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Abstract

A new dynamic subdivision surface model is pro�
posed for shape recovery from �D data sets� The model
inherits the attractive properties of the Catmull�Clark
subdivision scheme and is set in a physics�based mod�
eling paradigm� Unlike other existing methods� our
model does not require a parameterized input mesh to
recover shapes of arbitrary topology� allows direct ma�
nipulation of the limit surface via application of forces
and provides a fast� robust� and hierarchical approach
to recover complex shapes from �D data with very few
degrees of freedom �control vertices�� We provide an
analytic formulation and introduce the physical quan�
tities required to develop the dynamic subdivision sur�
face model which can be deformed by applying forces
synthesized from the data� Our experiments demon�
strate that this new dynamic model has a promising
future in shape recovery from volume and range data
sets�

� Introduction

Recovering shapes of arbitrary topology from large
data sets is an important problem in computer vision�
A physics�based model which recovers the shape accu�
rately with few degrees of freedom without being re�
stricted to parameterized mesh initialization is a good
candidate for the solution� The existing deformable
models used to solve this problem can be classi�ed
into two categories namely� ��� �xed grid size models
��� 	
 using few degrees of freedom for representation
at the cost of accuracy of the recovered shape and
��� adaptive grid size models ��� �� 
 involving large
degrees of freedom and computationally expensive ad
hoc schemes for accurate shape representation� The
hierarchical shape representation using locally adap�
tive �nite elements discussed in ��
 can e�ciently rep�
resent the shape of an object of genus zero with a small
number of nodal points� However� this scheme can
not be easily extended to cope with arbitrary shapes�
The balloon model for describing the shape of com�
plex objects ��
 also adapts the mesh surface to local

surface shapes and is purely driven by an applied in�a�
tion force towards the object surface when initialized
inside the object� This scheme requires a large num�
ber of nodal points for representing complex shapes�
Moreover� all the existing models using either a �xed
or an adaptive grid size require a parameterized mesh
as their input�

The Catmull�Clark subdivision surface model��
�
which is widely used in computer graphics for mod�
eling surfaces of arbitrary topology o�er a potential
solution� without the aforementioned pitfalls� to the
shape recovery problem� This recursive subdivision
algorithm generates a smooth surface which is the
limit of a sequence of recursively re�ned polyhedral
surfaces based on a user�de�ned initial control mesh�
The Catmull�Clark subdivision surface� de�ned by an
arbitrary non�rectangular mesh� can be reduced to a
set of standard B�spline patches in the limit� except at
a �nite number of extraordinary points� where the in�
degree of the corresponding vertex in the mesh is not
equal to four� The most interesting property of the
Catmull�Clark subdivision surfaces is that the initial
control mesh is arbitrary and the underlying smooth
limit surface is C� continuous� except at the extraor�
dinary points where it is tangent continuous�

In this paper� we develop a dynamic generalization
of Catmull�Clark subdivision surface which inherits
the bene�ts of subdivision surfaces for modeling arbi�
trary topology and dynamic splines for e�cient shape
recovery� The model can recover shapes from large
range and volume data sets using very few degrees of
freedom �control vertices� for its representation� Our
model can cope with any arbitrary input mesh� not
necessarily parameterized� with an arbitrary number
of extraordinary points� The initialized model deforms
under the in�uence of synthesized forces to �t the data
set by minimizing its energy� Once the approximate
shape is recovered� the model is further subdivided
and a better approximation to the input data set is
achieved using more degrees of freedom� The process
of subdivision after achieving an approximate �t is



continued till a prescribed error criteria for �tting the
data points is achieved� It may be noted that the
derivation of our dynamic subdivision surface poses a
signi�cant technical challenge because of the fact that
no closed�form parameterization of the limit surface
exists near the extraordinary points� Also� the model
involves direct manipulation of the smooth limit sur�
face via application of forces� This is obviously more
intuitive than manipulating the control mesh itself es�
pecially for computer vision problems involving shape
recovery via model �tting� The performance of our
proposed modeling scheme in the context of shape re�
covery is demonstrated via several model �tting exper�
iments with laser range data and magnetic resonance
image �MRI� data�

� Formulation
To develop the dynamic model which treats the

smooth limit surface as a function of its control mesh
in a hierarchical fashion� we need to update control
vertex positions continually at any given level� How�
ever� all the vertices introduced through subdivision
are obtained as an a�ne combination of control vertex
positions of the initial mesh� Therefore� we can control
the dynamic behavior of the limit surface by formulat�
ing the dynamic model on the initial mesh itself� To
de�ne the limit surface using the vertices of the initial
mesh� the enumeration of the bicubic patches in the
limit surface is necessary� We now present schemes
for assigning the bicubic patches of the limit surface
to various faces of the initial mesh�

��� Assigning patches to regular faces
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Figure �� A rectangular mesh and its limit surface
consisting of � bicubic surface patches�

In Fig��� a rectangular control mesh is shown along
with the bicubic B�spline surface �� patches� in the
limit after an in�nite number of subdivision steps�
Note that� each of the bicubic patches in the limit
surface is de�ned by a rectangular face with each ver�
tex of degree four� thereby accounting for � control
points �from its � connected neighborhood� needed to
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Figure �� A mesh with an extraordinary point of va�
lence � and its limit surface�

Figure �� Local subdivision around the extraordinary
point and the corresponding patches in the limit sur�
face from di�erent levels of subdivision�

de�ne a bicubic surface patch in the limit� Therefore�
for each rectangular face in the initial mesh with a
valence of � at each vertex� the corresponding bicubic
surface patch can be assigned to it in a straight for�
ward way� In Fig��� the surface patches S�� S�� S� and
S� are assigned to face F�� F�� F� and F� respectively�
The � control points for the patch S�� corresponding
to face F�� are highlighted in Fig���

��� Assigning patches to irregular faces

In Fig��� a mesh containing an extraordinary point
of valence � and its limit surface are shown� The
faces F�� F�� � � � � F� are assigned to bicubic patches
S�� S�� � � � � S� respectively �as they all have vertices
of valence �� following the aforementioned scheme�
However� the central smooth surface enclosed by the
patches S�� S�� � � � � S� consists of in�nite number of
bicubic patches converging to a point in the limit� We
need to develop a recursive way of enumerating these
bicubic patches and assigning them to various faces at
di�erent levels in order to develop the dynamic subdi�
vision surface model�



The idea of enumerating the bicubic patches cor�
responding to faces having an extraordinary vertex
is shown in Fig�� where a local subdivision of the
mesh enclosed by dotted lines is carried out� Topolog�
ically� the resulting local subdivision mesh is exactly
the same as the mesh in Fig�� and hence exactly the
same number of bicubic patches can be assigned to its
faces with vertices of valence �� This process of local
subdivision and assignment of bicubic patches around
an extraordinary point can be carried out recursively
and in the limit� the enclosed patch corresponding to
faces sharing the extraordinary point will converge to
a point� However� there is no need to carry out an
in�nite number of subdivision steps� This description
is for formulation purposes only and the exact imple�
mentation will be detailed in a later section�

��� Kinematics of the limit surface

In this section we develop the mathematics for the
kinematics of the limit surface via illustrative exam�
ples and then present the generalized formulas� We
start the illustration with a single bicubic B�spline
patch which is obtained as the limiting process of the
Catmull�Clark subdivision algorithm applied to an ini�
tial � by � rectangular control mesh� Let sp�u� v��

where �u� v� � ��� �

�
� denote this bicubic B�spline

patch which can be expressed analytically as

sp�u� v� � �x�u� v�� y�u� v�� z�u� v��
T

�
�X

i��

�X
j��

di�jBi���u�Bj���v� ���

where di�j represents a ��dimensional position vec�
tor at the �i� j�th control point location and
Bi���u��Bj���v� are the cubic B�spline basis functions�
The subscript p on s denotes the patch under consid�
eration� Expressing Eqn�� in a generalized coordinate
system we have

sp � Jpq ���

where Jp is the standard Jacobian matrix of a bicubic
B�spline patch� and is of size ��� ���� Vector q is the
concatenation of all control points de�ning a B�spline
patch in �D� Note that in the concatenation of the con�
trol points� each control point has an �x� y� z� compo�
nent� For example� the �x� y� z� components of the con�
trol point �i� j� correspond to positions �k� �k��� �k��
� where� k � �i� j � respectively in the vector q� We
can express the entries of Jp explicitly in the follow�
ing way� Jp��� k� � Jp��� k � �� � Jp��� k � �� �
Bi���u�Bj���v� and Jp��� k � �� � Jp��� k � �� �
Jp��� k� � Jp��� k � �� � Jp��� k� � Jp��� k � �� � ��

We now de�ne the limit surface s using the vertices
of initial mesh M for any arbitrary topology� assum�

ing all faces are rectangular and no face contains more
than one extraordinary point as its vertex �i�e�� ex�
traordinary points are isolated�� If these assumptions
are not satis�ed� one or two steps of global subdivi�
sion may be required and the resulting mesh can be
treated as the initial mesh� Let the number of vertices
in the initial mesh M be a� and let l of these be the
extraordinary vertices� Let us assume that the num�
ber of faces in the initial mesh are b� and that k of
these have vertices with valence � �henceforth termed
a �normal face�� and each of the remaining �b � k�
faces have one of the l extraordinary vertices �hence�
forth termed a �special face��� Let p be the �a � N

dimensional vector containing the control vertex posi�
tions in �D� Using the formulations in subsections ���
and ���� the smooth limit surface can be expressed as

s �
kX

i��

ni �
lX

j��

sj ���

where ni is a single bicubic patch assigned to each
of the normal faces and sj is a collection of in�nite
number of bicubic patches corresponding to each of
the extraordinary points�

We use the following notational convention �
the pre�superscript n is used to indicate that these
mathematical quantities describe bicubic patch in the
limit surface corresponding to normal faces� the pre�
superscript s is used to represent a collection of bicubic
patches around an extraordinary vertex� the subscript
j is used to indicate the j�th extraordinary point� the
post�superscript represents the exponent of a mathe�
matical quantity and the level indicator �to represent
various levels of subdivision in the local control mesh
around an extraordinary vertex� is depicted via sub�
scripts on the curly braces�

It can be shown that

kX
i��

ni �

kX
i��

�nJi��
npi� � �

kX
i��

�nJi��
nAi��p � �nJ�p

���
where nJi is the Jacobian matrices of size ������� nAi

is a transformation matrix with each row consisting
of a single nonzero entry �� �� and npi is the �x�y�z�
component concatenation of a subset of control ver�
tices de�ning the bicubic patch corresponding to the
i�th normal face�

The expression for sj is derived using the recursive
nature of local subdivision around an extraordinary
vertex as shown in subsection ���� First� sj can be
expressed as

sj � fsJjg�f
spjg� � fsjg� ���



where the �rst term of Eqn�� is the generalized coor�
dinate representation of the bicubic B�spline patches
corresponding to the normal faces of the new local sub�
division mesh obtained after one subdivision step on
the local control mesh� fsjg� represents the rest of the
in�nite bicubic B�spline patches surrounding the ex�
traordinary point� The vertices in the newly obtained
local subdivision mesh fspjg� can be expressed as a
linear combination of a subset of the vertices of the
initial mesh M �which will contribute to the local sub�
division� following the subdivision rules� We can name
this subset of initial control vertices fspjg�� Further�
more� there exists a matrix fsBjg� of size ��c� �d��
such that fsBjg�f

spjg� � fspjg� where fspjg� and
fspjg� are vectors of dimension �c and �d respectively�
Applying the idea of recursive local subdivision again
on fsjg�� sj can be further expanded as

sj � fsJjg�f
sBjg�f

spjg�
�fsJjg�f

sBjg�f
s�pjg� � fsjg� ��

In the above derivation� fs�pjg� is a vector of di�
mension �d� comprising of a subset of the vertices
de�ning the �c dimensional vector fspjg�� Note
that� fs�pjg� has the same structure as f

spjg�� there�
fore� there exists a ��d� �d� matrix fsCjg� such that
fsCjg�f

spjg� � fs�pjg�� Each subdivision of a local
mesh with d vertices creates a new local mesh with c

vertices which contributes a �xed number of bicubic
B�spline patches� So� if we proceed one step further�
we obtain
sj � fsJjg�f

sBjg�f
spjg� � fsJjg�f

sBjg�f
sCjg�f

spjg�

�fsJjg�f
sBjg�f

sCjg
�

�
fspjg� � fsjg� �	�

Because of the intrinsic property of the local re�
cursive subdivision around the extraordinary point�
we have fsJjg� � fsJjg� � � � � � fsJjgn � � � � �
fsJjg

�
� In addition� the subdivision rules remain the

same throughout the re�nement process� we also have
fsBjg� � fsBjg� � � � � � fsBjgn � � � � � fsBjg

�
�

So� we can further simplify the above equations lead�
ing to
sj � fsJjg�f

sBjg�f
spjg� � fsJjg�f

sBjg�f
sCjg�f

spjg�

�fsJjg�f
sBjg�f

sCjg
�

�
fspjg� � � � �

� fsJjg�f
sBjg��

�X
i��

fsCjg
i

�
�fspjg� ���

We can rewrite sj as

sj � �sJj��
spj� ���

where sJj � fsJjg�f
sBjg��

P
�

i�� f
sCjg

i

�
� and spj �

fspjg�� The idea of local recursive subdivision around
an extraordinary point is illustrated in Fig��� Note
that� each vertex position in the subdivided mesh is
obtained by an a�ne combination of some vertices in
the previous level and hence any row of fsCjg� sums
to �� The largest eigenvalue of such a matrix is � and it
can be shown that the corresponding in�nite series is
convergent following a similar approach as in ��
� The
rest of the derivation leading to an expression for s is
relatively straight forward� Using the same approach
used to derive the Eqn��� it can be shown that

lX
j��

sj �

lX
j��

�sJj��
spj� � �

lX
j��

�sJj��
sAj��p � �sJ�p

����
From Eqn���� and ���

s � �nJ�p� �sJ�p ����

Let J � �nJ� � �sJ�� hence

s � Jp ����

��� Dynamics

In an abstract physical system� let pi�t� be a set
of generalized coordinates which are functions of time
and are assembled into the vector p� Let fi�t� be
the generalized force assembled into the vector fp and
acting on pi� The Lagrangian equation of motion can
then be expressed as

M�p�D �p�Kp � fp ����

Let ��u� v� be the mass density function of the surface�
Then

M �

Z Z
�JTJdudv ����

is an N �N mass matrix� Similarly the expression for
damping matrix is

D �

Z Z
�JTJdudv ����

where ��u� v� is the damping density�
A thin�plate�under�tension energy model is used to

compute the elastic potential energy of the dynamic
subdivision surface� The corresponding expression for
the sti�ness matrix K is

K �

Z Z
����J

T
uJu � ���J

T
v Jv � ���J

T
uuJuu

����J
T
uvJuv � ���J

T
vvJvv�dudv ���



where the subscripts on J denote the parametric par�
tial derivatives� The �ii�u� v� and �ij�u� v�s are elas�
ticity functions controlling local tension and rigidity
in the two parametric coordinate directions�

The generalized force vector fp can be obtained
through the principle of virtual work done by the ap�
plied force distribution f�u� v� t� and can be expressed
as

fp �

Z Z
JT f�u� v� t�dudv ��	�

� Finite Element Implementation
The evolution of the generalized coordinates for our

new dynamic surface model can be determined by the
second�order di�erential equation as given by Eqn����
An analytical solution of the governing di�erential
equation can not be obtained in general� However�
an e�cient numerical implementation can be obtained
using the �nite element method� For the dynamic sub�
division surface model� two types of �nite elements
are considered � normal elements �bicubic patches as�
signed to the normal faces of the initial mesh� and
special elements �collection of in�nite number of bicu�
bic patches assigned to each extraordinary vertex of
the initial mesh��

Each normal element is a bicubic surface patch and
hence de�ned by � vertices �from the ��connected
neighborhood of the corresponding normal face�� For
a normal element� the mass� damping and sti�ness
matrices are of size ��� �� and can be computed ex�
actly by carrying out the necessary integrations ana�
lytically� The matrix J in Eqn���� �� and � need to
be replaced by Jp �of Eqn��� for computation of the
local M�D and K matrices respectively of the corre�
sponding normal element�

Each special element consists of an in�nite number
of bicubic patches in the limit� We have already de�
scribed a recursive enumeration of the bicubic patches
of a special element in Section ���� Let us now con�
sider an arbitrary bicubic patch of the special element
in some level j� The mass matrix Ms of this patch
can be written as

Ms � �T
s Mp�s ����

where Mp is the normal element mass matrix �scaled
by a factor of �

�j
to take into account of the area

shrinkage in bicubic patches at higher level of sub�
division� and �s is the transformation matrix of the
control points of that arbitrary patch from the corre�
sponding control points in the initial mesh� The damp�
ing and sti�ness matrices for the given bicubic patch
can be derived in an exactly similar fashion� Now�
these mass� damping and sti�ness matrices of all the

bicubic patches corresponding to a special element can
be assembled to form the mass� damping and sti�ness
matrices of that special element� As mentioned earlier�
the in�nite series summation is convergent� However�
it has been found that the contribution from bicubic
patches in a special element at a higher level of sub�
division to the mass� damping and sti�ness matrices
becomes negligible and in the implementation� the lo�
cal subdivision is carried out until the contribution is
small enough to be ignored�

The force f�u� v� t� in Eqn��	 represents the net ef�
fect of all applied forces� The current implementa�
tion supports spring� in�ation as well as image�based
forces� However other types of forces like repulsion
forces� gravitational forces etc� can easily be imple�
mented�

When the model reaches an equilibrium at a partic�
ular level of subdivision� the model can be subdivided�
if necessary� according to the Catmull�Clark subdivi�
sion rules to increase the number of vertices �control
points� and a better �t to the data can be achieved�
Currently the error of �t criteria is based on distance
between the data points and the points on the limit
surface where the corresponding springs are attached�
However� other types of error criterion can also be de�
�ned and used in this context�

� Results
The proposed dynamic subdivision surface can be

used to recover a wide variety of shapes of arbitrary
genus� The only constraint being that the limit sur�
face of the initial polygon should be of the same genus�
Note that it is much easier to generate the control
mesh whose limit surface is of a given genus than cre�
ating a parameterized mesh of a surface with speci�ed
genus �as needed by the existing physics�based shape
recovery schemes�� In this section� we illustrate the
performance of our model �tting algorithm via exper�
iments on real �range and volume� data� In all the
experiments� the special elements are shaded darker
to distinguish them from the normal elements� the ini�
tialized model had � faces and �� vertices� � of them
being extraordinary vertices of valence �� The �nal �t�
ted model� obtained through one step of subdivision�
has a control polygon of ��� faces with �� vertices�
The tolerance level of the error in �t was set to be ���

In Fig���a� and �d�� we demonstrate the model �t�
ting algorithm applied to laser range data acquired
from multiple views of a light bulb� Prior to applying
our algorithm� the data were transformed into a single
reference coordinate system� The model was initial�
ized inside the ���� range data points on the surface of
the bulb� In the next experiment� the shape of an anvil



is recovered from a range data set �Fig���b� and �e���
The range data set has ���� points� It may be noted
that the �nal shape with a very low error tolerance
is recovered using very few number of control points
in comparison to the number of data points present
in the original range data set� In the last experiment�
we present the shape extraction of a caudate nucleus
�a cortical structure in human brain� from � MRI
slices� each of size ���� ���� An expert neuroscien�
tist placed points along the boundary of the caudate
shape in each of the � slices� Fig���c� depicts the
points in �D along with the initialized model� Note
that points had to be placed on the boundary of the
region of interest due to lack of image gradients de�
lineating the caudate from the surrounding tissue in
parts of the image� Continuous image based forces as
well as spring forces are applied to the model and the
model deforms under the in�uence of these forces un�
til maximum conformation to the boundaries of the
desired caudate shape� The �tted model is shown in
Fig���f��

� Conclusions

In this paper� a dynamic generalization of the
Catmull�Clark subdivision surfaces is presented which
is used for e�cient shape recovery� The proposed
scheme does not require a parameterized input mesh
to recover shapes of arbitrary topology unlike other
existing methods� It involves direct manipulation of
the smooth limit surface via application of forces and
provides a fast as well as accurate way of recovering
shapes from large range and volume data sets using
very few degrees of freedom� We have presented an
analytic formulation of the subdivision scheme� incor�
porated the advantages of free�form deformable mod�
els into the subdivision scheme� introduced hierarchi�
cal dynamic control� implemented error�based adap�
tive subdivision and demonstrated the advantages of
our model �tting algorithm via experiments� Our cur�
rent implementation of the dynamic subdivision sur�
face scheme can not however recover crease edges in
the data as no additional constraints are imposed�
Also� a local subdivision scheme will further enhance
the e�ciency of the model representation� Our future
e�orts will be focussed on addressing these issues�
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the corresponding �tted model�
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