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Abstract

Recursive subdivision on an initial control mesh generates a visually pleasing smooth surface in the limit. Nevertheless, users must
carefully specify the initial mesh and/or painstakingly manipulate the control vertices at different levels of subdivision hierarchy to satisfy a
diverse set of functional requirements and aesthetic criteria in the limit shape. This modeling drawback results from the lack of direct
manipulation tools for the limit geometric shape. To improve the efficiency of interactive geometric modeling and engineering design, in this
paper we integrate novel physics-based modeling techniques with powerful geometric subdivision principles, and develop a unified finite
element method (FEM)-based methodology for arbitrary subdivision schemes. Strongly inspired by the recent research on Dynamic Non-
Uniform Rational B-Splines (D-NURBS), we formulate and develop a dynamic framework that permits users to directly manipulate the limit
surface obtained from any subdivision procedure via simulated “force” tools. The most significant contribution of our unified approach is the
formulation of the limit surface of an arbitrary subdivision scheme as being composed of a single type of novel finite element. The specific
geometric and dynamic features of our subdivision-based finite elements depend on the subdivision scheme used. We present our novel FEM
for the modified butterfly and Catmull–Clark subdivision schemes, and generalize our dynamic framework to be applicable to other
subdivision schemes. Our FEM-based approach significantly advances the state-of-the-art in physics-based geometric modeling since it
provides a universal physics-based framework for any subdivision scheme. In addition, we systematically devise a mechanism that allows
users to directly (not via control meshes) deform any subdivision surface; finally, we represent the limit surface of any subdivision scheme
using a collection of subdivision-based novel finite elements. Our experiments demonstrate that the new unified FEM-based framework not
only promises a greater potential for subdivision techniques in solid modeling, finite element analysis, and engineering design, but that it will
further foster the applicability of subdivision geometry in a wide range of visual computing applications such as visualization, virtual reality,
computer graphics, computer vision, robotics, and medical imaging as well.q 2000 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Efficiently modeling and intuitively manipulating
complex shapes are of paramount significance to scientists
and engineers in geometric and solid modeling, engineering
design, manufacturing, animation and simulation, analysis
and evaluation, rapid and virtual prototyping, visualization,
and interaction with virtual environments. Since 1970s,
tensor-product Non-Uniform Rational B-Splines (NURBS)
have become an industry standard because of their many
attractive properties. Nevertheless, the surface of arbitrary
topology can not be represented using a single NURBS due
to the global planar parameterization of NURBS. It requires
that the surface be decomposed into a set of (trimmed)

NURBS patches. Unfortunately, NURBS patching and
trimming suffers from the following difficulties:

1. Trimming two NURBS patches to match along their
common boundary involves the complex computation
of surface–surface intersection (SSI), SSI algorithms
generally are both computationally expensive and
prone to numerical errors due to approximation; and

2. Complex and less intuitive continuity constraints across
adjacent (trimmed) patches must be enforced throughout
the deformation process.

In general, considerable amount of human intervention is
required to guarantee that the patchwork of the underlying
geometry is seamless.

Recently, subdivision geometry has emerged as a power-
ful geometric modeling technique which has been exten-
sively employed to model smooth shapes of arbitrary
topology in graphics, computer animation, and other
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disciplines, mainly because of many advantages that are
associated with subdivision geometry. In principle, the
recursive subdivision scheme produces a visually pleasing
smooth surface in the limit by repeated application of a fixed
set of refinement rules on a user-specified initial control
mesh. Subdivision principle, in particular, has exhibited
attractive modeling potentials because of the following
reasons:

• A single subdivision surface can represent shape of arbi-
trary topology. It requires neither trimming nor patching.
Smoothness requirements can be automatically guaran-
teed. Subdivision naturally augments and generalizes B-
splines and NURBS.

• Subdivision allows modelers to arrange control vertices
in a more natural way, without the need to maintain a
rectangular structure as required by NURBS. It greatly
facilitates the creation of geometric features.

• Subdivision potentially allows the initial model to be
refined locally. However, local refinement is not possible
with NURBS, since an entire row and/or column of
control points must be added to preserve the rectangular
structure.

Despite the prevalence of diverse subdivision schemes in
the graphics and geometric modeling literature, it is almost
impossible to manipulate the limit surface (obtained through
procedure-based subdivision) in a direct, natural, and intui-
tive way. The current state-of-the-art only permits modelers
to interactively obtain the desired effects on the smooth
surface by kinematically manipulating the control vertices
at various levels of subdivision hierarchy. This design
process is rather clumsy and laborious, in spite of the
existence of many modern interactive hardware devices.
Moreover, existing subdivision-based surfaces arenot yet
readily applicable for the efficient and accurate data
exchange with standard formats such as B-splines and
NURBS, hampering their widespread usage in solid model-
ing and engineering design applications. In this paper, we
address the challenging problem of directly manipulating
the limit subdivision surface at arbitrary locations/areas,
and offer a novel solution to this problem by embedding
purely geometric subdivision schemes in a physics-based
modeling framework. Unlike the existing geometric
solutions that only allow operations on control vertices,
our methodology and algorithms permit users to physically
modify the shape of subdivision surfaces at desired loca-
tions via forces. Consequently, this gives the user an intui-
tive and natural feeling that is uniquely produced while
modeling with real clay/play-dough. Additionally, we will
demonstrate that the proposed model can efficiently recover
shapes from a cloud of 3D points.

1.1. Overview

The remainder of this paper is organized as follows. We
shall briefly review the previous work on subdivision

surfaces in Section 2. In Section 3, we discuss the prior
work of physics-based modeling techniques and highlight
the primary advantages of physics-based modeling in order
to motivate our research contributions. Then, a dynamic
framework for the interpolatory (modified) butterfly subdi-
vision scheme is detailed in Section 4. We reformulate the
dynamic framework for the approximating Catmull–Clark
subdivision scheme using the proposed approach in Section
5. The dynamic framework for Loop’s subdivision scheme
is presented in Section 6. Section 7 presents a solution on
how to develop a dynamic framework for any subdivision
scheme. Experiments and applications are discussed in
Section 8. Finally, we conclude the paper in Section 9.

2. Background

Chaikin [3] first introduced the concept of subdivision to
the modeling community for generating a smooth curve
from an arbitrary control polygon. Subsequently, a wide
variety of subdivision schemes for modeling smooth
surfaces of arbitrary topology have been derived following
Chaikin’s pioneering work on curve generation. The exist-
ing subdivision schemes can be broadly categorized into
two distinct classes namely, (1) approximating subdivision
techniques, and (2) interpolating subdivision techniques.

Among the approximating schemes, the techniques of
Doo and Sabin [5] and Catmull and Clark [2] generalize
the idea of obtaining uniform biquadratic and bicubic B-
spline patches, respectively, from a rectangular control
mesh. In Ref. [2], Catmull and Clark developed an algo-
rithm for recursively generating a smooth surface from a
polyhedral mesh of arbitrary topology. The Catmull–
Clark subdivision surface, defined by an arbitrary initial
mesh, can be reduced to a set of standard B-spline patches
except at a finite number of degenerate points. Loop [14]
presented a similar subdivision scheme based on the gener-
alization of quartic triangular B-splines for triangular
meshes. Hoppe et al. [10] further extended Loop’s work
to produce piecewise smooth surfaces with selected discon-
tinuities. Halstead et al. [9] proposed an algorithm to
construct a Catmull–Clark subdivision surface that inter-
polates the vertex mesh of arbitrary topology. Peters and
Reif [18] proposed a simple subdivision scheme for smooth-
ing polyhedra. Most recently, non-uniform Doo–Sabin and
Catmull–Clark surfaces that generalize non-uniform tensor-
product B-spline surfaces to arbitrary topologies were intro-
duced by Sederberg et al. [24]. All the aforementioned
schemes generalize recursive subdivision schemes for
generating limit surfaces with a known parameterization.
Various issues involved with the use of these approximating
subdivision schemes for character animation were discussed
at length by DeRose et al. [4].

The most well-known interpolation-based subdivision
scheme is the “butterfly” algorithm proposed by Dyn et al.
[7]. Butterfly method, like other subdivision schemes,
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makes use of a small number of neighboring vertices for
subdivision. It requires simple data structures and is rather
straightforward to implement. Nevertheless, it needs a topo-
logically regular setting of the initial (control) mesh in order
to obtain a smoothC1 limit surface. Zorin et al. [28] has
developed an improved interpolatory subdivision scheme
(which we call themodifiedbutterfly scheme) that retains
the simplicity of the butterfly scheme and results in much
smoother surfaces even from irregular initial meshes. These
interpolatory subdivision schemes have extensive applica-
tions in wavelets on manifolds, multiresolution editing, etc.

A variational approach for interpolatory refinement has
been proposed by Kobbelt [11,12] and by Kobbelt and
Schröder [13]. In this approach, the vertex positions in the
refined mesh at each subdivision step are obtained by
solving an optimization problem. Therefore, these schemes
are global, i.e. every new vertex position depends on all the
vertex positions of the coarser level mesh. The local
refinement property which makes the subdivision schemes
attractive for implementation in the graphics applications is
not retained in the variational approach.

The derivation of various mathematical properties of the
limit surface generated by the subdivision algorithms is
rather complex. Doo and Sabin [6] first analyzed the
smoothness behavior of the limit surface using the Fourier
transform and an eigen-analysis of the subdivision matrix.
Ball and Storry [1] and Reif [22] further extended Doo and
Sabin’s prior work on continuity properties of subdivision
surfaces by deriving various necessary and sufficient condi-
tions on smoothness for different subdivision schemes.
Specific subdivision schemes were also analyzed by several
other researchers [8,19,23,29]. Most recently, Stam [25,26]
developed an exact point evaluation algorithm for both
Catmull–Clark subdivision scheme and Loop’s triangular
subdivision scheme.

3. Motivation

Subdivision geometry has offered users extraordinary
power and flexibility especially when used for modeling
complex shapes of arbitrary topology. Nevertheless, it
constitutes a purely geometric representation, and hence
does not exploit the full potential of the underlying
geometric formulation owing to the following reasons:

• Modelers are faced with the tedium of indirect shape
refinement through time-consuming operations on a
large number of topologically irregular control vertices
and less intuitive modification on various subdivision
rules. This process is clumsy and laborious especially
for effectively representing and deforming highly
complicated objects.

• Control point manipulation is not natural due to the fact
that control points generally do not reside on the sculpted
objects, hence, it often requires designers to make many
non-intuitive decisions, and it is even more difficult to

accurately quantify the refinement effect at arbitrary
localized regions. Despite the advent of many modern
3D graphics interaction tools, these indirect geometric
operations remain non-intuitive and laborious in general.

• Oftentimes it may not be enough to obtain the most “fair”
surface that interpolates a set of (ordered or unorganized)
data points. Typical design requirements may be posed in
both quantitative and qualitative terms. For example, a
certain number of local features such as bulges or inflec-
tions may be strongly desired while requiring geometric
objects to satisfy global smoothness criteria in solid
modeling and/or interactive graphics applications. There-
fore, it can be very frustrating to enforce a diverse set of
heterogeneous criteria simultaneously via the indirect
approach.

In contrast, physics-based modeling can provide a super-
ior approach to shape modeling that can overcome most of
the limitations associated with traditional geometric model-
ing approaches. Free-form deformable models governed by
the laws of continuum mechanics are of particular relevance
in this context. Physics-based design augments (rather than
supersedes) standard geometric design, offering attractive
new advantages:

• Dynamic models respond to simulated force in a natural
and predictable way. The dynamic formulation marries
the model geometry with time, mass, damping, and
constraints via a force balance equation. Dynamics facil-
itates interaction, especially direct manipulation and
interactive sculpting of complex geometric models for
real-time shape variation.

• Geometric design is a time-varying process because
designers are often interested in not only the final static
equilibrium shape but the intermediate shape variation as
well. Dynamic models produce smooth, natural motions
that are familiar and can be easily controlled.

• The equilibrium shape of a geometric object is character-
ized by a minimum of its potential energy, subject to
imposed constraints. It is possible to formulate potential
energy functionals that satisfy local and global design
criteria. In particular, the elastic energy functionals will
allow the imposition of global qualitative “fairness”
criteria through quantitative means.

• Physics-based shape design can free designers from
having to make non-intuitive decisions, such as moving
control points to prescribed locations. In addition, non-
expert users are able to concentrate on visual shape varia-
tion without necessarily comprehending the underlying
mathematical formulation.

• Physics-based modeling techniques and real-time
dynamics integrate geometry with physics in a natural
and coherent way. The unified formulation is potentially
relevant throughout the entire modeling, simulation,
analysis, and manufacturing process. More importantly,
it is potentially possible to introduce manufacturing
constraints in the earlier design stage.
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The dynamic approach subsumes all of the aforementioned
modeling capabilities in a formulation which grounds
everything in real-world physical behavior.

Free-form deformable models were first introduced to the
modeling community by Terzopoulos et al. [27], and were
refined by a number of researchers over the years. Qin and
Terzopoulos [20] developed D-NURBS which are very
sophisticated physics-based models suitable for represent-
ing a wide variety of free-form as well as standard analytic
shapes. The D-NURBS have the advantage of interactive
and direct manipulation of NURBS curves and surfaces,
resulting in physically meaningful thus intuitively predict-
able motion and shape variation. However, a severe limita-
tion of the existing deformable models, including D-
NURBS, is that they are defined on a rectangular parametric
domain. Therefore, it can be very difficult to model surfaces
of arbitrary genus using these models. Subdivision schemes,
in contrast, can model complex surfaces of arbitrary topol-
ogy, and hence are a good candidate for incorporation of
physics-based principles where by the modeler can directly
manipulate the (complicated) limit surface in an intuitive
way.

Previously we had introduced dynamic Catmull–Clark
subdivision surfaces [15,16,21] where the smooth limit
surface generated by the Catmull–Clark subdivision scheme
was embedded in a physics-based modeling framework. The
current research differs significantly from our prior work
because the new approach taken in this paper is much
more general. It aims to develop a systematic and universal
mechanism with which any subdivision scheme can be
formulated within the physics-based framework. The
primary mathematical technique we resort to is finite
element analysis. We shall first formulate a dynamic repre-
sentation and equation for an interpolatory subdivision
scheme—the modified butterfly subdivision method—
where the limit surface, unlike other generalized spline-
based subdivision schemes, does not have any closed-form
analytic formulation [17]. Moreover, we shall reformulate
the dynamic Catmull–Clark subdivision surface model
using this novel methodology, and describe how to develop
a unified dynamic framework for any subdivision scheme.
The key contribution of this unified approach is to represent
the smooth limit surface of any subdivision scheme using a
collection of a single type of novel finite elements. The
geometric and physical features of our subdivision-based
finite elements depend only on the subdivision scheme
involved. Our finite element method (FEM)-based approach
significantly advances the state-of-the-art in physics-based
geometric modeling because of the following.

1. It provides a universal physics-based solution to any
subdivision scheme beyond prevalent spline-like subdi-
vision techniques.

2. A natural mechanism that allows users to intuitively
deform any subdivision surface has been systematically
devised.

3. The limit surface of any subdivision schemes has been
represented using a single type of novel subdivision-
based finite elements.

4. Our subdivision-based finite elements are potentially of
great interest to FEM communities.

4. Dynamic butterfly subdivision surfaces

This section discusses a dynamic framework for an inter-
polatory subdivision scheme namely, the (modified) butter-
fly subdivision technique. First, a brief overview of the
(modified) butterfly subdivision scheme is presented.
Next, a local geometric parameterization technique for the
limit surface of the (modified) butterfly subdivision is
detailed. Our parameterization method is then used to derive
the new triangular FEM for thebutterfly-basedsubdivision
scheme. Finally, the implementation details are described.
Note that, we will further generalize our physics-based
formulation for other interpolatory subdivision schemes in
Section 7.

4.1. The (modified) butterfly subdivision

The butterfly subdivision scheme [7] starts with an
initial triangular mesh (a.k.a. the control mesh) defined
by a set of control vertices. In each step of subdivision,
the initial (control) mesh is refined through the transfor-
mation of each triangular face into a patch with four
smaller triangular faces. After one step of refinement,
the new mesh in thefiner level retains the vertices of
each triangular face in the previous level and hence, inter-
polates thecoarser mesh in the previous level. In addi-
tion, every edge in each triangular face is split by adding
a new vertex whose position is obtained by an affine
combination of the neighboring vertex positions in the
coarser level. For instance, the mesh in Fig. 1(b) is
obtained by subdividing the initial mesh shown in Fig.
1(a) once. Note that, all the newly introduced vertices
corresponding to the edges in the original mesh have
degree six, whereas the position and degree of all original
vertices do not change in the refined mesh.

In the original butterfly scheme, the new vertices corre-
sponding to the edges in the previous level are obtained
using an eight-point stencil. It produces a smoothC1

surface in the limit except at theextraordinary points
corresponding to theextraordinary vertices (vertices
with degree not equal to six) in the initial mesh [28].
Since all the vertices introduced through subdivision
have degree six, the number of extraordinary points in
the smooth limit surface equals to the number of extra-
ordinary vertices in the initial mesh. Recently, theorigi-
nal butterfly scheme has been modified by Zorin et al.
[28] to obtain better smoothness properties at the extra-
ordinary points. In thismodified butterfly subdivision
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technique, all the edges had been categorized into three
classes:

1. Edges connecting two vertices of degree six (a 10 point
stencil, as shown in Fig. 2(a), is used to obtain the new
vertex positions corresponding to these edges).

2. Edges connecting a vertex of degree six and a vertex of
degreen ± 6 (the corresponding stencil to obtain new
vertex position is shown in Fig. 2(b), whereq� 0.75 is
the weight associated with the vertex of degreen ± 6;
and si � �0:251 cos�2pi=n�1 0:5 cos�4pi=n��=n; i �
0; 1;…;n 2 1; are the weights associated with the
vertices of degree six).

3. Edges connecting two vertices of degreen ± 6:

The last case cannot occur except in the initial mesh
as the newly introduced vertices are of degree six, and
the new vertex position in this last case is obtained by
averaging the positions obtained through the use of

stencil shown in Fig. 2(b) at each of those two extra-
ordinary vertices.

4.2. Formulation

This section systematically formulates the dynamic
framework for the modified butterfly subdivision scheme.
Unlike the approximating schemes, the geometry of the
limit surface obtained via modified butterfly subdivision
does not have any closed-form analytic expression even
for a regular mesh. Therefore, the key issue is to define an
appropriate parametric domain and derive a local parame-
terization for butterfly-basedsubdivision. These relevant
geometric components are critical to the development of
our physics-based FEM for the limit surface of butterfly
scheme.

The smooth limit surface defined by the modified butter-
fly subdivision technique is of arbitrary topology where a
global parameterization is impossible. Nevertheless, the
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Fig. 1. (a) The control polygon with triangular faces. (b) The refined mesh obtained after one subdivision step using butterfly subdivision rules.

Fig. 2. (a) The weighing factors of contributing vertex positions for an edge connecting two vertices of degree 6. (b) The corresponding case when one vertex is
of degreen and the other is of degree 6.
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Fig. 3. The smoothing effect of the subdivision process on the triangles of the initial mesh.

Fig. 4. Tracking a pointx through various levels of subdivision: (a) initial mesh; (b) the selected section (enclosed by dotted lines) of the mesh in (a), after one
subdivision step; (c) the selected section of the mesh in (b), after another subdivision step.



limit surface can be locally parameterized over the
geometric domain defined by the initial mesh. The idea is
to track an arbitrary point on the initial mesh across the
mesh hierarchy obtained via the subdivision process (see
Figs. 3 and 4), so that a correspondence can be established
between the point being tracked in the initial mesh and its
image on the limit surface.

The modified butterfly subdivision scheme starts with
an initial set of triangular faces. The recursive application
of the subdivision rules smoothes out each triangular
face, and in the limit, we obtain a smooth surface consist-
ing of a collection of smooth triangular patches. The
subdivision process and the triangular decomposition of
the limit surface is depicted in Fig. 3. Note that, the limit
surface can be represented by the same number of smooth
triangular patches as that of the triangular faces in the
initial mesh. Therefore, the limit surfaces can be
expressed as

s�
Xn
k�1

sk; �1�

wheren is the number of triangular faces in the initial mesh
andsk the smooth triangular patch in the limit surface corre-
sponding to thekth triangular face in the initial mesh.

We now describe the parameterization of the limit surface
over the initial mesh. The procedure can be best explained
through the following example. A simple planar mesh
shown in Fig. 4(a) is chosen as the initial mesh. An arbitrary
point x inside the triangular faceabc is tracked over the
meshes obtained through subdivision. The vertices in the
initial mesh are darkly shaded in Fig. 4. After one step of
subdivision, the initial mesh is refined by addition of new
vertices, which are lightly shaded. Another subdivision step
on this refined mesh leads to a finer mesh with introduction
of new vertices which are unshaded. It may be noted that
any point inside the smooth triangular patch in the limit
surface corresponding to the face abc in the initial mesh
depends only on the vertices in the initial mesh which are
within the 2-neighborhood of the verticesa, b andc due to
the local nature of the subdivision process(thek-neighbor-
hood of a vertex includes all the vertices that can be reached
following at mostk edges from the given vertex). For exam-
ple, the vertexd, introduced after first subdivision step, can
be obtained using the 10 point stencil shown in Fig. 2(a) on
the edgeab. All the contributing vertices in the initial mesh
are within the 1-neighborhood of the verticesa andb. A 10
point stencil can be used again in the next subdivision step
on the edgedb to obtain the vertexg. Some of the contribut-
ing vertices at this level of subdivision, for example, the
(lightly shaded) 1-neighbors of the vertexb (exceptd and
e) in Fig. 4(b), depend on some vertices in the initial mesh
which are within the 2-neighborhood of the verticesa, b and
c in the initial mesh.

In the rest of the formulation, superscripts are used to
indicate the subdivision level. For example,vj

uvw denotes

the collection of vertices at levelj which control the smooth
patch in the limit surface corresponding to the triangular
face uvw at the jth level of subdivision. Letv0

abc be the
collection of vertices in the initial mesh that are within the
2-neighbourhood of the verticesa, b andc (marked black in
Fig. 4(a)). Let the number of such vertices ber. Then, the
vectorv0

abc; which is concatenation of the (x, y, z) positions
for all ther vertices, is of dimension 3r. Based on the above
observation of the 2-neighborhoodproperty, the geometry
of the smooth triangular patch in the limit surface corre-
sponding to the triangular faceabc in the initial mesh is
uniquely determined by theser vertices. Because of the
recursive characteristic, there now exists four subdivision
matrices (Aabc)t, (Aabc)l (Aabc)r and (Aabc)m of dimension
(3r,3r) such that

v1
adf � �Aabc�tv0

abc; v1
bed� �Aabc�lv0

abc;

v1
cfe� �Aabc�rv0

abc; v1
def � �Aabc�mv0

abc;

�2�

where the subscripts t, l, r and m denote tope, left, right and
middle triangle positions, respectively (indicating the rela-
tive position of the new triangle with respect to theoriginal
triangle), andv1

adf; v
1
bed; v

1
cfe andv1

def are the concatenation of
the (x, y, z) positions for the vertices in the 2-neighborhood
of the corresponding triangle within the newly obtained
refined mesh after one subdivision. Note that, the new
vertices in this level of subdivision are lightly shaded in
Fig. 4(b). The 2-neighborhood configuration of the vertices
in the newly obtained triangles is exactly the same as that of
the original triangle, hence local subdivision matrices are
square and the vector dimensions on both sides of Eq. (2) are
the same.

Carrying out one more level of subdivision, a new set of
vertices which are unshaded in Fig. 4(c) are obtained along
with the old vertices. Adopting a similar approach as in the
derivation of Eq. (2), it can be shown that

v2
dgi � �Abed�tv1

bed; v2
bhg� �Abed�lv1

bed;

v2
eih � �Abed�rv1

bed; v2
ghi � �Abed�mv1

bed:

�3�

The relative position and geometric structure facedgi in
Fig. 4(c) with respect to the triangular facebedis topologi-
cally the same as of the triangular faceadf in Fig. 4(b) with
respect to the triangular faceabc. Therefore, we can obtain
�Abed�t � �Aabc�t: Based on the similar reasoning, Eq. (3)
can be rewritten as

v2
dgi � �Abed�tv1

bed� �Aabc�tv1
bed;

v2
bhg� �Abed�lv1

bed� �Aabc�lv1
bed;

v2
eih � �Abed�rv1

bed� �Aabc�rv1
bed

v2
ghi � �Abed�mv1

bed� �Aabc�mv1
bed:

�4�
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Combining Eqs. (2) and (4), it can be shown that

v2
dgi � �Aabc�t�Aabc�lv0

abc; v2
bhg� �Aabc�l�Aabc�lv0

abc;

v2
eih � �Aabc�r�Aabc�lv0

abc; v2
ghi � �Aabc�m�Aabc�lv0

abc:

�5�

Let x be a point with barycentric coordinates
�a0

abc;b
0
abc; g

0
abc� inside the triangular faceabc. When the

initial mesh is refined,x becomes a point inside the
triangular face bed with barycentric coordinates
�a1

bed;b
1
bed;g

1
bed�: Another level of subdivision causesx to

be included in the triangular facedgi barycentric coordi-
nates�a2

dgi;b
2
dgi; g

2
dgi�: Let sj

abc denote thejth level approx-
imation of the smooth triangular patchsabc in the limit
surface corresponding to the triangular faceabcin the initial
mesh. Nowv0

abc can be written as

v0
abc� �ax;bx; cx;…;

z����}|����{r

ay;by; cy;…;
z����}|����{r

az;bz; cz;…
z���}|���{r

�T;
where the subscriptsx, y andz indicate thex, y andz coor-
dinates of the corresponding vertex position, respectively.
The expressions forv1

bed and v0
dgi can also be written in a

similar manner. Next, the matrixB0
abc can be constructed as

follows:

B0
abc�x� �

a0
abc;b

0
abc;g

0
abc; 0;…;0;

z���������}|���������{r

0;…; 0;
z��}|��{r

0;…; 0
z�}|�{r

0;…;0;
z��}|��{r

a0
abc;b

0
abc;g

0
abc;0;…; 0;

z���������}|���������{r

0;…; 0
z�}|�{r

0;…;0;
z��}|��{r

0;…;0;
z��}|��{r

a0
abc;b

0
abc;g

0
abc;0;…; 0

z��������}|��������{r

266666666664

377777777775
:

The matricesB1
bed and B2

dgi can also be constructed in a
similar fashion. Nows0

abc�x�; s1
abc�x�; and s2

abc�x� can be
written as

s0
abc�x� � B0

abc�x�v0
abc;

s1
abc�x� � B1

bed�x�v1
bed� B1

bed�x��Aabc�lv0
abc;

s2
abc�x� � B2

dgi�x�v2
dgi � B2

dgi�x��Aabc�tv1
bed

� B2
dgi�x��Aabc�t�Aabc�lv0

abc:

�6�

Proceeding in a similar way, the expression forsj
abc�x�; jth

level approximation ofsabc�x�; is given by

sj
abc�x� � Bj

uvw�x� �Aabc�m…�Aabc�t�Aabc�l
z���������}|���������{j

v0
abc

� Bj
uvw�x��A j

abc�v0
abc� Bj

abc�x�v0
abc; �7�

wherex is inside the triangular faceuvw at level j (with
an assumption thatuvw is the triangular face in themiddle
with respect to itscoarser-leveloriginal triangular face in
the previous level), �A j

abc� � �Aabc�m…�Aabc�t�Aabc�l and
Bj

abc�x� � Bj
uvw�x��A j

abc�: It may be noted that the sequence
of applying�Aabc�t; �Aabc�l ; �Aabc�r and�Aabc�m depends on

the triangle inside which the tracked pointx falls after each
subdivision step. Finally, the local geometric parameteriza-
tion procedure can be completed by writing

sabc�x� � �lim
j!∞

Bj
abc�x��v0

abc� Babc�x�v0
abc: �8�

Note that,Babc is the collection of basis functions at the
verticesv0

abc: It may also be noted that the modified butterfly
subdivision scheme is astationarysubdivision process, and
hence new vertex positions are obtained by affine combina-
tions of nearby vertices. This guarantees that each row of the
matrices�Aabc�t; �Aabc�l ; �Aabc�r and �Aabc�m sums to one.
The largest eigenvalue of such matrices is 1 and therefore
the mathematical limit in Eq. (8) exists. Now, assuming the
triangular faceabc is thekth face in the initial mesh, Eq. (8)
can be written as

sk�x� � Bk�x�v0
k � Bk�x�Akp; �9�

wherep is the concatenation of the (x, y, z) positions of all
vertices in the initial mesh and the matrixAk, when post-
multiplied byp, only selects the verticesv0

k defining thekth
smooth triangular patch in the limit surface. If there aret
vertices in the initial mesh andr of them control thekth
patch, thenp is a vector of dimension 3t, Ak is a matrix of
dimension (3r, 3t) andBk(x) is a matrix of dimension (3,3r).

Combining Eqs. (1) and (9), it can be shown that

s�x� �
Xn
k�1

Bk�x�Ak

 !
p � J�x�p; �10�

whereJ, a matrix of dimension (3, 3t), is the collection of
basis functions for the corresponding vertices in the initial
mesh. The vectorp is also known as the degrees of freedom
vector of the smooth limit surfaces.

We now treat the vertex positions in the initial mesh
defining the smooth limit surfaces as time variables in
order to develop the new dynamic butterfly subdivision
model. The velocity of the surface model can be expressed
as _s�x;p� � J�x� _p; where an overstruck dot denotes a time
derivative andx [ S0

; S0 being the domain defined by the
initial mesh. Note that,S0 is the parametric domain of the
limit surface, each triangle of the initial control mesh serves
as a local parametric domain for its corresponding triangular
patch.

4.3. Finite element procedure

In Section 4.2, we have demonstrated that the smooth
limit surface of butterfly subdivision can be represented
by a collection of smooth triangular patches. In our dynamic
framework, we now consider each patch of the limit surface
as a finite element. The number of such patches is equal to
the number of triangular faces in the initial mesh as
mentioned earlier. The concept of decomposing the smooth
limit surface into a collection of elements is illustrated in
Fig. 5. We also show the parametric domain and control
vertices for shaded elements in Fig. 5. The governing
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motion equation of this subdivision-based FEM model is
given by

M �p 1 D _p 1 Kp � f p; �11�
wherefp is the generalized force vector, andM , D, andK
are the mass, damping and stiffness matrices of the physical
model. In the interest of space, we provide an outline on
how to derive the mass, damping and stiffness matrices for
these finite elements so that a numerical solution to the
governing second-order differential equation can be
obtained using popular finite element analysis techniques.
We use the same example as in Section 4.2 (refer to Fig. 4)
to introduce the relevant concepts and derive our FEM
model.

The mass matrix for the elementsabc, corresponding to the
triangular faceabc, can be expressed as

M abc�
Z

x[sabc

m�x�BT
abc�x�Babc�x� dx: �12�

However, the basis functions (stored as entries inBabc) do
not have any analytic form, hence computing this integral is
a difficult proposition. We solve this problem by approxi-
mating the smooth triangular patch in the limit surface
corresponding to the faceabc in the initial mesh by a trian-
gular mesh with 4j faces obtained afterj levels of subdivi-
sion of the original triangular faceabc (each subdivision

step splits one triangular face into 4 triangular faces). In
addition, we choose a discretized form of mass distribution
function which has non-zero values at the vertex positions
of the jth subdivision level mesh to simplify the implemen-
tation matter. Then the mass matrix can be approximated as

Mabc�
Xk
i�1

m�v j
i �{ Bi

abc�v j
i �} T{ Bj

abc�v j
i �} ; �13�

wherek is the number of vertices in the triangular mesh with
4j faces. This approximation has been found to be very effec-
tive and efficient for the implementation of FEM procedure.
The computation of elemental damping matrix follows suit.

Physics-based models have both kinetic and potential
energies. We now define the internal (e.g. elastic) energy
of the subdivision-based dynamic model by assigning defor-
mation energy to each element. We take a similar approach
as shown above and consider thejth level approximation of
the element. Throughout this paper, in particular, we assign
spring-like energy to the approximated of the element.
Throughout this paper, in particular, we assign spring-like
energy to the approximated model because of its simplicity
and efficient computation. The energy at thejth level of
approximation can be defined as

Eabc < Ej
abc�

1
2

X
V

klm�uv j
l 2 vj

mu 2 `lm�2
uvj

l 2 vj
mu2

�vj
l 2 vj

m�2; �14�

whereklm is the spring-controlling variable,vj
l andvj

m; thelth
andmth vertex in thejth level mesh, are in the 1-neighbor-
hood of each other,V is the domain defined by all such
vertex pairs, ` lm is the natural length of the spring
connected betweenv j

l andvj
m: Let vj

abc be the concatenation
of the (x, y, z) positions of all the vertices in thejth subdivi-
sion level of the triangular faceabc in the initial mesh, so
the internal force due to the above energy is

f int � 2Ej
abc

2vj
abc

� �K j
abc�{ vj

abc} :

Note that, the vertex positions invj
abc are obtained by a

linear combination of the vertex positions inv0
abc; and

hence we can writevj
abc� �A j

abc�v0
abc where �A j

abc� is
the transformation (subdivision) matrix. Therefore, the
expression for the elemental stiffness matrix is given by
K abc� �A j

abc�T�K j
abc��A j

abc�: It may be noted that this
approach is applicable for modeling isotropic as well as
an isotropic phenomena becauseklm, the spring-controlling
variable, can be a time-dependent function in general, in
addition, the entries inK j

abc depend on the distance between
the connected vertices. Therefore, unlike other elemental
matrices, the stiffness matrix is a function of time which
requires the recomputation at each time step in principle.
Note that, the above spring-like energy is only one simple
candidate of many possible choices. A large variety of
functional formulations (such as simplethin-plate-under-
tensionenergy or complex curvature-based energy) can be
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Fig. 5. (a) An initial mesh, and (b) the corresponding limit surface. The
domains of the shaded elements in the limit surface are the corresponding
triangular faces in the initial mesh. The encircled vertices in (a) are the
degrees of freedom for the corresponding element.



employed to describe a wide range of material and physical
behaviors such as linear elastic deformation and/or non-
linear plastic deformation.

5. Dynamic Catmull–Clark subdivision surfaces

This section considers a new FEM model based on an
approximating subdivision scheme, namely, Catmull–
Clark subdivision technique. Please note, the dynamic
formulation of Catmull–Clark subdivision previously
proposed in Refs. [15,16,21] could not be generalized to
other approximating subdivision schemes. The framework
developed in this section can be easily generalized to other
approximating subdivision schemes as shown in Section 7.
In fact, a dynamic framework for Loop’s technique (another
popular approximating subdivision scheme) has been
discussed in Section 6 using the algorithm proposed in
this section. We first outline the Catmull–Clark subdivision
scheme. Next, we present the dynamic formulation. In parti-
cular, we address the difference between the current work
and prior results [15,16,21]. Finally, we discuss the finite
element implementation.

5.1. Catmull–Clark subdivision scheme

Catmull–Clark subdivision scheme, like any other subdi-
vision scheme, starts with an user-defined mesh of arbitrary
topology. If refines the initial mesh by adding new vertices,
edges and faces with each step of subdivision following a
fixed set of subdivision rules. In the limit, a sequence of
recursively refined polyhedral meshes will converge to a
smooth surface. The subdivision rules are as follows:

1. For each face, a new face point is introduced which is the
average of all the old vertices defining the face.

2. For each (non-boundary) edge, a new edge point is intro-
duced which is the average of the following four points:
two old vertices defining the edge and two new face
points of the faces adjacent to the edge.

3. For each (non-boundary) vertexV, new vertex is intro-
duced whose position isF=n 1 2E=n 1 ��n 2 3�V�=n;

whereF is the average of the new face vertices of all
faces adjacent to the old vertexV, E the average of the
midpoints of all edges incident on the old vertexV andn
the number of the edges incident on the vertex.

4. New edges are formed by connecting each new face point
to the new edge points of the edges defining the old face
and by connecting each new vertex point to the new edge
points of all old edges incident on the old vertex point.

5. New faces are defined as faces enclosed by new edges.

An example of Catmull–Clark subdivision on an initial
mesh is shown in Fig. 6. The most important property of the
Catmull–Clark subdivision surfaces is that a smooth surface
can be generated from any control mesh of arbitrary topol-
ogy. Catmull–Clark subdivision surfaces include standard
bicubic B-spline surface as their special case (i.e. the limit
surface is a bicubic B-spline surface for a rectangular mesh
with all non-boundary vertices of degree 4). In addition, the
aforementioned subdivision rules generalize the recursive
bicubic B-spline patch subdivision algorithm. for non-
rectangular meshes, the limit surface converges to a bicubic
B-spline surface except at a finite number of extraordinary
points. These extraordinary points correspond to extraordin-
ary vertices (vertices whose degree is not equal to 4) in the
mesh. Note that, after the first subdivision, all faces are
quadrilaterals, hence all new vertices created subsequently
will have four incident edges. The number of extraordinary
points on the limit surface is a constant, and is equal to the
number of extraordinary vertices in the refined mesh
obtained after applying one step of the Catmull–Clark
subdivision on the initial mesh. The limit surface is curva-
ture-continuos everywhere except at extraordinary vertices,
where only tangent plane continuity is achieved.

5.2. Formulation

A systematic formulation of the newly proposed dynamic
framework for Catmull–Clark subdivision surfaces is
presented in this section. The key difference between the
dynamic model developed in Refs. [15,16,21] and the one
presented here is the representation of the limit surface. The
previously proposed approach leads to diverse types of finite
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Fig. 6. Catmull–Clark subdivision: (a) initial mesh; (b) mesh obtained after one step of Catmull–Clark subdivision; and (c) obtained after another subdivision
step.



elements, whereas the present approach leads to a single
type of finite elements. This is illustrated with a schematic
diagram in Fig. 7.

Following the concepts developed in Refs. [15,16,21], the
limit surface of the control mesh shown in Fig. 7, consists of

quadrilateral bicubic B-spline patches corresponding to the
faces marked ‘n’ (faces with no extraordinary points), and a
pentagonal patch corresponding to the faces marked ‘s’
(faces having one extraordinary vertex of degree five)
(Fig. 7(a)). However, in this section, it has been shown
that the entire limit surface can be expressed as a collection
of quadrilateral patches as shown in Fig. 7(b) using the
algorithm proposed by Stam [25]. We next discuss a local
parameterization of the limit surface, which is critical to
embed the limit surface in a dynamic framework.

As mentioned earlier, the control mesh (after at most one
subdivision step) for the Catmull–Clark subdivision scheme
consists of quadrilateral faces which lead to quadrilateral
patches in the limit surface. For the sake of formulation
simplicity, it has been assumed that each face has at most
one extraordinary vertex. If this assumption is not valid,
then one more subdivision step needs to be performed on
the current control mesh in order to obtain a new control
mesh on which the following analysis can be carried out.
The number of quadrilateral patches in the limit surface is
equal to the number of non-boundary quadrilateral faces in
the control mesh (Fig. 8). Therefore, the smooth limit
surfaces can be expressed as

s�
Xn
l�1

sl ; �15�

where n is the number of non-boundary faces in the
control mesh andsl is the smooth quadrilateral patch
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Fig. 8. In Catmull–Clark subdivision, each non-boundary quadrilateral face
in the control mesh has a corresponding quadrilateral patch in the limit
surface: (a) control mesh; and (b) limit surface.

Fig. 7. A control mesh with an extraordinary vertex of degree 5 and the corresponding limit surface: (a) using the concepts developed in Refs. [15,16,21], where
the limit surface consists of quadrilateral normal elements and a pentagonal special element; (b) using the unified approach developed in this paper,where the
limit surface consists of one single type of quadrilateral finite element.



corresponding to thelth non-boundary quadrilateral face in
the control mesh. Each of these quadrilateral patches can be
parameterized over the corresponding non-boundary quad-
rilateral face in the control mesh. However, since a quad-
rilateral face can easily be reparameterized over a [0,1]2

domain, each quadrilateral patch is locally parameterized
over [0,1]2.

The non-boundary quadrilateral faces are of two types:
(a) faces having no extraordinary vertices (dubbed as “regu-
lar” faces in Refs. [15,16,21], marked ask in Fig. 8(a)) and
(b) faces with one extraordinary vertex (dubbed as “irregu-
lar” faces in Refs. [15,16,21], marked asz in Fig. 8(a)). If
there aremregular andn–m irregular faces, then Eq. (15)
can be rewritten as

s�
Xm
i�1

si 1
Xn2 m

j�1

sj ; �16�

wheresi is the quadrilateral patch corresponding to theith
regular face andsj is the quadrilateral patch corresponding
to the jth irregular face.

The quadrilateral patch in the limit surface corresponding
to each regular face is a bicubic B-spline patch, which is
defined over [0,1]2. The set of control vertices defining this
bicubic B-spline patch can be obtained using the adjacent
face information. Therefore, the quadrilateral patches in the
smooth limit surface corresponding to the regular faces in
the control mesh can be easily expressed analytically, which
are essentially bicubic B-spline patches defined by 16
control vertices over a [0,1]2 domain. The analytic expres-
sion for the quadrilateral patch corresponding to the regular

face i is given by

si � Jb�u; v�pi � �Jb�u; v�A i�p � Ji�u; v�p; �17�
where 0# u; v # 1; Jb�u; v� is the collection of the bicubic
B-spline basis functions,pi the concatenation of the 16
control vertex positions defining the bicubic B-spline
patch,A i the selection matrix which when multiplied with
p, the concatenation of all the control vertex positions defin-
ing the smooth limit surface, selects the corresponding set of
control vertices, andJi�u; v� � Jb�u; v�A i :

By contrast, the analytic expression of the quadrilateral
patches corresponding to the irregular faces in the control
mesh was difficult to derive, and hence an alternative
approach was taken in Refs. [15,16,21]. However, very
recently an efficient scheme for evaluating Catmull–Clark
subdivision surfaces at arbitrary parameter values has been
proposed by Stam [25]. The proposed approach, involving
eigen-analysis of the subdivision matrix, leads to an analytic
expression of the quadrilateral patches which are parame-
terized over an irregular face in the control mesh, and hence
over [0,1]2 after reparameterization. Following the scheme
developed by Stam [25], the quadrilateral patch correspond-
ing to the irregular facej is given by

sj � Jdk
�u; v�pj � �Jdk

�u; v�A j�p � Jj�u; v�p; �18�

where 0# u; v # 1 as before.Jdk
�u; v� is the collection of

basis functions for the corresponding quadrilateral patch
in the smooth limit surface. The subscriptdk is used to
denote the fact that the irregular face has an extraordinary
vertex of degreek. The detailed derivation and the analy-
tic expressions of these basis functions involving the
eigenvalues and eigenvectors of the subdivision matrix
can be found in Ref. [25]. The other symbols used in
Eq. (18) have the usual meaning:pj is the concatenation
of the 2k 1 8 control vertices defining the quadrilateral
patch in the limit surface,p the concatenation of all the
control vertex positions defining the smooth limit surface,
A j the selection matrix which when multiplied withp
selects the corresponding set of control vertices, and
Jj�u; v� � Jdk

�u; v�A j :

It may be noted that the number of control vertices in
the initial mesh defining a quadrilateral patch in the
smooth limit surface is 2k 1 8; where k � 4 in case the
associated quadrilateral face in the control mesh is regu-
lar, or k� degree of the extraordinary vertex if the asso-
ciated quadrilateral face is irregular. For example, the
shaded quadrilateral patch is associated with the shaded
regular face in Fig. 9(a), and the 16 control vertices
defining this patch (which is actually a bicubic B-spline
patch) are marked. Similarly, the shaded quadrilateral
patch is associated with the shaded irregular face in
Fig. 9(b), and the 14 control vertices defining this
patch are highlighted. Now an expression of the smooth
limit surface can be formulated. Using Eqs. (16)–(18), it
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Fig. 9. (a) The marked 16 control vertices define the shaded quadrilateral
patch associated with the shaded regular face in the control mesh. (b) The
marked 14 control vertices define the shaded quadrilateral patch associated
with the shaded irregular face in the control mesh.



can be shown that

s�
Xm
i�1

Jip 1
Xn2 m

j�1

Jjp �
Xm
i�1

Ji 1
Xn2 m

j�1

Jj

0@ 1Ap � Jp;

�19�

where

J �
Xm
i�1

Ji 1
Xn2 m

j�1

Jj

0@ 1A:
Note that even though the initial mesh serves as the
parametric domain of the smooth limit surface, each
quadrilateral face in the initial mesh and consequently
the smooth limit surface can be defined over a [0,1]2

domain.
Once an analytic expression of the smooth limit surface

of Catmull–Clark subdivision is derived, we then develop
the dynamic model by considering the control vertex posi-
tions as time-varying variables. The velocity of the surface
model can be expressed as_s�x; u; v� � J�x; u; v� _p; where an
overstruck dot denotes a time derivative andx [ S0

; S0

being the domain by the initial mesh.

5.3. Finite element implementation

The smooth limit surface of Catmull–Clark subdivision
comprises a collection of quadrilateral patches. Each
quadrilateral patch is considered as a finite element. There-
fore, within the unified framework the limit surface can be
decomposed into a collection of single type of finite
elements rather thantwo different types as in Refs.
[15,16,21]. Our new FEM technique significantly simplifies
the data structure and system architecture. Consequently,
more efficient algorithms for finite-element assembly,
dynamic simulation, etc. can be devised using this unified
approach. The motion equation of the dynamic model is
same as that of the dynamic model of butterfly-based
subdivision:

M �p 1 D _p 1 Kp � f p; �20�

wherefp is the generalized force vector andM , D, andK are
the mass, damping and stiffness matrices of the model. The
expressions of the mass, damping and stiffness matrices for
a quadrilateral element (which is a bicubic B-spline) can be
written as

M e �
Z1

0

Z1

0
mJT

bJb du dv; �21�

De �
Z1

0

Z1

0
gJT

bJb du dv; �22�

and

K e �
Z1

0

Z1

0
�a11{ �Jb�u} T{ �Jb�u} 1 a22{ �Jb�v} T{ �Jb�v}

1 b11{ �Jb�uu}
T{ �Jb�uu} 1 b12{ �Jb�uv}

T{ �Jb�uv}

1 b22{ �Jb�vv}
T{ �Jb�vv} � du dv �23�

where Jb is the bicubic B-spline basis matrix,m(u,v) the
mass density,g(u,v) the damping density,a ii(u,v) and
b ii(u,v) are the tension and rigidity functions, respectively.
The subscriptu andv denote partial derivatives with respect
to u andv, respectively. The subscripte is used to indicate
elemental matrices which are of size (16,16). Note that, the
mass, damping and stiffness matrices for these elements can
be evaluated analytically, provided the material properties
(e.g. mass, damping, rigidity and bending distributions)
have analytic expressions. In some cases, these distribution
functions can be assumed to be constant to simplify the
matter.

The mass damping and stiffness matrices for the quad-
rilateral elements which are not bicubic B-splines (corre-
sponding to the irregular faces) can also be expressed
analytically by simply replacing the matrixJb in Eqs.
(21)–(23) with the matrixJdk

(refer to Eq. (18)), wherek
denotes the degree of the extraordinary vertex associated
with the corresponding irregular face. These elemental
matrices are of size�2k 1 8; 2k 1 8�: The generalized
force vector for these elements can also be determined in
a similar fashion. It may be noted that the limits of integra-
tion need to be chosen carefully for elemental stiffness
matrices as the second derivative diverges near the extra-
ordinary points for Catmull–Clark subdivision surfaces.

Even though an analytical expression for anon-B-spline
quadrilateral element in the limit surface exists, it is
cumbersome to actually evaluate the elemental matrix
expressions. Numerical integration using Gaussian quad-
rature may be used to obtain approximations of these
elemental matrices. However, in this paper, an approach
similar to the FEM procedure presented in Section 4 is
utilized because of its simplicity and effectiveness. An
approximation of the smooth limit surface is obtained by
refining the initial control meshj times, and a spring–mass
system is developed on thisjth approximation level in a
similar fashion as in Section 4.3. The physical matrices of
this system are then used as an approximation to the actual
physical matrices. This approximation has been found to be
very efficient for implementation purposes.

6. Dynamic loop subdivision surfaces

Loop’s subdivision scheme starts with a triangular control
mesh and generates a smooth surface with triangular patches
in the limit. It is an approximating subdivision scheme
which generalizes recursive subdivision schemes for
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obtainingC2 quartic triangular B-spline patches in a regular
setting. In each step of Loop subdivision, each (non-bound-
ary) triangular face is refined into 4 triangular faces using
the following rules:

1. For each (non-boundary) vertexV of degreen, a new
vertex point is introduced. The position of this newly
introduced vertex point is given by�a�n�v 1 v1 1 …1
vn�=�a�n�1 n�; wherev is the position vector of vertexV,
v1;…; vn are the vertex positions of then vertices
connected to vertexV a�n� � �n�1 2 b�n���=b�n� and
b�n� � 5=8 2 �3 1 2 cos�2p=n��2=64:

2. For each (non-boundary) edgeE, a new edge point is
introduced. Let E be the connecting edge between
verticesV1 andV2, and is shared by facesF1 andF2. If
F1 andF2 have verticesVF1

andVF2
; respectively (apart

from V1 and V2), then the position of the newly intro-
duced edge point is given by�3�v1 1 v2�1 vF1

1
vF2
�=8; wherev1; v2; vF1

and vF2
are the position vector

of the vertexV1;V2;VF1
andVF2

; respectively.
3. New edges are formed by connecting each new vertex

point to the new edge points corresponding to the edges
incident on the old vertex, and by connecting each new
edge point to the new edge points of the other edges in the
two faces, which shared the original edge.

4. New faces are defined as faces enclosed by the new
edges.

Examples of refining an initial mesh using Loop’s subdi-
vision rules are shown in Figs. 10 and 11. These subdivision
rules ensure tangent plane continuity of the limit surface
even in a irregular setting, i.e. when the triangular control
mesh has extraordinary vertices whose degree is not equal to
6. A detailed discussion on how to obtain positions and
normals in the smooth limit surface generated by the Loop
subdivision scheme can be found in Hoppe et al. [10].

6.1. Local parameterization

The limit surface obtained via Loop’s subdivision scheme
can be locally parameterized easily. This local parameter-
ization scheme is very similar in nature to the one described
for Catmull–Clark subdivision scheme in the previous
section. For Loop’s scheme, the smooth limit surface
consists of triangular patches and the number of these trian-
gular patches is the same as the number of non-boundary
triangular faces in the control mesh. Therefore, each of the
triangular patch in the limit can be locally parameterized

C. Mandal et al. / Computer-Aided Design 32 (2000) 479–497492

Fig. 10. (a) The control polygon with triangular faces. (b) Mesh obtained after one subdivision step using Loop’s subdivision rules.

Fig. 11. An initial mesh and the corresponding limit surface obtained using
Loop’s subdivision rules. The domains of the shaded triangular patches in
the limit surface are the corresponding triangular faces in the initial mesh.
The encircled vertices are the control vertices for the corresponding trian-
gular patch in the limit surface.



over the corresponding triangular face in the control mesh. It
may be noted that each triangular face in the control mesh
can be parameterized over a triangular domain whose
vertices are located at (0, 0), (0, 1) and (1, 0), and hence
each triangular patch and consequently the smooth limit
surface can be defined over this domain (refer Fig. 12).

The triangular patches in the smooth limit surface are of
two types. For a non-boundary triangular face in the control
mesh with no extraordinary vertices (i.e. with three vertices
of degree 6), the corresponding triangular patch in the limit
surface is a particular type of triangular B-spline (the three-
direction quartic box spline) whose analytic expression is
easy to obtain. This triangular B-spline patch is controlled
by 12 vertices as shown in Fig. 11 (the set of enclosed
vertices in the left-hand side). The triangular patch in the
limit surface corresponding to a non-boundary triangular
face in the control mesh with one extraordinary vertex can
also be expressed analytically using the schemes proposed
by Stam [26]. This triangular patch is controlled byn 1 6
vertices in the control mesh wheren is the degree of the
extraordinary vertex. The set of control vertices for a trian-
gular patch of the later type is shown in the right-hand side
of Fig. 11. Therefore, each triangular patch in the limit
surface can be expressed analytically, and an expression
for the limit surface similar to Eq. (19) can be obtained.

Once an expression for the limit surface using Loop’s
subdivision is obtained, the dynamic model can be devel-
oped following an exactly similar procedure described for
Catmull–Clark subdivision scheme in the previous section.
This is mainly because of the fact that both subdivision
schemes have an analytical representation of the limit
surface. Furthermore, the motion equation of the dynamic
Loop subdivision model can also be derived in a similar
fashion.

6.2. Finite element implementation

The implementation of the dynamic framework for Loop
subdivision scheme using the unified approach treats each
triangular patch in the limit surface as a finite element. Each
triangular patch has an analytic expression, and hence the
elemental physical matrices and the generalized force vector
can be derived analytically. The derivation of an exact
expression for elemental matrices is cumbersome for the
triangular patches corresponding to the triangular faces
with an extraordinary vertex, and numerical integration
using Gaussian quadrature may be used for deriving an
approximation. However, a practical alternative for imple-
mentation is to subdivide the control meshj times using
Loop’s subdivision rules, and to build a spring–mass system
on this jth level approximation as has been done for the
dynamic modified butterfly subdivision model in Section
4.3. The physical matrices of this spring–mass system
provide an approximation of the original physical matrices,
and it works well in practice.

7. The unified approach for any subdivision scheme

The dynamic framework for modified butterfly and
Catmull–Clark subdivision scheme can be generalized to
any subdivision scheme. The key observation is that the
smooth limit surface can be viewed as a collection of a
single type finite elements. Because of the nature of recur-
sive refinement, any subdivision-based scheme essentially
defines a “natural” correspondence which leads to a local
parameterization of the smooth limit surface. The unique
type of the associated finite element results from the local
parameterization scheme. This is evident from the triangular
finite element patches developed for the modified butterfly
subdivision scheme and from the quadrilateral finite
element patches developed for Catmull–Clark subdivision
scheme. We will present a general outline on how to provide
a dynamic framework for interpolatory and approximating
subdivision schemes.

7.1. Interpolatory subdivision schemes

Most of the interpolatory subdivision schemes are
obtained by modifying the butterfly subdivision scheme
[7]. Therefore, the framework for the modified butterfly
subdivision scheme in Section 4 and its principles can be
applied to other interpolatory subdivision schemes. The
only difference is that the basis functions as well as the
set of control vertices of arbitrary patch in the limit surface
depend on the chosen interpolatory subdivision rules. It may
also be noted that unlike the approximating schemes, the
physical matrices cannot be obtained analytically as the
basis functions corresponding to interpolatory subdivision
schemes do not have any analytic expressions in general.
Even though these matrices can be obtained via numerical
integration, the point–mass system connected by springs as
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Fig. 12. Each triangular patch in the limit surface can be associated with a
non-boundary triangular face in the initial mesh, which in turn can be
parameterized over a triangle with vertices at (0,0), (1,0) and (0,1).



developed in Section 4 is more preferable for implementa-
tion purposes because of efficiency reasons.

7.2. Approximating subdivision schemes

The unified approach for a dynamic model of Catmull–
Clark subdivision can be generalized for other approximat-
ing subdivision schemes as well. This generalized approach
involves three steps:

1. The limit surface obtained via an approximating sub-
division scheme can be expressed as a collection of
smooth patches which can be locally parameterized
over a corresponding face in the control mesh. Each
patch isn-sided if it is locally parameterized over ann-
sided face. Analytic expressions for each of these patches
can be derived even in the presence of extraordinary
vertices in the control mesh, and hence an expression
of the limit surface can be obtained.

2. Once an expression of the limit surface is obtained, the
dynamic framework can be developed by considering
control vertex positions as a function of time. The corre-
sponding motion equation can be derived.

3. Each patch in the limit surface is treated as a finite
element in implementation. The elemental mass, damp-
ing and stiffness matrices along with the generalized
force vector can be obtained by either analytic or numer-
ical integration. Alternatively, the control mesh can be
subdivided j times to obtain an approximation of the
smooth limit surface, and a spring–mass system can be
developed on this approximation mesh. The physical
matrices of this system provide an approximation to the
original physical matrices and works well in practice.

8. Solid modeling applications

The proposed FEM-based dynamic subdivision models
can be used to represent a wide variety of smooth shapes
with arbitrary genus. The smooth limit object can be
sculpted by applying synthesized forces in a direct and intui-
tive way in shape design applications for solid modeling.
The underlying shape from a cloud of 3D points can also be
recovered hierarchically using our FEM models. For data
fitting applications, springs are attached to the initialized
model from the data points in 3D, and the initialized
model evolves dynamically according to the equation of
motion subject to the applied spring forces and various
geometric constraints. When an optimal fit to the given
data set is achieved, the number of control vertices can be
increased by replacing the original initial mesh by a new
initial mesh obtained by applying a single subdivision step.
This increases the number of degrees of freedom to repre-
sent the same limit surface and a new equilibrium position
for the model with a much better fit to the given data set can
be achieved. The fitting-error criteria for the discrete data
can be computed according to distance between the data

points and the points on the limit surface where the
corresponding springs are attached. We now demonstrate
modeling and data fitting examples using our dynamic
FEM model.

In a shape modeling application, the user can specify any
mesh as the initial (control) mesh, and the corresponding
limit surface can be sculpted interactively by applying
synthesized forces. In Fig. 13, we show several initial
surfaces obtained from different control meshes and the
corresponding modified surfaces after interactive sculpting.
To change the shape of an initial surface, the user can attach
springs from different points in 3D to the nearest points on
the limit surface such that the limit surface deforms towards
these points to generate the desired shape. It may be noted
that the user can specify these data points in several ways—
directly in 3D, on a 2D plane at a fixed height (using mouse
input) or from a file containing (x,y,z) coordinates of the
points in 3D. Also, the distance between control vertices
of the initialized mesh is used as the natural (rest) length
of the spring attached between those vertices. When the
model deforming under the influence of spring forces
reaches an equilibrium, the control mesh can be subdivided
to obtain another control mesh with more degrees of free-
dom for the same smooth limit surface if the error is unac-
ceptable. For modeling purposes, error is defined as the
maximum distance between a data point and the nearest
point on the limit surface expressed as a percentage of the
diameter of the smallest sphere enclosing all the data points.
The time needed for the initialized model to deform into the
final shape depends on the number of degrees of freedom of
the model as well as on the number of data points exerting
force on the model. Generally speaking, less number of
degrees of freedom leads to faster deformation (a smaller
system of equations is solved). For the examples shown in
Fig. 13, the deformations took approximately 30–45 s under
normal system load on a Ultra-SPARC 30 machine. A small
time step is used for stability, and one conjugate gradient
iteration was necessary between each Euler step.

The initial mesh of the smooth surface shown in Fig.
13(a) has 125 faces and 176 vertices (degrees of freedom),
which is deformed to the smooth shape shown in Fig. 13(c)
by interactive spring force application. The initial mesh of
the closed solid shape in Fig. 13(e) has 24 faces and 14
vertices. This solid shape is deformed to the shape shown
in Fig. 13(g). The one hole torus in Fig. 13(i) and the corre-
sponding modified shape in Fig. 13(k) have initial meshes
with 64 faces and 32 vertices. A two hole torus with a
control mesh of 272 faces and 134 vertices, shown in Fig.
13(m), is dynamically sculpted to the shape shown in Fig.
13(o).

We have also performed several experiments testing the
applicability of our model to recover the underlying shapes
from a cloud of points in 3D. In all the experiments, the
initialized dynamic model has a control mesh comprising of
24 triangular faces and 14 vertices whereas the control mesh
of the fitted model has 384 triangular faces and 194 vertices.
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It may be noted that once an optimal shape defined by a
fixed number of control vertices (determined by subdivision
levels) is recovered, the limit smooth model is capable of
refining itself in accordance with the data-fitting criteria,
thereby increasing the degrees of freedom of the recovered
shape only when necessary. For the fitting-error (defined as
the maximum distance between a data point and the nearest
point on the limit surface expressed as a percentage of the
diameter of the smallest sphere enclosing the object) of
approximately 3%, the initialized model is refined twice.
The data-fitting examples are shown in Fig. 14. In the first
data fitting experiment, range data acquired from multiple

views of a light bulb is used and the model was initialized
inside the 1000 data points (Fig. 14(a)). The fitted dynamic
model is shown in Fig. 14(b). In the next experiment, the
shape of a mechanical part is recovered from a range data-
set containing 2031 data points (Fig. 14(c) and (d)). We also
recover the shape of a human head from the data set as
shown in Fig. 14(e). The head data set has 1779 3D points.
The time of dynamic evolution for the fitting of range data-
sets used in the experiments is approximately 3 min on
a Ultra-SPARC 30 workstation. It may be noted that the
final shape with a very low error tolerance is recovered
using a very few number of control points in comparison
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Fig. 13.First column: Initial shapes along with attached springs for deformation.Second column: Deformation of initial shapes due to spring forces.Third
column: The final deformed shape.Fourth column: Another view of the final deformed shape.



to the large number of data points present in the original
range data set.

9. Conclusions

In this paper, we have presented a new FEM-based
dynamic framework where a single type of subdivision-
based finite elements are used to represent the smooth
limit surface generated by any subdivision scheme. The
primary objective is to integrate physics-based modeling
techniques with geometric subdivision methodology for
the interactive sculpting and direct manipulation of the
limit surface of prevalent subdivision schemes. We have
proposed a unified approach and demonstrated how to trans-
form any subdivision scheme into our dynamic modeling
framework. Modelers canphysicallysculptvirtual objects
defined through arbitrary procedure-based subdivision tech-
niques in a natural and intuitive manner within the proposed
dynamic framework. Users can also directly enforce various
functional and aesthetic requirements on the limit surface

without the need to explicitly manipulate the control
vertices. Furthermore, this dynamic framework permits
physics-based models to be refined adaptively in a hierarch-
ical fashion which is an intrinsic feature of subdivision
geometry. Our experiments have demonstrated the applic-
ability of the new unified FEM-based framework in solid
modeling and data fitting applications. This unified method
will offer a greater potential for popular subdivision techni-
ques in solid and geometric modeling, interactive graphics,
finite element analysis, and engineering design applications.

At present, we are planning to pursue several research
directions based on our current work. First, the capability
for adaptive local subdivision of the control mesh may be
more attractive to modelers in certain applications such as
feature description and manipulation. In general, adaptive
local refinement in the regions of interest is a non-trivial
matter. Second, novel algorithms that support automatic
modification of complex topology and/or automatic change
of subdivision rules should be developed for our FEM-based
modeling framework. Third, a wide variety of constraint
imposition techniques as well as force-based sculpting
toolkits should be investigated in order to further enhance
the functionalities of our modeling system.
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