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Abstract 

Subdivision sueaces have been extensively used to model smooth 
shapes of arbitrary topology. Recursive subdivision on an initial 
control mesh generates a visually pleasing smooth sudace in the 
limit. However, users have to carefully speci,fy the initial mesh 
and/or painstakingly manipulate the control vertices at d@erent 
levels of subdivision hierarchy to satisfy various functional and aes- 
thetic requirements in the limit St&ace. This modeling drawback re- 
sultsfiom the lack of direct manipulation tools for the limit su$ace. 
This paper integrates physics-based modeling techniques with ge- 
ometric subdivision methodology and present an unified approach 
for arbitrary subdivision schemes. Our dynamic framework permits 
users to directly manipulate the limit surface via ‘force” tools. The 
key contribution of this unified approach is to formulate the limit 
su$ace of any subdivision scheme as a single type of novel finite 
elements. The geometn’c and dynamic features of our subdivision- 
based finite elements depend on the subdivision scheme involved. 
We present our finite element method (FEM) for the modified but- 
terfly and Catmull-Clark subdivision schemes, and further gener- 
alize our dynamic framework for any subdivision scheme. Our 
FEM-based approach signijcantly advances the state-of-the-art of 
physics-based geometric modeling because (1) ourframeworkpro- 
vides a universal physics-based solution to any subdivision scheme 
beyond popular spline-like subdivision techniques; (2) we system- 
atically devise a natural mechanism that allows uSers to intuitively 
deform any subdivision sudace; (3) we represent the limit surface 
of any subdivision scheme using a single type of novel subdivision- 
based finite elements. Our experiments demonstrate that the new 
unified FEM-based framework promises a greater potential of sub- 
division techniques for solid modeling, finite element analysis, and 
engineering design. 

1 INTRODUCTION 

Efficiently modeling and manipulating smooth surfaces of arbitrary 
topology is a grand challenge to scientists and engineers in solid 
modeling, computer-aided design, and interactive graphics. The 
recursive subdivision scheme, which produces a visually pleasing 
smooth surface in the limit by repeated application of a fixed set of 
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refinement rules on an user-specified initial control mesh, is well 
suited for this task. Despite the prevalence of diverse subdivision 
schemes in the graphics and geometric modeling literature, it is al- 
most impossible to manipulate the limit surface (obtained through 
procedure-based subdivision) in a direct and natural way. The cur- 
rent state-of-the-art only permits modelers to interactively obtain 
the desired effects on the smooth surface by kinematically manip- 
ulating the control vertices at various levels of subdivision hierar- 
chy. Moreover, existing subdivision-based surfaces are not yet ap- 
plicable for data exchange in standard formats such as B-splines, 
NURBS, etc. for CAD applications. In this paper, we address the 
challenging problem of directly manipulating the limit subdivision 
surface at arbitrary locations/areas, and offer a novel solution to 
this problem by embedding purely geometric subdivision schemes 
in a physics-based modeling framework. Unlike the existing geo- 
metric solutions that only allow operations on control vertices, our 
methodology and algorithms permit users to physically modify the 
shape of subdivision surfaces at desired locations via forces. Con- 
sequently, this gives the user an intuitive and natural feeling that is 
uniquely produced while modeling with real clay/play-dough. Ad- 
ditionally, we will demonstrate that the proposed model can effi- 
ciently recover shapes from a cloud of 3D points. First, we shall 
briefly review the previous work on subdivision surfaces. 

1 .l Background 

Chaikin [3] first introduced the concept of subdivision to the mod- 
eling community for generating a smooth curve from an arbitrary 
control polygon. Later on, a wide variety of subdivision schemes 
for modeling smooth surfaces of arbitrary topology have been de- 
rived following Chaikin’s pioneering work on curve generation. 
The existing subdivision schemes can be broadly categorized into 
two distinct classes namely, (1) approximating subdivision tech- 
niques, and (2) interpolating subdivision techniques. 

Among the approximating schemes, the techniques of Doo and 
Sabin [5] and Catmull and Clark [2] generalize the idea of ob- 
taining uniform biquadratic and bicubic B-spline patches, respec- 
tively, from a rectangular control mesh. In [2], Catmull and Clark 
developed an algorithm for recursively generating a smooth sur- 
face from a polyhedral mesh of arbitrary topology. The Catmull- 
Clark subdivision surface, defined by an arbitrary initial mesh, can 
be reduced to a set of standard B-spline patches except at a finite 
number of degenerate points. In [14], Loop presented a similar 
subdivision scheme based on the generalization of quartic trian- 
gular B-splines for triangular meshes. Hoppe et al. [lo] further 
extended Loop’s work to produce piecewise smooth surfaces with 
selected discontinuities. Halstead et al. [9] proposed an algorithm 
to construct a Catmull-Clark subdivision surface that interpolates 
the vertex mesh of arbitrary topology. Peters and Reif [18] pro- 
posed a simple subdivision scheme for smoothing polyhedra. Most 
recently, non-uniform Doo-Sabin and Catmull-Clark surfaces that 
generalize non-uniform tensor-product B-spline surfaces to arbi- 
trary topologies were introduced by Sederberg et al. [24]. All the 

191 



aforementioned schemes generalize recursive subdivision schemes 
for generating limit surfaces with a known parameterization. Var- 
ious issues involved with the use of these approximating subdivi- 
sion schemes for character animation were discussed at length by 
DeRose et al. [4]. 

The most well-known interpolation-based subdivisbon scheme 
is the “butterfly” algorithm proposed by Dyn et al. [7]. Butterfly 
method, like other subdivision schemes, makes use of a small num- 
ber of neighboring vertices for subdivision. It requires simple data 
structures and is rather straightforward to implement. Nevertheless, 
it needs a topologically regular setting of the initial (control) mesh 
in order to obtain a smooth C1 limit surface. Zorin et crl. [27] has 
developed an improved interpolatory subdivision scheme (which 
we call the modified butterfly scheme) that retains the simplic- 
ity of the butterfly sche.me and results in much smoother surfaces 
even from irregular initial meshes. These interpolatory subdivision 
schemes have extensive applications in wavelets on manifolds, mul- 
tiresolution editing, etc. 

A variational approach for interpolatory refinement ha.5 been pro- 
posed by Kobbelt [ 11,1:2] and by Kobbelt and Schroder [ 131. In this 
approach, the vertex positions in the refined mesh at each subdivi- 
sion step are obtained by solving an optimization proble:m. There- 
fore, these schemes are global, i.e., every new vertex position de- 
pends on all the vertex positions of the coarser level mesh. The local 
refinement property which makes the subdivision schemes attrac- 
tive for implementation in the graphics applications is nfot retained 
in the variational approach. 

The derivation of various mathematical properties of the limit 
surface generated by the subdivision algorithms is rather complex. 
Doo and Sabin [61 first analyzed the smoothness behavior of the 
limit surface using the Fourier transform and an eigen-analysis of 
the subdivision matrix. Ball and Stony [l] and Reif [:!2] further 
extended Doo and Sabin’s prior work on continuity properties of 
subdivision surfaces by deriving various necessary and sufficient 
conditions on smoothness for different subdivision schemes. Spe- 
cific subdivision scheme.s were analyzed by several researchers [23, 
19,281, including a rece.nt one by Stam [25]. 

1.2 Motivation 

Although recursive subdivision surfaces are extremely powerful for 
representing smooth geometric shapes of arbitrary topology, they 
constitute a purely geometric representation, and furthermore, con- 
ventional geometric modeling with subdivision surfaces may be dif- 
ficult for effectively representing and deforming highly complicated 
objects. For example, modelers are faced with the tedium of in- 
direct shape modification and refinement through time-consuming 
operations on a large number of (oftentimes irregular) control ver- 
tices when utilizing typical subdivision-based modeling techniques. 
Despite the advent of many modem 3D graphics interaction tools, 
these indirect geometric operations remain non-intuitive and labo- 
rious in general. In addition, oftentimes it may not be Ienough to 
obtain the most “fair” surface that interpolates a set of (ordered or 
unorganized) data points. A certain number of local features such 
as bulges or inflections may be strongly desired while requiring ge- 
ometric objects to satisf:y global smoothness criteria in solid mod- 
eling and/or interactive graphics applications. In contrast, physics- 
based modeling provides a superior approach to shape modeling 
that can overcome most of the limitations associated with tradi- 
tional geometric modeling approaches. Free-form deformable mod- 
els governed by the laws of continuum mechanics are of particular 
relevance in this context. Dynamic models respond to Iexternally 
applied forces in a very intuitive manner. The dynamic formula- 
tion marries the model geometry with time, mass, damping, and 
constraints via a force ballance equation. Dynamic models produce 
smooth, natural motions which are easy to control. In addition, 

they facilitate interaction - especially direct manipulation of com- 
plex geometries. Furthermore, the equilibrium state of the model 
is characterized by a minimum of the deformation energy of the 
model subject to the imposed constraints. The deformation energy 
functionals can be formulated to satisfy local and global model.- 
ing criteria, and geometric constraints relevant to shape design can 
also be properly imposed. The dynamic approach subsumes all of 
the aforementioned modeling capabilities in a formulation which 
grounds everything in real-world physical behavior. 

Free-form deformable models were first introduced to the mod- 
eling community by Terzopoulos et al. [26], and were improved 
by a number of researchers over the years. Qin and Terzopoulos 
[20] developed D-NURBS which are very sophisticated physics- 
based models suitable for representing a wide variety of free.-form 
as well as standard analytic shapes. The D-NURBS have the ad- 
vantage of interactive and direct manipulation of NURBS curves 
and surfaces, resulting in physically meaningful thus intuitivel:jr 
predictable motion and shape variation. However, a severe limi- 
tation of the existing deformable models, including D-NURBS, is 
that they are defined on a rectangular parametric domain. There- 
fore, it can be very difficult to model surfaces of arbitrary genus 
using these models. Subdivision schemes, in contrast, can model 
complex surfaces of arbitrary topology, and hence are a goodi can- 
didate for developing a novel physics-based model where the mod- 
eler can directly manipulate the (complicated) limit surface in an 
intuitive way. 

Previously we had introduced dynamic Catmull-Clark subdivi- 
sion surfaces [15, 16, 211 where the smooth limit surface g,ener- 
ated by the Catmull-Clark subdivision scheme was embedded in a 
physics-based modeling framework. The current research differs 
significantly from our prior work because the new approach ,&ken 
in this paper is much more general. It aims to develop a system- 
atic and universal mechanism with which any subdivision scheme 
can be formulated within the physics-based framework. The critical 
mathematical technique we resort to is finite element analysis,. We 
shall first formulate a dynamic representation and equation for an 
interpolatory subdivision scheme - the modified butterfly subdi- 
vision method - where the limit surface, unlike other generalized 
spline-based subdivision schemes, does not have any closed-form 
analytic formulation. Moreover, we shall reformulate the dynamic 
Catmull-Clark subdivision surface model using this novel melthod- 
ology, and describe how to develop an unified dynamic framework 
for any subdivision scheme. The key contribution of this unified 
approach is to represent the smooth limit surface of any subdivision 
scheme using a single type of novel finite elements. The geometric 
and physical features of our subdivision-based finite elements de- 
pend only on the subdivision scheme involved. Our FEM-base’d ap- 
proach significantly advances the state-of-the-art of physics-based. 
geometric modeling because (1) it provides a universally physics- 
based solution to any subdivision schemes beyond prevalent spline- 
like subdivision techniques; (2) a natural mechanism that allows 
users to intuitively deform any subdivision surface has been system- 
atically devised; (3) the limit surface of any subdivision schemes 
has been represented using a single type of novel subdivision-h,ased 
finite elements; and (4) our subdivision-based finite elements are 
potentially of great interest to FEM communities. 

1.3 Overview 

A dynamic framework for the interpolatory (modified) butterfly 
subdivision scheme is presented in Section 2. We reformulate the 
dynamic framework for the approximating Catmull-Clark subdivi- 
sion scheme using the proposed approach in Section 3. Section 4 
presents a solution on how to develop a dynamic framework for 
any subdivision scheme. Experimental applications are presented 
in Section 5. Finally, we conclude the paper in Section 6. 
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2 Dynamic Butterfly Subdivision Sur- 
faces 

This section discusses a dynamic framework for an interpolatory 
subdivision scheme namely, the (modified) butterfly subdivision 
technique. First, a brief overview of the (modified) butterfly sub- 
division scheme is presented. Next, a local geometric parameter- 
ization technique for the limit surface of the (modified) butterfly 
subdivision is detailed. Our parameterization method is then used 
to derive the new triangular finite element model for butterj?y-based 
subdivision. Finally, the implementation details are described. Note 
that, we will further generalize our physics-based formulation for 
other interpolatory subdivision schemes in Section 4. 

2.1 The (Modified) Butterfly Subdivision 

(a) (b) 

Figure 1: (a) The control polygon with triangular faces. (b) The re- 
fined mesh obtained after one subdivision step using butterfly sub- 
division rules. 

w 

(a) (b) 

Figure 2: (a) The weighing factors of contributing vertex positions 
for an edge connecting two vertices of degree 6; (b) the correspond- 
ing case when one vertex is of degree n and the other is of degree 
6. 

The butterfly subdivision scheme [7] starts with an initial trian- 
gular mesh (a.k.a. the control mesh) defined by a set of control 
vertices. In each step of subdivision, the initial (control) mesh is re- 
fined through the transformation of each triangular face into a patch 
with four smaller triangular faces. After one step of refinement, 

the new mesh in the finer level retains the vertices of each trian- 
gular face in the previous level and hence, interpolates the courser 
mesh in the previous level. In addition, every edge in each triangu- 
lar face is split by adding a new vertex whose position is obtained 
by an affine combination of the neighboring vertex positions in the 
coarser level. For instance, the mesh in Fig. 1 (b) is obtained by sub- 
dividing the initial mesh shown in Fig. 1 (a) once. Note that, all the 
newly introduced vertices corresponding to the edges in the original 
mesh have degree 6, whereas the position and degree of all original 
vertices do not change in the refined mesh. 

In the original butterfly scheme, the new vertices corresponding 
to the edges in the previous level are obtained using an eight-point 
stencil. It produces a smooth C1 surface in the limit except at the 
extraordinary points corresponding to the extraordinary vertices 
(vertices with degree not equal to 6) in the initial mesh [27]. Since 
all the vertices introduced through subdivision have degree 6, the 
number of extraordinary points in the smooth limit surface equals to 
the number of extraordinary vertices in the initial mesh. Recently, 
the original butterfly scheme has been modified by Zorin et al. [27] 
to obtain better smoothness properties at the extraordinary points. 
In this modified butterfly subdivision technique, all the edges had 
been categorized into three classes: (i) edges connecting two ver- 
tices of degree 6 (a 10 point stencil, as shown in Fig.2(a), is used to 
obtain the new vertex positions corresponding to these edges), (ii) 
edges connecting a vertex of degree 6 and a vertex of degree n # 6 
(the corresponding stencil to obtain new vertex position is shown in 
Fig.2(b), where q = .75 is the weight associated with the vertex of 
fepoe; # 6, andsi = (0.25$:cos(2fli/n)+0.5cos(4rri/n))/n, 

> ,.“, n - 1, are the weights associated wrth the vertices of 
degree 6), and (iii) edges connecting two vertices of degree n # 6. 
The last case can not occur except in the initial mesh as the newly 
introduced vertices are of degree 6, and the new vertex position 
in this last case is obtained by averaging the positions obtained 
through the use of stencil shown in Fig.2(b) at each of those two 
extraordinary vertices. 

2.2 Formulation 

This section systematically formulates the dynamic framework for 
the modified butterfly subdivision scheme. Unlike the approximat- 
ing schemes, the geometry of the limit surface obtained via mod- 
ified butterfly subdivision does not have any closed-form analytic 
expression even for a regular mesh. Therefore, the key issue is to 
define an appropriate parametric domain and derive a local parame- 
terization for butterjy-based subdivision. These relevant geometric 
components are critical to the development of our physics-based 
finite element model for the limit surface of butterfly scheme. 

The smooth limit surface defined by the modified butterfly sub- 
division technique is of arbitrary topology where a global parame- 
terization is impossible. Nevertheless, the limit surface can be lo- 
cally parameterized over the geometric domain defined by the ini- 
tial mesh. The idea is to track an arbitrary point on the initial mesh 
across the mesh hierarchy obtained via the subdivision process (see 
Fig.3 and Fig.Q, so that a correspondence can be established be- 
tween the point being tracked in the initial mesh and its image on 
the limit surface. 

Figure 3: The smoothing effect of the subdivision process on the 
triangles of the initial mesh. 

193 



(4 (b) 

Cc) 

Figure 4: Tracking a point x through various levels of subdivision: 
(a) initial mesh, (b) the selected section (enclosed by dotted lines) 
of the mesh in (a), after one subdivision step, (c) the selected section 
of the mesh in (b), after (another subdivision step. 

The modified butterfly subdivision scheme starts with an initial 
set of triangular faces. The recursive application of the subdivision 
rules smoothes out each triangular face, and in the limit, we obtain 
a smooth surface consis#ting of a collection of smooth triangular 
patches. The subdivision process and the triangular decomposition 
of the limit surface is depicted in Fig.3. Note that, the limit sur- 
face can be represented by the same number of smooth triangular 
patches as that of the triangular faces in the initial mesh. Therefore, 
the limit surface s can be expressed as 

n 
s= c Sk, (1) 

k=l 

where n is the number of triangular faces in the initial mesh and Sk 
is the smooth triangular patch in the limit surface corresponding to 
the k-th triangular face in the initial mesh. 

We now describe the parameteriiation of the limit surface over 
the initial mesh. The procedure can be best explained through the 
following example. A simple planar mesh shown in Fig.4(a) is cho- 
sen as the initial mesh. An arbitrary point x inside the triangular 
face abc is tracked over the meshes obtained through subdivision. 
The vertices in the initial mesh are darkly shaded in Fig.4. After 

one step of subdivision, the initial mesh is refined by addition of 
new vertices which are lightly shaded. Another subdivision ste:p 
on this refined mesh leads to a finer mesh with introduction of new 
vertices which are unshaded. It may be noted that any poi,2t in- 
side the smooth triangular patch in the limit &ace corresponding 
to the face abc in the initial mesh depends only on the vertices in 
the initial mesh which are within the 2-neighborhood of the ver- 
tices a, b and c due to the local nature of the subdivision process 
(the &neighborhood of a vertex includes all the vertices that can 
be reached following at most k edges from the given vertex). For 
example, the vertex d, introduced after first subdivision step, can 
he obtained using the 10 point stencil shown in Fig.2(a) on the edge 
ab. All the contributing vertices in the initial mesh are within the 
l-neighborhood of the vertices a and b. A 10 point stencil c,m be 
used again in the next subdivision step on the edge db to obtain the 
vertex g. Some of the contributing vertices at this level of subdivi,- 
sion, for example, the (lightly shaded) l-neighbors of the vertex b 
(except d and e) in Fig.4(b), depend on some vertices in the initial 
mesh which are within the 2-neighborhood of the vertices a, 1, and 
c in the initial mesh. 

In the rest of the formulation, superscripts are used to indicate 
the subdivision level. For example, v&, denotes the collection 
of vertices at levei j which control the smooth patch in the limit 
surface corresponding to the triangular face uvw at the j-th level 
of subdivision. Let vtbc be the collection of vertices in the initial 
mesh that are within the 2-neighborhood of the vertices a, b and c 
(marked black in Fig,4(a)). Let the number of such vertices be T. 
Then, the vector vzbc, which is the concatenation of the (z, y, Z:I 
positions for all the r vertices, is of dimension 3r. Based on the 
above observation of the 2-neighborhood property, the geomelry of 
the smooth triangular patch in the limit surface corresponding to 
the triangular face abc in the initial mesh is uniquely determined 
by these T vertices. Because of the recursive characteristic, there 
now exists four subdivision matrices (Aobc)t, (Aabc)l, (Anbc), 
and (Aabc), of dimension (3r, 37‘) such that 

ddf = (Aad&c, 

d.%i = G-LA&c, 

V&e = (A&,&c, 

&f = W&,p%c, (2) 

where the subscripts t, 1, r and m denote top, left, right and mid- 
dle triangle positions, respectively (indicating the relative posi- 
tion of the new triangle with respect to the original triangle), and 
v& DED vc’re and v&f are the concatenation of the (2, y, z:) po- 
sitions for the vertices in the 2-neighborhood of the corresponding 
triangle within the newly obtained refined mesh after one subdi- 
vision. Note that, the new vertices in this level of subdivision are 
lightly shaded in FigB(b). The 2-neighborhood configuration of the 
vertices in the newly obtained triangles is exactly the same as that 
of the original triangle, hence local subdivision matrices are square 
and the vector dimensions on both sides of (2) are the same. 

Carrying out one more level of subdivision, a new set of vertices 
which are unshaded in Fig.4(c) are obtained along with the old ver- 
tices. Adopting a similar approach as in the derivation of (2j, it can 
be shown that 

V&i = (&e&& 

Vb2hg = (Arm&h 
2 

Veih = (&ed,deci 

vzhi = (&e&,& (3) 

The relative position and geometric structure of the triangu- 
lar face dgi in Fig.4(c) with respect to the triangular face bed is 
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topologically the same as of the triangular face adf in Fig.4(b) 
with respect to the triangular face abc. Therefore, we can obtain 
(Abed)t = (Aabc)t. Based on the similar reasoning, (3) can be 
rewritten as 

vzgi = (&e&de~ = &f&‘blecj 
2 

Vbhg = (&e&‘~,~ = @ad& 
2 

V.&h = (&ed),ded = (&bc),deci 

v& = (-bed),,&+ = (&bc),de~. (4) 

Combining (2) and (4), it can be shown that 

d,i = (&bc)&&b&V:bc, 

dhg = (&bc)&abc)&bc, 
2 

Veih = (&bc),(&+‘:bc, 

v;hi = (Aabc), (&bc),V:bc. (3 

Let x be a point with barycentric coordinates (cyzbc, @bcr r,“b,) 
inside the trianaular face abc. When the initial mesh is refined. x 
becomes a pain; inside the triangular face bed with barycentric co- 
ordinates (c& , Pied, $,,). Another level of subdivision causes x 
to be included in the triangular face dc$ with barvcentric coordi- 
nates caigi, pdgi, $gih Let sj,bc denote the j-th level approxima- 
tion of the smooth triangular patch a& in the limit surface corre- 
sponding to the triangular face abc in the initial mesh. Now vtbc 
can be written as 

where the subscripts x, y and .z indicate the x, y and z coordinates 
of the corresponding vertex position, respectively. The expressions 
for v:,~ and ~2,; can also be written in a similar manner. Next, the 
matrix BEbc can be constructed as follows: 

r 

B:bc(X) = 
/ \A 

“. 
O,~~bc,~~bc,~~b)bc,O,..C,O,O ,..., 0 

,...,0,0,...,0,O~bc,rCa0bc,y,Ob,,O,...,O ‘1 

The matrices Bied and B~,i can also be constructed in a similar 
fashion. Now a~&), s1 abc (X) , and $bc (X) C?lll be Writtell aS 

s:bc(x) = B:bc(x)“:bc, 

$bdx) = Bkdx)vbl,d = %dx)(Aobc)&bc, 

sabc(x) = BF~gi(x)dgi = Bigi(x)(&bc)tVled 

= B~gi(X)(A,bc)t(Aabc)lVElb~. 

(6) 

Proceeding in a similar way, the expression for sib=(x), j-th 
level approximation of a&(x), is given by 

s:bc(x) 

/ 
= B!mdx) (Aabc), . . . (&bc)t(&&‘~be 

= %m(X)(Ajabc)V:bc 
= Bib, (x)‘tbc, 
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(7) 

where x is inside the triangular face uvw at level j (with an assump- 
tion that uvw is the triangular face in the middle with respect to its 

courser-level original triangular face inthe previous level), (A:,,) 

F!$?!?roted that the sequence of t&lying (A b ) 
. . . (Aabc)t(&bc)l and ~3 (x) = IXvw(~)(AJ ). 

(Aatijl, 
(Aah), and (Aabc), depends on the triangle inaiiet’which the 
tracked point x falls after each subdivision step. Finally, the local 
geometric parameterization procedure can be completed by writing 

.%bc(x) = (Jim Bjabc(x))V:bc = Babc(x)V:b,. 
.J’W 

(8) 

Note that, Babe is the collection of basis functions at the ver- 
tices of vz&. It may also be noted that the modified butter- 
fly subdivision scheme is a stationary subdivision process, and 
hence new vertex positions are obtained by affine combinations 
of nearby vertices. This guarantees that each row of the matrices 
(Aa& (&bc)l, (Aabc), and (&& Sums to One. The lw$Wt 
eiaenvalue of such matrices is 1 and therefore the mathematical 
limit in (8) exists. Now, assuming the triangular face abc is the 
L-th face in the initial mesh, (8) can be rewritten as 

Sk(x)= &(X)V; =%(x)&p, (9) 

where p is the concatenation of the (x,y,z) positions of all the ver- 
tices in the initial mesh and the matrix &, when post-multiplied by 
p, only selects the vertices vi defining the k-th smooth triangular 
patch in the limit surface. If there are t vertices in the initial mesh 
and T of them control the Ic-th patch, then p is a vector of dimension 
3t, Ak is a matrix of dimension (3r, 3t), and Bk(x) is a matrix of 
dimension (3,3r). 

Combining (1) and (9), it can be shown that 

s(x) = (2 Bk(X)Ak)P = J(x)P, 
k=l 

(10) 

where J, a matrix of dimension (3,3t), is the collection of basis 
functions for the corresponding vertices in the initial mesh. The 
vector p is also known as the degrees of freedom vector of the 
smooth limit surface s. 

We now treat the vertex positions in the initial mesh defining the 
smooth limit surface s as time variables in order to develop the new 
dynamic butterfly subdivision model. The velocity of the surface 
model can be expressed as a(x, p) = J(x Ii, where an overstruck 
dot denotes a time derivative and x E S b , So being the domain 
defined by the initial mesh. Note that, So is the parametric domain 
of the limit surface, each triangle of the initial control mesh serves 
as a local parametric domain for its corresponding triangular patch. 

2.3 Finite Element Procedure 

In Section 2.2 we have demonstrated that the smooth limit sur- 
face of butterfly subdivision can be represented by a collection of 
smooth triangular patches. In our dynamic framework, we now con- 
sider each patch of the limit surface as a finite element. The number 
of such patches is equal to the number of triangular faces in the ini- 
tial mesh as mentioned earlier. The concept of decomposing the 
smooth limit surface into a collection of elements is illustrated in 
Fig.5 We also show the parametric domain and control vertices for 
shaded elements in Fig.5 The governing motion equation of this 
subdivision-based FPM model is given by 

Mij+Dti+Kp=f,, (11) 

where fP is the generalized force vector, and M, D, and K are 
the mass, damping and stiffness matrices of the physical model. In 
the interest of space, we provide an outline on how to derive the 
mass, damping and stiffness matrices for these finite elements so 
that a numerical solution to the governing second-order differential 



the j-th level of approximation can be defined as 

E abc - N EibC = f c 
n 

(a) 

Figure 5: (a) An initial mesh, and (b) the corresponding limit sur- 
face. The domains of the shaded elements in the limit surface are 
the corresponding triangular faces in the initial mesh. The encircled 
vertices in (a) are the degrees of freedom for the corresponding el- 
ement. 

equation can be obtained using popular finite element analysis tech- 
niques. We use the same example as in Section 2.2 (refer to Fig.4) 
to introduce the relevant concepts and derive our FEM model. 

The mass matrix for the element a&, corresponding to the tri- 
angular face abc, can be expressed as 

M abc = / ~(x)BaTbbc(X)Babc(X)dx. (12) 
J xE”,bc 

However, the basis functions (stored as entries in I$& do not have 
any analytic form, hence computing this integral is a difficult propo- 
sition. We solve this pro’blem by approximating the smooth trian- 
gular patch in the limit :surface corresponding to the face abc in 
the initial mesh by a triangular mesh with 4’ faces obtained after j 
levels of subdivision of the original triangular face abc (each sub- 
division step splits one triangular face into 4 triangular faces). In 
addition, we choose a discretized form of mass distribution func- 
tion which has non-zero values only at the vertex positions of the 
j-th subdivision level mesh to simplify the implementation matter. 
Then the mass matrix can be approximated as 

3 Dynamic Catmull-Clark Subdivision 
Surfaces 

where k is the number of vertices in the triangular mesh1 with 4j 
faces. This approximation has been found to be very effective and 
efficient for the implementation of FEM procedure. The computa- 
tion of elemental damping matrix follows suit. 

This section considers a new FEM model based on an approximat- 
ing subdivision scheme, namely, Catmull-Clark subdivision tech- 
nique. Please note, the dynamic formulation of Catmull-Clark sub- 
division previously proposed in [15, 16, 211 could not be gener- 
alized for other approximating subdivision schemes. The frame- 
work developed in this section can be easily generalized to other 
approximating subdivision schemes as shown in Section 4. In fact, 
a dynamic framework for Loop’s technique (another popular ap- 
proximating subdivision scheme) has been detailed in [15] using 
the algorithm proposed here. We limit our discussion to Catmull- 
Clark subdivision surfaces only in this paper due to space restric- 
tions. We first outline the Catmull-Clark subdivision scheme. Next, 
we present the dynamic formulation. In particular, we address the 
difference between the current work and prior results [15, 16, 211. 
Finally, we discuss the finite element implementation. 

3.1 Catmull-Clark Subdivision Scheme 

Physics-based models have both kinetic and potential energies. Catmull-Clark subdivision scheme, like any other subdivision 
We now define the internal (e.g., elastic) energy of the subdivision- scheme, starts with an user-defined mesh of arbitrary topology. It 
based dynamic model by assigning deformation energy to each ele- refines the initial mesh by adding new vertices, edges and faces with 
ment. We take a similar approach as shown above and consider the each step of subdivision following a fixed set of subdivision rules. 
j-th level approximation of the element. Throughout this paper, in In the limit, a sequence of recursively refined polyhedral meshes 
particular, we assign spring-like energy to the approximated model 
because of its simplicity *and efficient computation. The energy at 

will converge to a smooth surface. The subdivision rules are as fol- 
lows: 

(14) 
where lctm is the spring-controlling variable, v{ and vj,, the I-th 
and m-th vertex in the j-th level mesh, are in the l-neighborhood of 
each other, R is the domain defined by all such vertex pairs, 4, is 
the natural length of the spring connected between vii and VA. Let 
vibc be the concatenation of the (x,y,z) positions of all the vertices 
in the j-th subdivision level of the triangular face abc in the initial 
mesh, so the internal force due to the above energy is 

fint = 5 = (Kj,b,){vj,b,} 
‘dbc 

Note that, the vertex positions in vibc are obtained by a linear com- 
bination of the vertex positions in vz&, and hence we can write 
“3,bc = (Ajabchtbc where (Aib,) is the transformation (subdi- 
vision) matrix. Therefore, the expression for the elemental stiff- 
ness matrix is given by Kobc = (A~b,)T(K~b,)(A~bc). It :may 
be noted that this approach is applicable for modeling isotropic as 
well as anisotropic phenomena because krm, the spring-controlling 
variable, can be a time-dependent function in general, in addition, 
the entries in Kib, depend on the distance between the connected 
vertices. Therefore, unlike other elemental matrices, the stiffness 
matrix is a function of time which requires the recomputation at 
each time step in principle. Note that, the above spring-like en- 
ergy is only one simple candidate of many possible choices. A 
large variety of functional formulations (such as simple thin-plhte- 
under-tension energy or complex curvature-based energy) can be 
employed to describe a wide range of material and physical be- 
haviors such as linear elastic deformation and/or non-linear plastic 
deformation. 
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(a) (b) Cc) 

Figure 6: Catmull-Clark subdivision: (a) initial mesh, (b) mesh 
obtained after one step of Catmull-Clark subdivision, and (c) mesh 
obtained after another subdivision step. 

(1) For each face, a new face point is introduced which is the aver- 
age of all the old vertices defining the face. 
(2) For each (non-boundary) edge, a new edge point is introduced 
which is the average of the following four points: two old vertices 
defining the edge and two new face points of the faces adjacent to 
the edge. 
(3) For each (non-boundary) vertex V, new vertex is introduced 
whose position is g + y + (n--3)V, where F is the average of the 
new face vertices of all faces adj%cent to the old vertex V, E is the 
average of the midpoints of all edges incident on the old vertex V 
and n is the number of the edges incident on the vertex. 
(4) New edges are formed by connecting each new face point to the 
new edge points of the edges defining the old face and by connect- 
ing each new vertex point to the new edge points of all old edges 
incident on the old vertex point. 
(5) New faces are defined as faces enclosed by new edges. 

An example of Catmull-Clark subdivision on an initial mesh is 
shown in Fig.6. The most important property of the Catmull-Clark 
subdivision surfaces is that a smooth’surface can be generated from 
any control mesh of arbitrary topology. Catmull-Clark subdivision 
surfaces include standard bicubic B-spline surfaces as their special 
case (i.e., the limit surface is a bicubic B-spline surface for a rect- 
angular mesh with all non-boundary vertices of degree 4). In addi- 
tion, the aforementioned subdivision rules generalize the recursive 
bicubic B-spline patch subdivision algorithm. For non-rectangular 
meshes, the limit surface converges to a bicubic B-spline surface 
except at a finite number of extraordinary points. These extraor- 
dinary points correspond to extraordinary vertices (vertices whose 
degree is not equal to 4) in the mesh. Note that, after the first sub- 
division, all faces are quadrilaterals, hence all new vertices created 
subsequently will have four incident edges. The number of extraor- 
dinary points on the limit surface is a constant, and is equal to the 
number of extraordinary vertices in the refined mesh obtained after 
applying one step of the Catmull-Clark subdivision on the initial 
mesh. The limit surface is curvature-continuous everywhere ex- 
cept at extraordinary vertices, where only tangent plane continuity 
is achieved. 

3.2 Formulation 

A systematic formulation of the newly proposed dynamic frame- 
work for Catmull-Clark subdivision surfaces is presented in this 
section. The key difference between the dynamic model developed 
in [ 15, 16,211 and the one presented here is the representation of the 
limit surface. The previously proposed approach leads to diverse 
types of finite elements, whereas the present approach leads to a 
single type of finite elements. This is illustrated with a schematic 
diagram in Fig.7. 

(a) (b) 

Figure 7: A control mesh with an extraordinary vertex of degree 5 
and the corresponding limit surface: (a) using the concepts devel- 
oped in [15, 16, 211, where the limit surface consists of quadrilat- 
eral normal elements and a pentagonal special element; (b) using 
the unified approach developed in this paper, where the limit sur- 
face consists of one single type of quadrilateral finite element. 

Following the concepts developed in [15, 16, 211, the limit sur- 
face of the control mesh shown in Fig.7, consists of quadrilateral 
bicubic B-spline patches corresponding to the faces marked ‘n’ 
(faces with no extraordinary points), and a pentagonal patch cor- 
responding to the faces marked ‘s’ (faces having one extraordinary 
vertex of degree 5) (Fig.7(a)). However, in this section, it has been 
shown that the entire limit surface can be expressed as a collection 
of quadrilateral patches as shown in Fig.7(b) using the algorithm 
proposed in [25]. We next discuss a local parameterization of the 
limit surface which is critical to embed the limit surface in a dy- 
namic framework. 

As mentioned earlier, the control mesh (after at most one subdi- 
vision step) for the Catmull-Clark subdivision scheme consists of 
quadrilateral faces which lead to quadrilateral patches in the limit 
surface. For the sake of formulation simplicity, it has been assumed 
that each face has at most one extraordinary vertex. If this assump- 
tion is not valid, then one more subdivision step needs to be per- 
formed on the current control mesh in order to obtain a new control 
mesh on which the following analysis can be carried out. The num- 
ber of quadrilateral patches in the limit surface is equal to the num- 
ber of non-boundary quadrilateral faces in the control mesh (Fig.@. 
Therefore, the smooth limit surface s can be expressed as 

s&3,, (15) 
U 

l=l 

where n is the number of non-boundary faces in the control mesh 
and st is the smooth quadrilateral patch corresponding to the Z-th 
non-boundary quadrilateral face in the control mesh. Each of these 
quadrilateral patches can be parameterized over the correspond- 
ing non-boundary quadrilateral face in the control mesh. How- 
ever, since a quadrilateral face can easily be reparameterized over 
a [0, 112 domain, each quadrilateral patch is locally parameterized 
over [0, 112. 

The non-boundary quadrilateral faces are of two types : (a) 
faces having no extraordinary vertices (dubbed as “regular” faces 
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1 (a) I 

(b) 

Figure 8: In Catmull-Cl,ark subdivision, each non-boundary quadri- 
lateral face in the control mesh has a corresponding quadrilateral 
patch in the limit surfaoe : (a) control mesh, (b) limit surface. 

in [15, 16, 211, marked as K. in Fig.8(a)) and (b) faces with one 
extraordinary vertex (dubbed as “irregular” faces in [15, 16, 211, 
marked as C in Fig.8(a)). If there are m regular and n - m irregular 
faces, then (15) can be rewritten as 

where si is the quadrilateral patch corresponding to the i-th regu- 
lar face and aj is the quadrilateral patch corresponding lto the j-th 
irregular face. 

The quadrilateral patch in the limit surface corresponding to 
each regular face is a bicubic B-spline patch, which is defined over 
[0, 112. The set of control vertices defining this bicubic B-spline 
patch can be obtained using the adjacent face information. There- 
fore, the quadrilateral patches in the smooth limit surface corre- 
sponding to the regular ,faces in the control mesh can be easily ex- 
pressed analytically, which are essentially bicubic B-spline patches 
defined by 16 control vertices over a [0, 112 domain. The analytic 
expression for the quadrilateral patch corresponding to the regular 
face i is given by 

si = Jb('ll, v)pi = (&(u, v)Ai)p = Ji(u, V)F,, (17) 

where 0 5 21, v 5 1, Js(21, V) is the collection of the bicubic B- 
spline basts functions, pi is the concatenation of the 116 control 
vertex positions defining the bicubic B-spline patch, A.i is a se- 
lection matrix which when multiplied with p, the concat’enation of 
all the control vertex positions defining the smooth limit surface, 
selects the corresponding set of control vertices, and Ji(u, V) = 
Jb(‘$ v)Ai. 

By contrast, the analytic expression of the quadrilateral patches 
corresponding to the irregular faces in the control mesh was dif- 
ficult to derive, and hence an alternative approach was taken in 
[15, 16, 211. However, very recently an efficient scheme for eval- 
uating Catmull-Clark subdivision surfaces at arbitrary parameter 
values has been proposed by Stam [25]. The proposed approach, 

involving eigen-analysis of the subdivision matrix, leads to an ana- 
lytic expression of the quadrilateral patches which are parameter- 
ized over an irregular face in the control mesh, and hence over 
[0, 112 after reparameterization. Following the scheme developed 
by Stam [25], the quadrilateral patch corresponding to the irregular 
face j is given by 

sj = Jdb (~7 V)P~ = (Jdk (~9 v)Aj)p = Jj(u, V)P, (18,) 

where 0 5 u, v 5 1 as before. Jdk (TL, V) is the collection of basis 
functions for the corresponding quadrilateral patch in the srnooth 
limit surface. The subscript dk is used to denote the fact that the 
irregular face has an extraordinary vertex of degree k. The de- 
tailed derivation and the analytic expressions of these basis func- 
tions involving the eigenvalues and eigenvectors of the subdivision 
matrix can be found in [25]. The other symbols used in (18) have 
the usual meaning: pj is the concatenation of the 2L + 8 contrc,l 
vertices defining the quadrilateral patch in the limit surface., p is 
the concatenation of all the control vertex positions defining the 
smooth limit surface, Aj is a selection matrix which when multi- 
plied with p selects the corresponding set of control vertices, and 
Jj (u, V) = Jdk (u, v)Aj. 

(a) Cb) 

Figure 9: (a) The marked 16 control vertices define the shaded 
quadrilateral patch associated with the shaded regular face in the 
control mesh. (b) The marked 14 control vertices define the shaded 
quadrilateral patch associated with the shaded irregular face in the 
control mesh. 

It may be noted that the number of control vertices in the ini- 
tial mesh defining a quadrilateral patch in the smooth limit surface 
is 2lc + 8, where k = 4 in case the associated quadrilateral face 
in the control mesh is regular, or k = degree of the extraordinar) 
vertex if the associated quadrilateral face is irregular. For example, 
the shaded quadrilateral patch is associated with the shaded Iregu 
lar face in Fig.g(a), and the 16 control vertices defining this patch 
(which is actually a bicubic B-spline patch) are marked. Similarly, 
the shaded quadrilateral patch is associated with the shaded inregu- 
lar face in Fig.g(b), and the 14 control vertices defining this patch 
are highlighted. Now an expression of the smooth limit surface can 
be formulated. Using (16), (17) and (18), it can be shown that 

s = eJip-tneJjp 
i=l j=l 

= (eJi+neJj)p 
i=l j=I 
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where J = (cy=“=, Ji + denim Jj). Note that even though the 
initial mesh serves as the parametric domain of the smooth limit 
surface, each quadrilateral face in the initial mesh and consequently 
the smooth limit surface can be defined over a [0, 112 domain. 

Once an analytic expression of the smooth limit surface of 
Catmull-Clark subdivision is derived, we then develop the dynamic 
model by considering the control vertex positions as time-varying 
variables. The velocity of the surface model can be expressed as 
k(x, u, V) = J(x, u, v)6, where an overstruck dot denotes a time 
derivative and x E So, So being the domain defined by the initial 
mesh. 

3.3 Finite Element Implementation 

The smooth limit surface of Catmull-Clark subdivision comprises 
a collection of quadrilateral patches. Each quadrilateral patch is 
considered as a finite element. Therefore, within the unified frame- 
work the limit surface can be decomposed into one single type of 
finite elements rather than two different types as in [15,16,21]. Our 
new FBM technique significantly simplifies the data structure and 
system architecture. Consequently, more efficient algorithms for 
finite-element assembly, dynamic simulation, etc. can be devised 
using this unified approach. The motion equation of the dynamic 
model is same as that of the dynamic model of butterfly-based sub- 
division: 

M$+D++Kp=fP, (20) 

where fP is the generalized force vector and M, D, and K are the 
mass, damping and stiffness matrices of the model. The expressions 
of the mass, damping and stiffness matrices for a quadrilateral ele- 
ment (which is a bicubic B-spline) can be written as 

1 1 

M, = IJ pJ;Jbdudv, 
0 0 

(21) 

and 

11 

De = ss -/J;Jr,dudn, (22) 0 0 

respectively, where Jb is the bicubic B-spline basis matrix, ~(u, V) 
is the mass density, -y(u, V) is the damping density, cYii(u, n) and 
,L3ij (u, V) are the tension and rigidity functions respectively. The 
subscript u and v denote partial derivatives with respect to u and 
‘u respectively. The subscript e is used to indicate elemental matri- 
ces which are of size (16,16). Note that, the mass, damping and 
stiffness matrices for these elements can be evaluated analytically, 
provided the material properties (e.g., mass, damping, rigidity and 
bending distributions) have analytic expressions. In some cases, 
these distribution functions can be assumed to be constant to sim- 
plify the matter. 

The mass, damping and stiffness matrices for the quadrilateral 
elements which are not bicubic B-splines (corresponding to the ir- 
regular faces) can also be expressed analytically by simply replac- 
ing the matrix Jb in (21), (22) and (23) with the matrix Jdk (refer to 
(18)), where Ic denotes the degree of the extraordinary vertex asso- 
ciated with the corresponding irregular face. These elemental ma- 
trices are of size (2k + 8,2k + 8). The generalized force vector for 

these elements can also be determined in a similar fashion. It may 
be noted that the limits of integration need to be chosen carefully for 
elemental stiffness matrices as the second derivative diverges near 
the extraordinary points for Catmull-Clark subdivision surfaces. 

Even though an analytical expression for a non-B-spline quadri- 
lateral element in the limit surface exists, it is cumbersome to ac- 
tually evaluate the elemental matrix expressions. Numerical inte- 
gration using Gaussian quadrature may be used to obtain approx- 
imations of these elemental matrices. However, in this paper, an 
approach similar to the FEM procedure presented in Section 2 is 
utilized because of its simplicity and effectiveness. An approxima- 
tion of the smooth limit surface is obtained by refining the initial 
control mesh j times, and a spring-mass system is developed on 
this j-th approximation level in a similar fashion as in Section 2.3. 
The physical matrices of this system is then used as an approxima- 
tion to the actual physical matrices. This approximation has been 
found to be very efficient for implementation purposes. 

4 Unified Approach For Any Subdivision 
Scheme 

The dynamic framework for modified butterfly and Catmull-Clark 
subdivision scheme can be generalized to any subdivision scheme. 
The key observation is that the smooth limit surface can be viewed 
as a collection of a single type finite element. Because of the 
nature of recursive refinement, any subdivision-based scheme es- 
sentially defines a “natural” correspondence which leads to a lo- 
cal parameterization of the smooth limit surface. The unique type 
of the associated finite element results from the local parameteri- 
zation scheme. This is evident from the triangular finite element 
patches developed for the modified’butterfly subdivision scheme 
and from the quadrilateral finite element patches developed for 
Catmull-Clark subdivision scheme. We shall present a general out- 
line on how to provide a dynamic framework for interpolatory and 
approximating subdivision schemes. 

4.1 lnterpolatory subdivision schemes 

Most of the interpolatory subdivision schemes are obtained by mod- 
ifying the butterfly subdivision scheme [7]. Therefore, the frame- 
work for the modified butterfly subdivision scheme in Section 2 
and its principles can be applied to other interpolatory subdivision 
schemes. The only difference is that the basis functions as well 
as the set of control vertices of arbitrary patch in the limit surface 
depend on the chosen interpolatory subdivision rules. It may also 
be noted that unlike the approximating schemes, the physical ma- 
trices can not be obtained analytically as the basis functions cor- 
responding to interpolatory subdivision schemes do not have any 
analytic expressions in general. Even though these matrices can 
be obtained via numerical integration, the pointYmass system con- 
nected by springs as developed in Section 2 is more preferable for 
implementation purposes because of efficiency reasons. 

4.2 Approximating subdivision schemes 

The unified approach for a dynamic model of Catmull-Clark sub- 
division can be generalized for other approximating subdivision 
schemes as well. This generalized approach involves three steps: 
(a) The limit surface obtained via an approximating subdivision 
scheme can be expressed as a collection of smooth patches which 
can be locally parameterized over a corresponding face in the con- 
trol mesh. Each patch is n-sided if it is locally parameterized over a 
n-sided face. Analytic expressions for each of these patches can be 
derived even in the presence of extraordinary vertices in the control 
mesh, and hence an expression of the limit surface can be obtained. 
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(b) Once an expression of the limit surface is obtained, tlhe dynamic 
framework can be developed by considering control vertex posi- 
tions as a function of time. The corresponding motion equation can 
be derived. 
(c) Each patch in the limit surface is treated as a finite element in im- 
plementation. The elemental mass, damping and stiffness matrices 
along with the generalized force vector can be obtained by either 
analytic or numerical integration. Alternatively, the control mesh 
can be subdivided j times to obtain an approximation of the smooth 
limit surface, and a spring-mass system can be developed on this 
approximation mesh. The physical matrices of this systl:m provide 
an approximation to the original physical matrices and works well 
in practice. 

5 Solid Modelling Applications 

The proposed FEM-based dynamic subdivision models can be used 
to represent a wide variety of smooth shapes with arbitjrary genus. 
The smooth limit object can be sculpted by applying s,ynthesized 
forces in a direct and intuitive way in shape design applications 
for solid modeling. The underlying shape from a cloud of 3D 
points can also be recovered hierarchically using our FEM mod- 
els. For data fitting applications, springs are attached to the initial- 
ized model from the data points in 3D, and the initialized model 
evolves dynamically according to the equation of motion subject to 
the applied spring forces and various geometric constraints. When 
an optimal fit to the given data set is achieved, the number of con- 
trol vertices can be increased by replacing the original initial mesh 
by a new initial mesh obtained by applying a single subdivision 
step. This increases the number of degrees of freedom to repre- 
sent the same limit surface and a new equilibrium position for the 
model with a much betl:er fit to the given data set can be achieved. 
The fitting-error criteria for the discrete data can be computed ac- 
cording to distance between the data points and the points on the 
limit surface where the corresponding springs are attached. We now 
demonstrate modeling and data fitting examples using our dynamic 
FEM model. 

In a shape modeling application, the user can specify any mesh 
as the initial (control) mesh, and the corresponding limit surface 
can be sculpted directly and interactively by applying synthesized 
forces in real-time. We show several initial surfaces obt.tined from 
different control meshes and the corresponding deformed surfaces 
after interactive sculpting on the limit surface in Fig. IO. To change 
the shape of an initial surface, the user can attach springs from dif- 
ferent points in 3D to the nearest point on the limit surface such 
that the limit surface deforms towards these locations to generate 
the desired shape. The limit surface here consists of a single type 
of smooth triangular finite element patches, irrespective of the num- 
ber of extraordinary vertices in the control mesh. The initial mesh 
of the smooth surface shown in Fig. 1 O(a) has 125 faces and 76 ver- 
tices (degrees of freedo:m), which is deformed to the smooth shape 
shown in Fig. 1 O(b) by interactive spring force application. The ini- 
tial mesh of the closed solid shape in Fig.lO(c) has 24 faces and 
14 vertices. This solid shape is deformed to the shape: shown in 
Fig.lO(d). The one hole torus in Fig.lO(e) and the corresponding 
modified shape in Fig. IO(f) have initial meshes with 64 faces and 
32 vertices. A two hole torus with a control mesh of 2721 faces and 
134 vertices, shown in Fig.lO(g), is dynamically sculpted to the 
shape shown in Fig. IO(h). 

We have also performed several experiments testing the applica- 
bility of our model to recover the underlying shapes from a cloud of 
points in 3D. In all the experiments, the initialized dyna:mic mode] 
has a control mesh comprising of 24 triangular faces and 14 ver- 
tices whereas the control mesh of the fitted model has 384 triangu- 
lar faces and 194 vertic:es. It may be noted that once an optimal 
shape defined by a fixed number of control vertices (determined by 

subdivision levels) is recovered, the limit smooth model is capable 
of refining itself in accordance with the data-fitting criteria, thereby 
increasing the degrees of freedom of the recovered shape only when 
necessary. For the fitting-error (defined as the maximum distance 
between a data point and the nearest point on the limit surface ex- 
pressed as a percentage of the diameter of the smallest sphere en- 
closing the object) of approximately 3%, the initialized model is 
refined twice. The data-fitting examples are shown in Fig.]. 1. In 
the first data fitting experiment, range data acquired from multi- 
ple views of a light bulb is used and the model was initialized in- 
side the 1000 data points (Fig.1 l(a)). The fitted dynamic model :is 
shown in Fig.1 l(b). In the next experiment, the shape of a mechan- 
ical part is recovered from a range data-set containing 2031 data 
points (Fig. 1 l(c) and (d)). We also recover the shape of a human 
head from the data set as shown in Fig.ll(e). The head data set 
has 1779 3D points. The time of dynamic evolution for the fitting 
of range datasets used in the experiments is approximately ?; min- 
utes in a SGI 02 workstation. It may be noted that the final shape 
with a very low error tolerance is recovered using very few number 
of control points in comparison to the large number of data points 
present in the original range data set. 

6 Conclusions 

In this paper, we have presented a new FEM-based dynamic frame- 
work where a single type of subdivision-based finite elements are 
used to represent the smooth limit surface generated by any sub- 
division scheme. The primary objective is to integrate physics- 
based modeling techniques with geometric subdivision methodol.- 
ogy for the interactive sculpting and direct manipulation of the 
limit surface of prevalent subdivision schemes. We have proposed 
an unified approach and demonstrated how to transform any sub- 
division scheme into our dynamic modeling framework. Model- 
ers can physically sculpt virtual objects defined through arbitrary 
procedure-based subdivision techniques in a natural and intuitive 
manner within the proposed framework. Users can also directly 
enforce various functional and aesthetic requirements in the limit 
surface without the need to explicitly handle control vertices. Fur- 
thermore, this dynamic framework permits physics-based models 
to be refined adaptively in a hierarchical fashion which is an intrin- 
sic feature of subdivision geometry. Our experiments have demon- 
strated the applicability of the new unified FEM-based framework 
in solid modeling and data fitting applications. This unified metho,d 
will offer a greater potential for popular subdivision techniques in 
solid and geometric modeling, interactive graphics, finite element 
analysis, and engineering design applications. 
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