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Abstract 
 

This paper presents a novel 3D shape descriptor 
"The Generalized Shape Distributions" for effective 
shape matching and analysis, by taking advantage of 
both local and global shape signatures. We start this 
process by generating spin images on meshes. These 
local shape descriptors are then quantized via k-means 
clustering. The key contribution of this paper is to 
represent a global 3D shape as the spatial 
configuration of a set of specific local shapes. We 
achieve this goal by computing the distributions of the 
Euclidean distance of pairs of local shape clusters. 
Because of the spatial, sparse distribution of local 
shapes defined over a 3D model, an indexing data 
structure is adopted to reduce the space complexity of 
the proposed shape descriptor. The technical merits of 
our new approach are at least two-fold: (1) It is robust 
to non-trivial shape occlusions and deformations, 
since there are statistically a large number of chances 
that some local shape signatures and their spatial 
layouts are unchanged and users can easily identify 
those unchanged parts; (2) It is more discriminative 
than a simple collection of local shape signatures, 
since the spatial layouts of a global shape are 
explicitly computed. Our preliminary experiments have 
shown the effectiveness of this new approach for shape 
comparison and analysis. 
 
Keywords: Spin images, Shape distributions, Vector 
quantization and spatial layouts. 
 
1. Introduction 
 

In shape modeling and processing, a broad range of 
applications require appropriate shape similarity 
measures. For shape matching and registration, local 
shape similarities are frequently used to establish 
correspondences between different shapes to estimate 
an initial alignment [1, 2, 3]. For 3D model retrieval, 
global shape descriptors are typically used to rank 

database models according to their similarities to the 
query model. Although both local and global shape 
similarity measures have achieved some limited 
success in their application-specific domains, their 
shortcomings are also evident: For local shape 
descriptors, context information of a local shape in the 
global setting is not available. To establish 
correspondence, the lack of context information of 
local shapes leads to many point-match outliers (Note 
that, we shall elucidate this in more details in Section 
5). For global shape descriptors, however, only the 
overall shape is characterized, and local shape 
information is no longer distinguishable. In a scenario 
when two shapes share a significant similar part, but 
they are globally different, it is then almost impossible 
to expect a global shape descriptor to offer a suitable 
shape similarity measure. 

To address the above difficulty, in this paper we 
propose a novel shape representation, The Generalized 
Shape Distributions (GSD). In technical essence, GSD 
is a 3D histogram. It counts the number of specific 
local shape pairs at certain distances as follows: two 
dimensions of GSD accounts for the shape signatures, 
while the third dimension records the Euclidean 
distances of the local shape pairs. The main 
characteristic of GSD is that it explicitly models the 
spatial layouts of local shapes. As a result, comparing 
with simply a collection of local shape descriptors, 
context inconsistent point-matches are greatly reduced 
with the introduction of global spatial configuration. 
On the other hand, different from existing global shape 
descriptors, GSD is highly discriminative to local 
shape information: it is able to detect similar parts of 
two shapes, while most global shape descriptors fail to 
achieve this goal. We shall also point out that the 
global descriptor “shape distributions (SD)” [4] is only 
a marginal distribution of GSD: If we conduct 
integration along the two local shape dimensions of 
GSD, it naturally reduces to SD. The name of “GSD” is 
coined mainly based on this observation. 

We also propose an intuitive shape similarity 
measure by computing the amount of overlapping 



between the GSDs of two shapes. It well represents the 
amount of similar shape parts in consistent contexts. 
Based on this similarity measure, we propose a very 
efficient voting method to identify similar parts 
between two shapes. 

The experimental result on detecting similar shape 
parts reveals the highly discriminative nature of GSD, 
and shows that it is much better than a collection of 
local descriptors. Besides, GSD is robust against non-
trivial shape occlusions and deformations. For shape 
occlusions, a large number of local shape signatures 
and their spatial layouts are retained in the unchanged 
shape parts, and we can easily identify them. For shape 
deformations, the logarithm discretization in the 
distance dimension of GSD makes it relatively 
insensitive to numerical round-off error. Extensive 
experiments on 3D model retrieval demonstrate the 
aforementioned merits, and show that GSD is suitable 
for partial shape retrieval. This is a key advantage over 
previous global shape descriptors. 

The paper is organized as follows. In Section 2, we 
review previous works that are most relevant to our 
approach. The general framework of constructing the 
GSD representation and a concrete case for 3D models 
are introduced in Section 3. In Section 4, we present an 
intuitive shape similarity measure based on GSD. A 
context voting method for finding similar parts of 3D 
shapes is proposed in Section 5, followed by the 
experimental results of applying GSD to 3D shape 
retrieval in Section 6. Finally, we conclude this paper 
in Section 7. 
 
2. Previous Work 
 

Shape similarity measures have been extensively 
studied in range image registration, 2D/3D shape 
matching and 3D model retrieval. In the existing 
literature, discriminative shape descriptors are widely 
used for two purposes: First, in iterative shape 
matching methods [1, 5], finding a correct initial 
alignment of two shapes is important. In general, this is 
achieved by comparing local shape signatures to 
generate candidate point matches. Second, for 3D 
model retrieval, evaluating shape similarities from 
global shape descriptors is more efficient than the 
matching paradigm, which has been studied in [6]. 

More specifically, shape contexts [1, 2] and spin 
images [3] are two representative local shape 
descriptors. The former is widely used in 2D contour 
shape matching and the latter in range image 
registration. The two approaches are based on the 
statistics of local point-sampled geometry. As a result, 
they are appropriate for a variety of shape 

representations, such as meshes, polygon soups, and 
oriented point clouds. For manifold shapes, differential 
geometric properties, such as curvatures, are available 
and can be used in local shape descriptors. Examples 
include harmonic shape images [7] and curvature maps 
[8]. However, all the aforementioned local shape 
descriptors do not explicitly model the spatial layouts 
of local shape in a global context, which gives rise to 
many outliers in shape matching. 

Meanwhile, a large body of previous work focuses 
on building quantitative similarity measures for two 
global shapes. Extended Gaussian Images [9] have 
been used for pose determination of 3D objects. 
Spherical harmonic shape descriptors have 
demonstrated their strength and effectiveness for 3D 
model retrieval [10] and shape symmetry evaluation 
[11]. A comprehensive survey of methods for 3D 
model retrieval can be found in [12], in which many 
global shape descriptors are reviewed. The main 
difficulty associated with these global descriptors is 
that no distinguishable local shape information is 
encoded. Therefore, very few existing global shape 
descriptors are able to identify similar shape parts 
locally defined over two global shapes, which limit the 
scope of most existing 3D model search engines by 
only focusing on finding shapes that are globally 
similar. 

The methods that most relate to our approach are the 
“Shapemes” [13] and “Shape Distributions” [4]. The 
former approach is to agglomerate a large number of 
local shape descriptors into clusters, such that each 
local descriptor can be represented by the index of its 
closest cluster. This approach is referred to vector 
quantization in image analysis [14]. We use this 
method to discretize the two dimensions of local shape 
signature of the GSD-based shape representation. The 
latter method, “shape distributions (SD)”, [4] is simply 
a global shape representation. An efficient Monte-
Carlo strategy is introduced to sample points on 
meshes uniformly. Distributions of simple shape 
functions are evaluated using a large number of point 
samples generated from the above Monte-Carlo 
approach. It is shown that D2 shape function (The 
Euclidean distance between two points on the meshes) 
is most effective in representing 3D shape [4]. 
However, only the spatial layouts of “points” are 
modeled in SD, no local shape information is 
incorporated. As a result, SD is a purely global shape 
descriptor, suffering from the generic limitation of 
global descriptors mentioned above. In this paper, the 
proposed GSD characterizes the spatial layouts of 
“local shape signatures”, making it discriminative to 
local shape information. The original SD with D2 
function is only a marginal distribution of GSD. 



The method presented in [15] generalizes the D2 
shape function of SD by considering the inner product 
of the normals of sampled point pairs. Although 
certain improvement in performance is reported for 3D 
model retrieval, once again, no local shape information 
is actually used. Consequently, the method is only 
applicable to global 3D shape retrieval in principle. 
 
3. The Generalized Shape Distributions 
 

In this section, we present the basic ideas on how to 
build “The Generalized Shape Distributions (GSD)”. A 
concrete case of generating this shape representation 
for 3D meshes will be discussed in details. In the later 
sections, we will discuss the applications of GSD to 3D 
shape analysis and retrieval. 
 
3.1. The Basic Principles of GSD Generation 
 

We shall introduce the basic principles for 
generating “The Generalized Shape Distributions 
(GSD)”. Although our discussion is limited to 3D 
shape analysis in this paper, our novel idea can be 
applied to 2D contour shape analysis, part-based image 
analysis, etc. 

Before generating GSD, a dictionary of 
representative local shape signatures must be built in 
advance. The idea is to sample a large number of local 
shape signatures from the 3D models in the database. 
Then these signatures are clustered. The centers of 
these clusters are regarded as the “words” of the 
dictionary. After that, each local shape signature can 
be compactly represented by the index of its nearest 
cluster. This paradigm is referred to vector 
quantization and used in 2D shape matching and image 
analysis. [13, 14]  
 

 
Fig. 1 Generation of the GSD shape representation. 

 
When this dictionary becomes available, introducing 

how GSD is represented and generated is rather 
straightforward. As illustrated in Fig.1, the GSD is 
represented by a 3D histogram: 
                                ( , , )GSD r m n ,                             (1) 
where, r is the distance of two point samples on a 3D 

shape, while m and n are the indices of the nearest 
clusters of the two local shape signatures at the two 
points, respectively. Although integers can be used as 
the indices of clusters, there is no explicit order 
between these indices. Different clusters are assumed 
to be independent from each other. 

To generate the GSD shape representation, a Monte- 
Carlo procedure (e.g. [4]) is used to sample a number 
of point pairs on a shape. As shown in Fig. 1, for each 
point pair A, B, we calculate their relative distance r, 
and the local shape signatures at the two points. The 
indices of nearest clusters of the local shape signatures 
at A, B are m, n, respectively. Since AB and BA should 
be treated equally, two votes are given to the two bins 
in the GSD histogram: 
                        ( , , ), ( , , )GSD r m n GSD r n m                   (2) 
The number of point samples should be large enough 
so that the generated GSD distribution is stable. 

In practice, the Monte-Carlo sampling approach 
could be replaced by an interest point detector (e.g. 
[16]), to alleviate the computational burden of 
generating a large number of local shape signatures. 
And many metrics can be used to compute the 
distances between point-pairs on a shape, including 
Euclidean distance, Geodesic distance, etc. In this 
paper, we choose Euclidean distance for efficiency 
purpose. However, Euclidean distances are not quasi-
invariant under shape deformations, unlike Geodesic 
distances. This drawback could be circumvented by 
discretizing the r-axis properly. 

A simple and natural assumption about shape 
deformation is that the relative move between two 
points should be smaller or equal to the magnitude of 
their Euclidean distance. A logarithmical partition of 
the r-dimension can be proved to be robust: The index 
number in this dimension is the logarithm of the 
Euclidean distance between a point pair. This distance-
axis discretization approach was first applied to 3D 
shape context in [2]. In this paper, we propose a more 
flexible approach: 

min
min

exp log( ) log( )ave
i

X DiX X D D
I X D

⎧ ⎫+⎪= + + −⎨ ⎬+⎪ ⎭⎩
,    (3) 

where iX are the distance divisions, aveX is the 
average of distances between two point samples on the 
shape. minX is set to be a small fragment of the 
“radius” of a shape, where “radius” is the R.M.S. of 
the distances of point samples on the surface to the 
shape centroid. I is the resolution of distance-axis 
discretization. 0D ≥  is an adjustable parameter, and 

1, 2,...i =  
From (3), it is straightforward to see that when D 



approaches to zero, the distance-axis discretization is 
the logarithmical partition in [2]. When D approaches 
infinity, the distance-axis discretization is uniform. In 
practice, a tradeoff can be made between the two 
extremes: If the retrieved shapes undergo large shape 
deformations, then the parameter D should be set 
smaller, and vice versa. 
 
3.2. GSD Generation for 3D mesh Models 
 

In this paper, we focus on applying the GSD shape 
representation to matching and analyzing 3D models. 
Since 3D shape has a rotation freedom which is hard to 
normalize (PCA pose normalization is not stable), it is 
desirable that a shape representation is rotationally 
invariant. Note that the distance between two point 
samples on a 3D shape is rotationally invariant, the 
GSD shape representation is rotationally invariant iff 
the local shape descriptors are. In practice, many local 
descriptors have the above property. Therefore, the 
GSD shape representation is very suitable for 
characterizing 3D models. 

We choose the spin images [3] as our local shape 
descriptors. The support range of a spin image is set to 
be within 0.4R  in radial and vertical distance from its 
basis, where “R” is the “radius” of the shape 
introduced in the above subsection. The resolution of 
spin images is set to be15 15× . Since spin images are 
easy to compute, we use the Monte-Carlo approach [4] 
to sample 500 bases uniformly on a 3D model. Then 
spin image signatures at these bases are computed. 
Note that 3D models often have non-uniform meshes. 
To make the generated spin images invariant to mesh 
tessellation, we once again use the Monte-Carlo 
approach [4] to sample 50,000 points uniformly on a 
3D model on average. The sampling density will not 
be changed for a scale-normalized 3D model. These 
points are then accumulated into bins to generate spin 
images. We use Princeton Shape Benchmark (PSB) [17] 
as our 3D model database. All spin images of 3D 
models in this database are agglomerated into 1500 
clusters using the typical, k-means algorithm. These 
clusters are the “words” of our dictionary of local 
shape signatures. Then, the spin images of each 3D 
model are compactly represented by the indices of 
their nearest clusters in the dictionary. The coordinates 
of the bases of these spin images are also recorded. 

The next step is to generate the GSD representation. 
We sample 50,000 points uniformly on the meshes for 
each 3D model. Directly computing the nearest spin 
image clusters at these points are time consuming, 
since we have to calculate 50,000 spin image 
signatures and quantify them. To avoid this problem, 

we make an approximation based on the spin image 
signatures at the 500 bases introduced in the last 
paragraph: For each point, the spin image cluster of its 
nearest basis is assigned to it. This is a reasonable 
approximation, as local shapes at nearby points are 
generally similar. Then we randomly sample 1,000,000 
point pairs from the 50,000 points, and vote these point 
pairs into GSD histogram bins using the method 
introduced in Section 3.1. The sampling numbers are 
decided experimentally, and we set minX to be 2% of 
shape “radius”, D to be 10% of the shape “radius” and 
the resolution 10I = . 
 
4. The Similarity Measure of GSD 
 
4.1. Memory-efficient Archiving of GSD 
 

Before introducing the similarity measures for the 
GSD representation, we present an indexing approach 
to reduce the space overhead in archiving GSD. As 
mentioned above, the number of spin image clusters is 
1500, and the resolution I of the distance-axis is 10. As 
a result, the magnitude of space requirement for 
restoring a GSD representation for a 3D model 
is1500 1500 10× × . This is too expensive. Fortunately 
in practice, not all spin image clusters appear on a 3D 
model; only 120 clusters appear on average for a 3D 
model in the PSB shape benchmark [17]. By recording 
the indices of all spin image clusters that are appeared 
on a 3D model, the space requirements of a GSD 
representation can be reduced to 120 120 10× × on 
average, which is much more computational tractable 
for practical applications. We find that there are still a 
large number of zero bins in the GSD representation. 
Therefore, more sophisticated mechanism for further 
reducing the space complexity is possible, and we shall 
explore this direction in the near future. 
 
4.2. Shape Similarity Measures based on GSD 
 

We now discuss appropriate similarity measures for 
the GSD representation. Let us first take a look at 
Figure 2, which sketches the differences between the 
similarity measures of global shape descriptors, local 
shape descriptors and the GSD. For global descriptors, 
no local shape information is recorded. Usually a 
distance measure is used to assess the difference 
between global shapes. And the similarity between two 
shapes is defined as the inverse of the distance 
measure. As a result, this similarity measure has no 
intrinsic relationship with the similar portion of the 
shapes. If a collection of local shape descriptors is used, 
the similar parts of two shapes can be identified. 



However, the spatial contexts of these parts are not 
modeled, so the similar parts are represented using a 
collection of local shapes. In the GSD method, not 
only similar local shape parts can be identified and 
extracted, but also the spatial organization of these 
parts is clearly laid out. 

Based on the idea illustrated in Fig. 2, an intuitive 
shape similarity measure based on GSD representation 
is given below: 

1 2min{ ( , , ), ( , , )}
r m n

S GSD r m n GSD r m n=∑∑∑    (4) 

Here, S is the similarity between two shapes. This 
formula can be understood as defining the similarity of 
two shapes as the magnitude of the “overlapping” parts 
of the contexts of local shape descriptors. This is better 
than simply a collection of local shape descriptors. It 
may be noted that the similarity of local shape 
signatures do not necessarily guarantee that they are in 
the similar spatial contexts. 
 

 
Fig. 2 A comparison of Shape similarity measures. 

 
Some discussing remarks are given here. First, the 

highly sparse nature of the GSD representation makes 
the above explanation of similarity measure 
meaningful. On the other hand, most existing global 
shape signatures do not have sparseness. For instance, 
it is hard to explain which parts of two shapes are 
similar given the “overlapping” part of two “shape 
distributions [4]” or two “spherical harmonic shape 
signatures [10]”. This is a major advantage of our 
shape representation over previous approaches. We 
will show how to use the GSD representation to detect 
similar shape parts in the next section. 

Second, the similarity measure in (4) is defined for 
global shape comparison. Sometimes, for partial shape 
retrieval, it is necessary to find global shapes that 
contain parts similar to a partial shape query. In such a 
scenario, we just need to test whether the GSD of the 
partial shape is within the GSD of the global shapes. 
For a none-zero bin in the GSD of a partial shape, if 
the corresponding bin of a global shape GSD is zero, 
then it suggests that the global shape dose not contain 
the local shape context of the partial shape. Penalty 

terms can be added to (4) to account for this. Based on 
this observation, it is simple to see that the GSD shape 
representation can be used much more flexibly in a 
large variety of shape matching and retrieval tasks. 

Third, we point out that some non-uniform 
weighting strategies can be explicitly employed in the 
similarity measure (4). Since the contexts of nearby 
points are more important than those that are far away. 
Large weights should be given to the terms with small 
x in (4). In this paper, to avoid introducing extra ad 
hoc heuristics, we simply use the intuitive shape 
similarity measure (4). Experimentally exploring the 
most suitable weighting strategy is a direction for 
future research. We anticipate that new improvements 
in the GSD performance may be readily obtained with 
a novel weighting strategy. 
 
5. Detecting Similar Shape Parts 
 

A straightforward application of the GSD 
representation is to detect similar parts on two 3D 
models efficiently. We propose a context voting 
method to achieve this goal, which can clearly 
demonstrate the discriminative power of GSD. 

The method begins by defining the “consensus set” 
of two GSDs, which stands for the histogram bins in 
which both the two GSDs are large enough. 

{ }1 2( , , ) | ( , , ) 25, ( , , ) 25, 6C r m n GSD r m n GSD r m n r= ≥ ≥ ≤ ,   (5) 
where C is the consensus set. The constraint 

6r ≤ excludes the bins that the corresponding point 
pairs are far away. This is reasonable since the spatial 
context is mostly embodied by short range point-pair 
interactions, as discussed earlier. 
 

 
Fig. 3 Detecting similar parts on two 3D shapes using GSD. 

  
Note that we use 5,000,000 point-pair samples to 

generate the two GSDs here for robustness. After that, 
the “consensus set” is computed, and a Monte-Carlo 



approach is used to vote point samples on the two 
shapes: First, we sample 50,000 points uniformly on 
the two 3D models, respectively. Then each point is 
associated with the cluster index of its closest spin 
image bases. This is identical to the GSD generation 
process, so it suffices to reuse the intermediate results. 
Finally, 5,000,000 point pairs are randomly sampled 
from the 50,000 points. For each point pair, if it 
corresponds to a state in the consensus set, then two 
votes are given to the two points, respectively. The 
above process takes only a few seconds on a PC with a 
Pentium IV processor, so it is very efficient. 

After this Monte-Carlo voting process, each point 
sample receives a number of votes.  The point samples 
with high votes suggest that their local shape 
similarities are consistent with many other local shape 
similarities in the spatial context, so these points are 
very likely to be on the common parts of the two 3D 
shapes, and vice versa. 
 

 
Fig. 4 Detecting similar parts on two 3D shapes using a 
collection of local shape descriptors. 
 

As shown in Fig. 3, there are two 3D models, hand 
and human body. We render the points which have 
received more than 30 votes. Most of the points are 
distributed in the fingers of the hand model and the 
legs in the body model. This is definitely consistent 
with our human perception. 

Some notes are given here. First, as mentioned in 
Section 3.2, the scale of the spin images is set to 0.4R , 
where “R” is the “radius” of the global shape. Though 
anatomically, fingers and legs are at different scales on 
the human body, they appear approximately at the 
same scale of the “hand” and “body” models in Figure 
3 and 4. Therefore, it is not surprising to see that our 
method gives desirable results. To detect similar shape 
parts at different scales of two shapes, multiple GSDs 

should be computed for each 3D model with different 
spin image scales. Then the two sets of GSDs are 
compared. This is left for future work. 

Second, since the GSD shape descriptor is generated 
via stochastic algorithm, its stability should be studied. 
In our experiments of detecting similar shape parts, 
most runs of the algorithm yield results similar to Fig. 
3. Increasing the number of spin image bases and point 
samples would improve the stability of GSD, but at a 
cost of time complexity. Fine tuning the parameters for 
a better tradeoff is also left for future research. 

To evaluate the efficacy of context information in 
detecting similar shape parts, we take a different 
approach: First, 500 spin images are generated on each 
of the two 3D models and quantized into their nearest 
clusters in the dictionary. Second, we associate the 
50,000 point-samples on each 3D model with the 
cluster indices of their nearest spin image bases. The 
above process is identical to that of generating the 
GSDs. The difference is that we now compute the set 
of common cluster indices of the two shapes, not the 
consensus set of the two GSDs. All the point samples 
are rendered if their cluster indices are in this set, as 
shown in Fig. 4. 

We can see that many points lie on the torso of the 
body shape and palm of the hand shape. Intuitively, 
these points do not correspond to the similar parts of 
the two shapes. Therefore, it is clear that context 
information in the GSD is very helpful to rule out the 
context inconsistent point matches. 
 
6. Experimental Results and Discussions 
 

We conduct the experiments using the GSD 
representation for 3D model retrieval. The Princeton 
Shape Benchmark [17], which is publicly available, is 
chosen as the 3D model database in our experiments. 
The database is divided into “training part” and 
“testing part”, each has 907 3D models. Only the 
testing part is used in this paper, which is classified 
into 92 categories in the finest granularity [17].  

Our testing paradigm follows most of the existing 
methods for 3D model retrieval: The GSD shape 
descriptor is extracted for the query shape and 
compared with those of the 3D models in the database. 
Then a ranking is computed for database models 
according to the similarity measures with the query. 

The parameters of generating the GSD are 
introduced in Section 3.2. Fine tuning these parameters 
is possible using the “training part” of the benchmark, 
which shall be studied in the future. The similarity 
measure used in the experiments is simply (4), without 
incorporating any weighting strategies. However, 



despite this very simple setting, good results are 
obtained. 

As suggested in [17], five retrieval statistics are used 
in this paper to evaluate the performance of 3D model 
retrieval. They are “nearest neighbor (NN)”, “first tier 
(FT)”, “second tier (ST)”, “E-Measure (E-M)” and 
“discounted cumulative gain (DCG)”. The precision-
recall plot is also generated for illustration purpose. 
 
Table 1. The statistics of 3D model retrieval using the GSD 
shape representation: “G-G” is “Global to Global” shape 
retrieval, “P-G” is “Partial to Global” shape retrieval and “P-
P” is “Partial to Partial” shape retrieval. 

\ NN FT ST E-M DCG 
G-G 0.434 0.215 0.295 0.180 0.493 
P-G 0.354 0.178 0.257 0.154 0.453 
P-P 0.303 0.157 0.222 0.135 0.427 

 
The first experiment is “global to global (G-G)” 

shape retrieval. That is, the entire shape of the query 
model and the entire shapes of the database models are 
used to generate the GSD shape representation. This 
paradigm of 3D model retrieval is similar to existing 
approaches. All the 907 3D models are used as the 
query in turn to retrieve other shapes in the database. 
The retrieval statistics are listed in table 1, and the 
precision-recall plot is shown in Fig. 5. Three typical 
examples of G-G 3Dshape retrieval are shown in Fig. 6, 
7 and 8, respectively. 
 

 
Fig 5. The Precision-Recall plots of 3D model retrieval using 
the GSD shape representation: “G-G” is “Global to Global” 
shape retrieval, “P-G” is “Partial to Global” shape retrieval 
and “P-P” is “Partial to Partial” shape retrieval. 
 

The second experiment is “partial to global (P-G)” 
shape retrieval. We randomly pick a point of interest 
on the meshes of a query model. 40% spin image bases 
and point samples nearest to the point of interest are 
selected to generate the GSD signature of the query 
shape, simulating the scenario that the query shape 

undergoes very significant shape occlusions. The GSD 
generation process is slightly modified: only the point-
pairs that both points are of the 40% samples are voted 
to the GSD bins, while other point-pairs are skipped. 
Such incomplete GSD shape signatures are used to 
retrieve other 3D models in the database. Note that the 
GSD signatures of the database models are created 
using full 3D shapes. As a result, this retrieval 
paradigm is referred to as “partial to global (P-G)”. We 
also use the similarity measure (4) in this experiment. 
Table 1 and Fig. 5 show the retrieval statistics and the 
precision-recall plot, respectively. In Fig. 9, we show a 
concrete example of P-G shape retrieval. 

The third experiment is “partial to partial (P-P)” 
shape retrieval. Similar to the second experiment, 40% 
spin images and point samples nearest to a randomly 
selected point are used to generate the GSD shape 
signatures for both the query 3D model and database 
3D models. This time, we simulate the scenario in 
which both the query shape and database shapes are 
suffering from significant shape occlusions. The 
results are also presented in Table 1 and Fig.5, 
respectively. Fig. 10 illustrates an example of P-P 
shape retrieval. 

From Table 1 and Fig.5, we find that the proposed 
GSD shape representation and the similarity measure 
(4) are quite robust in response to shape occlusions. 
Fig. 9 is a concrete example of the success of our 
approach for partial shape retrieval, while Fig. 8 shows 
that the GSD also works well under some shape 
deformations.  

We also compare the performance of GSD with two 
of its special cases for 3D model retrieval. One is the 
“Shape distributions (SD)” [4], and the other is the 
“bag-of-words model (BAG)”. The “bag-of-words 
model” is simply a 1D histogram which counts the 
number of local shape clusters that appear on a 3D 
model. Similar to SD, It can also be regarded as a 
marginal distribution of GSD. 
 
Table 2. The statistics of global 3D model retrieval using the 
GSD shape representation and the “bag-of-words” model. 

\ NN FT ST E-M DCG 
GSD 0.434 0.215 0.295 0.180 0.493 
BAG 0.420 0.213 0.291 0.178 0.487 

 
From [17], we can notice that the performance of SD 

is even worse than the P-G GSD shape retrieval. While 
for the bag-of-words model, we have shown in Fig. 4 
that this shape representation is incapable of detecting 
similar shape parts precisely. Although this drawback 
is not critical for 3D model retrieval, we can see from 
Table 2 that the performance of GSD is still better than 



the BAG model. 
 
7. Conclusion 
 

We have proposed a novel shape descriptor, the 
Generalized Shape Distributions (GSD), in this paper. 
Spatial layouts of local shape descriptors are modeled 
in the GSD to characterize global shapes. At the same 
time, distinctive local shape information is preserved. 
An intuitive shape similarity measure is presented for 
GSD and compared with the similarity measures of 
previous shape descriptors. We also developed a 
context voting method to detect similar shape parts 
between two 3D shapes, based on the GSD shape 
representation. Experimental results on 3D model 
retrieval are documented with the detailed statistical 
analysis, suggesting the robustness of GSD under 
significant shape occlusions and deformations. 
Because of its flexibility, potential applications of the 
proposed GSD shape representation beyond shape 
matching and retrieval are enormous, and we shall 
explore this research direction in the future. 
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Fig 6. Some results of “global to global” 3D model retrieval. Green color indicates the query, light color indicates the correct 
retrieval results, and dark color indicates the false retrieval results. We find that although some retrieved shapes are not marked 
correct in the finest classification granularity, they are in fact good enough for a 3D model retrieval system. This is because our 
method does not enforce that the retrieved shapes need to be globally very close to the query, large similar shape parts are 
enough to give a high similarity score. (The illustration of retrieval results are generated using the utility of the Princeton Shape 
Benchmark [17]). 

 
Fig 7. Another example of “global to global” 3D model retrieval. This time, the “correct” retrieved shapes are dominant.  



 

 
Fig 8. The third example of “global to global” 3D model retrieval. This time, neither the “false matches” nor “correct matches” 
are dominant. However, we argue that the “false matches” are good enough in many applications. This example demonstrates the 
relative robustness of our approach in response to non-trivial shape deformations. 



 

 
Fig 9. An example of “partial to global” 3D model retrieval. Note that only 40% of the spin images and point samples nearest to 
a point of interest of a query shape are used to match the global shapes of the database models. This is a very challenging task, 
since only partial shape information of the query shape is used. However, we can see from this figure that the retrieval results are 
essentially good. 



 

 
Fig 10. Another example of “partial to partial” 3D model retrieval. Note that only 40% of the spin images and point samples 
nearest to a point of interest of a query shape are used to match the partial shapes (also 40% of a global shape) of the database 
models. This is an extremely challenging task, since the expected overlap covers only 16% of the overall shape. The retrieval 
results are generally not very good as anticipated. However, some shapes are approximately symmetric, such as human faces. In 
such cases, the expected overlap is higher, and some retrieval results are reasonably good, shown in this figure. 
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