Special Elements
Each special element consists of an infinite number of bicubic
patches in the limit. We have already described a recursive

Fig. 5. The data structure used for dynamic subdivision surface implementation.
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enumeration of the bicubic patches of a special element in
Section 2.3. Let us now consider an arbitrary bicubic patch
of the special element in some level j. The mass matrix Ms
of this patch can be written as

M Ms s
T

p s= W W , (26)

where Mp is the normal element mass matrix (scaled by a
factor of 1

4 j  to take into account of the area shrinkage in

bicubic patches at higher level of subdivision) and Ws is the
transformation matrix of the control points of that arbitrary
patch from the corresponding control points in the initial
mesh. The damping and stiffness matrices for the given
bicubic patch can be derived in a similar fashion. These
mass, damping, and stiffness matrices from various levels
of (local) subdivision can then be assembled to form the
mass, damping, and stiffness matrices of the special ele-
ment. It may be noted that the stiffness energy due to plate
terms diverges at the extraordinary points on the limit sur-
face. We solve the problem using a slightly different ap-
proach than the one used in [7]. When the area of the bicu-
bic patch obtained via local subdivision of the initial mesh
around an extraordinary vertex becomes smaller than the
display resolution, the contribution from such a bicubic
patch is ignored in computing the physical matrices of the
corresponding special element. The number of extraordi-
nary points in the limit surface is very few, and the above
mentioned approximation is found to work well in practice.

3.2 Force Application
The force f(u, v, t) in (21) represents the net effect of all ap-
plied forces. The current implementation supports spring,
inflation as well as image-based forces. However, other
types of forces, like repulsion forces, gravitational forces,
etc., can be easily implemented.

To apply spring forces, a spring of stiffness k can be con-
nected from a point d0 to a point (u0, v0) on the limit surface,
the net applied spring force being

f d su v t k u v t u u v v dudv, , , , ,0 5 0 52 7 2 7= - - -0 0 0d ,    (27)

where δ is the unit impulse function implying f(u0, v0, t) =
k(d0 − s(u0, v0, t)) and vanishes elsewhere in the surface.
However, the δ function can be replaced with a smooth
kernel to spread the force over a greater portion on the sur-
face. The spring forces can be applied interactively using a
mouse button or the points from which forces need to be
applied can be read in from a file.

To recover shapes from 3D image data, we synthesize
image-based forces. A 3D edge detection is performed on a
Gaussian smoothed volume data set using the 3D Monga-
Deriche (MD) operator [49] to produce a 3D potential field
P(x, y, z), which we use as an external potential for the
model. The force distribution is then computed as

f x y z k
P x y z

P x y z
, ,

, ,

, ,
1 6 1 6

1 6=
—

—
,            (28)

where k controls the strength of the force. The applied force
on each element is computed using Gaussian quadrature
for evaluating (21) in Cartesian coordinates. It may be noted

that we can apply spring forces in addition to the image-
based forces by interactively placing a sparse set of points
along the boundary of the region of interest in the slices of
the 3D image data and using the distances from these
points to the model as force constants.

3.3 Discrete Dynamic Equation
The differential equation given by (17) is integrated through
time by discretizing the time derivative of p over time steps
∆t. The state of the dynamic subdivision surface at time t +
∆t is integrated using prior states at time t and t − ∆t. An
implicit time integration method is used in the current im-
plementation where discrete derivatives of p are calculated
using

&&p
p p p

t t
t t t t t

t
+ =

+ - + -
D

D D

D
0 5 0 5 0 5 0 52

2    (29)

and

&p
p p

t t
t t t t

t+ =
+ - -

D
D D

D0 5 0 5 0 5
2 .          (30)

Using (17), (29), and (30), the discrete equation of motion is
obtained as

(2M + D∆t + 2∆t2K)p(t + ∆t) = 2∆t2fp(t + ∆t)
+ (D∆t − 2M)p(t − ∆t) + 4Mp(t).           (31)

This linear system of equations is solved iteratively be-
tween each time step using the conjugate gradient algo-
rithm [50]. For a first-order system with no mass, the above
equation reduces to

(D + 2∆tK)p(t + ∆t) = 2∆tfp(t + ∆t) + Dp(t − ∆t),     (32)

which gives a faster convergence.

3.4 Model Subdivision
The initialized model grows dynamically according to the
equation of motion (17) and, when an equilibrium is
achieved, the number of control vertices can be increased
by replacing the original initial mesh by a new initial mesh
obtained through one step of Catmull-Clark subdivision.
This increases the number of degrees of freedom to repre-
sent the same smooth limit surface and a new equilibrium
position for the model with a better fit to the given data set
can be achieved. The error of fit criteria for the discrete data
is based on distance between the data points and the points
on the limit surface where the corresponding springs are
attached. In the context of image-based forces, if the model
energy does not change within a prescribed tolerance be-
tween successive iterations, thereby indicating an equilib-
rium for the given resolution, the degrees of freedom for
the model can be increased by the above-mentioned re-
placement scheme until the model energy is sufficiently
small and the change in energy between successive itera-
tions becomes less than a prespecified tolerance.

4 RESULTS

The proposed dynamic Catmull-Clark subdivision surface
model can be used to represent a wide variety of shapes
with arbitrary genus. The smooth limit surface can be
manipulated by applying synthesized forces in a direct and
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intuitive way in the geometric modeling applications. The
underlying shape of a large range or volume data set can also
be recovered efficiently using the proposed dynamic Cat-
mull-Clark subdivision surface model. The application re-
sults of the proposed model are illustrated in the rest of this
section. In all the experiments, the normal elements are shaded
yellow, whereas the special elements are colored green.

4.1 Applications in Modeling
In a typical geometric modeling application using dynamic
Catmull-Clark subdivision surface model, the user can
specify any mesh as the initial (control) mesh, and the cor-
responding limit surface can be manipulated interactively
by applying synthesized forces. In Fig. 6, we show several
initial surfaces obtained from different control meshes and
the corresponding modified surfaces after interactive
spring force application. To change the shape of an initial
surface, we attach springs from different points in 3D to the
nearest points on the limit surface such that the limit sur-
face deforms toward these points to generate the desired
shape. In Fig. 6a, an open surface defined by an initial mesh
of 61 vertices and 45 faces is shown. The mesh has one ex-
traordinary vertex of degree five. This limit surface is modi-
fied by applying spring forces interactively, and the modi-
fied surface is depicted in Fig. 6e. A torus, defined by an
initial mesh of 32 vertices and 32 faces, and its modified
shape are shown in Figs. 6b and 6f, respectively. The initial
mesh of the smooth limit surface shown in Fig. 6c has 544
faces and 542 vertices, eight of which are extraordinary
vertices of degree five. The limit surface is modified inter-
actively by applying spring forces from various points in
3D and the modified shape is depicted in Fig. 6g. Note that

the extent of deformation has been interactively controlled
by varying the stiffness of the attached springs. The upper
portion of the limit surface has been deformed by applying
spring forces of higher magnitude, whereas the lower por-
tion has been modified by applying spring forces of lower
magnitude. The spread of the deformation effect is clearly
larger in the latter case for obvious reasons. Finally, a flat
sheet defined by an initial mesh of 64 faces and 81 vertices,
shown in Fig. 6d, is deformed interactively to obtain the
hat-like shape shown in Fig. 6h.

4.2 Applications in Shape Recovery From Range
Data

The dynamic Catmull-Clark subdivision surface model can
recover the underlying shape of a given range data set ef-
fectively in a hierarchical fashion. The initialized model
deforms under the influence of the spring forces from the
range data. When an approximate shape is recovered, a
new control mesh can be obtained by one step of Catmull-
Clark subdivision on the initial mesh, thereby increasing
the degrees of freedom to represent the same limit surface,
and a better fit to the given range data set can be achieved.
It may be noted that the model initialization is interactive, and
the initialized model can have any control mesh of the desired
genus. However, an initial mesh with few degrees of freedom
usually performs better in terms of the compact representation
of the underlying shape. In all the experiments in this section,
the initialized model had 96 faces and 98 vertices, eight of
them being extraordinary vertices of degree three. The final
fitted model, obtained through one step of subdivision, has a
control polygon of 384 faces with 386 vertices. The error in fit,
which is defined as the maximum distance between a data

                          (a)                                                     (b)                                                       (c)                                                     (d)

                          (e)                                                      (f)                                                       (g)                                                    (h)

Fig. 6. (a), (b), (c), and (d): Initial shapes.(e), (f), (g), and (h): The corresponding modified shapes after interactive force application.



226 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  VOL.  4,  NO.  3,  JULY-SEPTEMBER  1998

point and the nearest point on the limit surface as a percentage
of the diameter of the smallest sphere enclosing the object, is
approximately 3 percent in all the experiments with range
data. The time of dynamic evolution for fitting the range data
sets used in the experiments is approximately 3 minutes in a
SGI O2 workstation.

In Fig. 7, we demonstrate the model fitting algorithm
applied to laser range data acquired from multiple views of
a light bulb. Prior to applying our algorithm, the data were
transformed into a single reference coordinate system. The
model was initialized inside the 1,000 range data points on
the surface of the bulb. In the next experiment, the shape of a
head is recovered from a range data set, as shown in Fig. 8.
The range data set has 1,779 points in 3D. In the last ex-
periment with range data, the dynamic Catmull-Clark sub-
division surface model is fitted to an anvil data set (Fig. 9).
The data set has 2,031 data points. It may be noted that the
final shape with 3 percent error tolerance uses very few

control points for representation in comparison with the
number of data points present in the original range data set.

4.3 Applications in Shape Recovery From Volume
Data

The application of the dynamic Catmull-Clark subdivision
surface model to anatomical shape recovery from 3D volu-
metric MRI data is shown in the next two experiments. As
in the previous section, the initialized model had 96 faces
and 98 vertices, eight of them being extraordinary vertices
of degree three. The final fitted model, obtained through
one step of subdivision, has a control polygon of 384 faces
with 386 vertices.

First, the model is fitted to a cerebellum (a cortical
structure in brain) given an input of 30 sagittal slices from a
MR brain scan. Fig. 10a depicts a slice from this MRI scan
and the model initialization is shown in Fig. 10b. Continu-
ous image based forces are applied to the model and the

                                        (a)                                                                     (b)                                                                      (c)

Fig. 7. (a) Range data of a bulb along with the initialized model. (b) An intermediate stage of evolution. (c) The fitted dynamic Catmull-Clark subdi-
vision surface model.

                                       (a)                                                                      (b)                                                                      (c)

Fig. 8. (a) Range data of a head along with the initialized model. (b) An intermediate stage of evolution. (c) The fitted dynamic Catmull-Clark sub-
division surface model.
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model deforms under the influence of these forces until
maximum conformation to the boundaries of the desired
cerebellum shape. The final fitted model is shown in Fig. 10c.
A 3D view of the fitted model is depicted in Fig. 10d.

In the next experiment, we present the shape extraction
of a caudate nucleus (another cortical structure in human
brain) from 64 MRI slices, each of size (256, 256). Fig. 11a
depicts a slice from this MRI scan along with the points

placed by an expert neuroscientist on the boundary of the
shape of interest. Fig. 11b depicts the interactively placed
sparse set of data points (placed in some of the slices de-
picting the boundary of the shape of interest) in 3D along
with the initialized model. Note that points had to be inter-
actively placed on the boundary of the caudate nucleus in
MR slices lacking image gradients which delineate the cau-
date from the surrounding tissue in the image. Continuous

                                     (a)                                                                         (b)                                                                      (c)

Fig. 9. (a) Range data of an anvil along with the initialized model. (b) An intermediate stage of evolution. (c) The fitted dynamic Catmull-Clark sub-
division surface model.

                            (a)                                                    (b)                                                      (c)                                                    (d)

Fig. 10. (a) A slice from a brain MRI. (b) Initialized model inside the region of interest superimposed on the slice. (c) The fitted model superim-
posed on the slice. (d) A 3D view of the dynamic Catmull-Clark subdivision surface model fitted to the cerebellum.

                             (a)                                                    (b)                                                     (c)                                                    (d)

Fig. 11. (a) Data points identifying the boundary of the region of interest (a caudate nucleus) on an MRI slice of human brain. (b) Data points (from
all the slices) in 3D along with the initialized model. (c) Fitted dynamic Catmull-Clark subdivision surface model. (d) Another view of the fitted
model.
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image based forces as well as spring forces are applied to
the model and the model deforms under the influence of
these forces until maximum conformation to the boundaries
of the desired caudate shape. Two arbitrary views of the
final fitted model in 3D are shown in Figs. 11c and 11d.

5 CONCLUSIONS

In this paper, a dynamic framework for the Catmull-Clark
subdivision surfaces is presented which has numerous appli-
cations in geometric modeling, computer graphics, and sci-
entific visualization. Apart from providing a direct and in-
tuitive way of manipulating shapes, it facilitates the model-
ing and shape analysis of objects contained in range and vol-
ume data sets using very few degrees of freedom. We have
presented an analytic formulation of the subdivision model,
incorporated the advantages of free-form deformable models
in subdivision scheme, introduced hierarchical dynamic
control, and shown the advantages of our model via experi-
ments. However, the current scheme cannot recover sharp
edges in the data. Also, the initialization is interactive; ide-
ally, initialization should be done automatically on the basis
of the input data set. Efficient numerical techniques like pre-
conditioning will speed up the fitting process significantly.
Our future efforts will be focused on addressing these issues.
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