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Abstract. It has been technically challenging to effectively model and simulate
elastic deformation of spline-based, thin-shell objects of complicated topology.
This is primarily because traditional FEM are typically defined upon planar do-
main, therefore incapable of constructing complicated, smooth spline surfaces
without patching/trimming. Moreover, at leastC1 continuity is required for the
convergence of FEM solutions in thin-shell simulation. In this paper, we develop
a new paradigm which elegantly integrates the thin-shell FEM simulation with
geometric design of arbitrary manifold spline surfaces. Inparticular, we system-
atically extend the triangularB-spline FEM from planar domains to manifold
domains. The deformation is represented as a linear combination of triangular
B-splines over shell surfaces, then the dynamics of thin-shell simulation is com-
puted through the minimization of Kirchhoff-Love energy. The advantages given
by our paradigm are: FEM simulation of arbitrary manifold without meshing
and data conversion, and the integrated approach for geometric design and dy-
namic simulation/analysis. Our system also provides a level-of-detail sculpting
tool to manipulate the overall shapes of thin-shell surfaces for effective design.
The proposed framework has been evaluated on a set of spline models of various
topologies, and the results demonstrate its efficacy in physics-based modeling,
interactive shape design and finite-element simulation.

1 Introduction

Flexible plates and shells are the fundamental geometric structures found in many fields
of applied engineering nowadays. Since physics-based method is of great popularity for
geometric modeling and simulation in CAD/CAM, the simulation of thin-shell objects
is frequently required in modern engineering design practice. However, the modeling
and simulation of thin-shells have traditionally been treated as two different stages due
to the lack of a common representation scheme. An intermediate data conversion pro-
cess is often employed to couple the modeling and simulation, but it may deteriorate
both accuracy and robustness of the whole system. Therefore, an unified representation
would be ideal to overcome such difficulties.

In theory, FEM can provide an approximate solution to the problem of thin-shell de-
formation, but it still remains as a challenging problem dueto two obstacles: Tradi-
tional finite-element is exclusively defined on planar domain, thus incapable of describe
smooth surfaces and accompanying vector fields of complex manifolds and topologies



without patching/trimming; Thin-shell finite-element must be at leastC1 continuous to
ensure the convergence of the solution according to Kirchhoff-Love theory. However,
traditional finite-elements, endowed with purely local polynomial shape functions, usu-
ally suffer from the difficulties in enforcing the desiredC1 continuity across the element
boundaries.

A number of different approaches have been attempted to combat the aforementioned
obstacles in thin-shell simulation. Due to the inherent difficulties inC1 interpolation,
alternative methods have been proposed to compromise theC1 continuity requirement,
such as degenerated solid elements, reduced-integration penalty methods, and many
others[1, 2]. Most recently, Ciraket al. [3] used the shape functions induced by subdi-
vision rules for thin-shell finite-element simulation. Despite their modeling advantages,
the subdivision surfaces do not allow close-form analytic for their basis functions, and
have more unnecessary extraordinary points depending on the connectivity of the con-
trol mesh (instead of the intrinsic topology of the manifold). Another noteworthy FEM
presented in [4] uses Element-Free Galerkin (EFG) method tosimulate and analyze
Kirchhoff shells and plates. However, it requires extra efforts to combine the model ge-
ometry with the simulation process via data conversion. In general, all these approaches
fail to provide an effective way to handle thin-shell surfaces with sophisticated topol-
ogy.

In this paper we articulate a novel framework that naturallycouples the modeling and
simulation processes for aribitrary thin-shell surfaces.Spline surfaces are prevalent in
commercial modeling systems because of their unique advantages in shape modeling,
manufacturing and visualization. With the recent development of manifold spline the-
ory [5], which enables the flexible construction of splines over any manifold of arbitrary
topologies, we particularly introduce a novel thin-shell finite-element based on triangu-
lar B-spline [6] defined over manifold domain. The advantages of our method over the
previous state-of-the-art thin-shell simulation include: First, the shell objects of arbi-
trary topology can be easily modeled by manifold triangularB-splines, with a mini-
mum number of singular points intrinsic to the topological structures of the manifolds;
Second, theC1 continuity requirement can be easily achieved for triangular B-splines;
Finally, our spline-based primitive naturally integratesgeometric modeling with physi-
cal simulation by avoiding unnecessary data conversion andmeshing procedure, which
can lead to faster product design and development cycle.

2 Spline Representation of Manifold Surfaces

In [5], Gu, He and Qin systematically build the theoretic framework of manifold spline,
which locally is a traditional spline, but globally defined on the manifold. First, the man-
ifold is covered by a special atlas, such that the transitionfunctions are affine. Then, the
knots are defined on the manifold and the evaluation of polar form is carried out on
the charts. Although on different charts, the knots are different, the evaluation value is
consistent and independent of the choice of charts. Furthermore, the existence of such



(a) domain (b) spline (c) control points

Fig. 1. A genus-3 manifold triangularB-spline. (a) domain manifold with 742 triangles. (b) cubic
manifold triangularB-spline surface. (c) spline overlaid with control points

atlas depends on the domain topology. This new paradigm unifies traditional subdivi-
sion surfaces and splines.

The geometric intuition of the definition of manifold splineis that first we replace a
planar domain by the atlas of the domain manifold, and then all the constituent spline
patches naturally span across each other without any gap. The central issue of con-
structing manifold splines is that the atlas must satisfy some special properties in order
to meet all the requirements for the evaluation independence of chart selection.

In [5], Gu et al. show that for a local spline patch, the only admissible parameterizations
differ by an affine transformation. This requires that all the chart transition functions are
affine. Furthermore, they show that given a domain manifoldM of genusg, a manifold
triangularB-spline can be constructed with no more than|2g−2| extraordinary points.

The manifold triangularB-spline can be written as follows:

F(u) = ∑
I

∑
|β |=n

cI,β N(φ(u)|V I
β ), u ∈ M (1)

wherecI,β ∈ R
3 are the control points. Given a parameteru ∈ M, the evaluation can be

carried out on arbitrary charts coveringu.

Manifold triangularB-splines have many valuable properties which are critical for ge-
ometric and solid modeling. For examples, manifold triangular B-splines are piecewise
polynomial defined on the manifold domain of arbitrary triangulation. Therefore, the
computation of various differential properties, such as normals, curvatures, principal
directions, are robust and efficient. The splines have localsupport, i.e., the movement
of a single control pointcI,β only influences the surface on the triangleI and on the tri-
angles directly surroundingI. The manifold triangularB-splines are completely inside
the convex hull of the control points. The degreen manifold triangularB-splines are of
Cn−1-continuous if there are no degenerate knots. Furthermore,by intentionally placing
knots along the edges of the domain triangulation, we can model sharp features easily.
The manifold spline of genusg(≥ 1) has 2g−2 singular points. See Figure 1 for an
example of genus-3 manifold triangularB-spline.



3 Spline Thin-shell Simulation

3.1 Elastic Thin-shell Mechanics

The mechanical response of a spline surface with an attachedthickness property can
be computed with the classical Kirchhoff-Love shell theory. In the interest of smooth
technical flow, let us briefly review the derivation of thin-shell equations. Detailed pre-
sentation of classical shell theories can be found elsewhere in mechanical engineering
literatures.

Thin-shell is a particular form of three-dimensional solidwhose thickness is signif-
icantly small as compared with the other two dimensions. LetX(θ1,θ2) denote the
middle surface of the thin shell, whereθ1 andθ2 are the parametric coordinates of the
surface. The generic configuration of the shell can be described as

S = {x ∈ R3|x = X(θ1,θ2)+ θ3X
,3(θ1,θ2), −

h
2
≤ θ3 ≤

h
2
},

whereX
,3 is a unit director vector normal to the middle surface of the shell both in the

reference and deformed configuration under the Kirchhoff-Love hypothesis. The inter-
nal energy of the shell depends on the differential quantities of the middle surface, such
as the metric and curvature tensor. Assuming linearized kinematics, the displacement
field of the middle surface is introduced asu(θ1,θ2) = X(θ1,θ2)−X0(θ1,θ2), where
the superscript “0” is used to denote the measurement in the reference configuration.
Thus, the linearized membrane and bending strain tensor canbe expressed as:

εi j =
1
2
(X0

,i ·u, j + X0
, j ·u,i), (2)

ρi j = −u
,i j ·X0

,3 +(J0)−1[u
,1 · (X0

,i j ×X0
,2)+ u

,2 · (X0
,1×X0

,i j)]. (3)

whereJ = |X
,1×X

,2|, X
,3 = J−1(X

,1×X
,2), and|X

,3|= 1. Here, the subscripts take the
values of 1 and 2, and a comma denotes partial differentiation. Note that, the derivation
of the membrane and strain is independent of the introduction of the kirchhoff-Love
hypothesis.

Under the assumption of linearity of elasticity, the strainenergy density is defined as
follows:

W (u) =
1
2

Eh
1−ν2 Hαβ γδ εαβ εγδ +

1
2

Eh3

12(1−ν2)
Hαβ γδ ραβ ργδ , (4)

in which, the first term is the membrane strain energy densityand the second one is the
bending strain energy density. Thus, the overall potentialenergy is as follow:

E(u) =

∫

Ω
W (u)dΩ + Eext = Eint + Eext ,

whereEint is the internal elastic energy andEext is the potential of the applied forces.
Following the principle of minimum potential energy, we canget the stable equilibrium



configurations of the thin-shell. The Euler-Lagrange equations corresponding to the
minimum principle may be expressed in the weak form as:

〈DEint(u),v〉+ 〈DEext(u),v〉 = 0 (5)

wherev is the trial displacement field.

3.2 Spline Element Discretization

Following the construction of manifold triangularB-splines given in (1), we can extract
the basis functions and write them by:

ϕ l(φ(v)) = ∑
ξ (I,β )=l

N(φ(v)|V I
β ) v ∈ M (6)

in which ξ : N×N
3 → N associates each local simplex-spline with an unique global

shape functions it contributes to,φ is the conformal mapping, andφ(v) denotes the
point in the planar domain, mapped from a manifold pointv. We will use these expres-
sion in the following discussion, and representφ(v) by x if necessary.

Thus, we can easily extend the membrane and bending strain tensors from planar para-
metric domain to manifold domain and write them in the form:

ε(φ(v)) =
L

∑
l=1

Ml(φ(v))ul , (7)

ρ(φ(v)) =
L

∑
l=1

Bl(φ(v))ul (8)

whereBl are the membrane and bending strain matrices, and{ul, l = 1, . . . ,L} are the
nodal displacement vectors.

Substituting equations (7) and (8) into (5) yields the linear equations developed from
the manifold domain as:

KU = F (9)

whereK is the stiffness matrix,U is the collection of nodal displacement[uT
1 · · ·u

T
L ]T ,

andF is the nodal force vector.K is a block matrix which can be conveniently assem-
bled by filling in the following 3×3 matrices:

KIJ =

∫

M

[

Eh
1−ν2(MI)T HMJ +

Eh3

12(1−ν2)
(MI)T HMJ

]

dM

with the constitutive matrixH made of contravariant metric tensors, the definition of
which is available in [3]. The construction ofF will be discussed later.



3.3 Implementation Details

Numerical Integration: The thin-shell FEM simulation needs to compute the Kirch-
hoff energy of the deformed shell surfaces. However, the evaluation of the integrations
over arbitrary manifold surfaces has been a challenging problem, which is usually awk-
wardly handled by piecewise parameterizations. With the global conformal mapping
coupled with triangularB-splines theory, we can conduct the integration on an equiv-
alent planar domain instead, and use any established numerical integration techniques.
In our system, the shell elements are selected as the triangles of the tessellation, from
which the triangular spline is constructed. Then we regularly subdivide each element
into small congruent triangles, and compute the integration using triangle Gaussian
quadratures.

Boundary Condition Handling: To facilitate the process of intuitive geometric design,
we include point-based constraints as the input for our thin-shell simulation system.
The users are allowed to pick up a group of points on the splinesurfaces, i.e.P0 =
{p0

1, p0
2, . . . , p0

n}, and assign them with desired positions after the deformation, i.e.P =
{p1, p2, . . . , pn}, wheren denotes the total number of the point constraints. This linear
constraints thus defined can be grouped in a matrix format as:

P0 + Cu = P

whereC is an extremely sparse matrix that stores the basis functionvalues at corre-
sponding constraint pointsP0. To combine the constraints with the Equation (9), we
solve foru in the Null-space ofC, such that:

u = Nu′ + u0

whereCN = 0 andCu0 = P−P0. We use gaussian-jordan-elimination-like approach[7]
to constructN, and solve foru0 by either singular value decomposition (SVD) or QR
decomposition method. Due to the extreme sparsity and rank-deficiency ofC, such
method is computationally viable to handle point-based geometric constraints.

Level-of-Detail (LOD) Simulation: The shell objects with affluent surface details re-
quires massive number of degrees of freedom (DOF) for accurate geometric modeling.
However, the triangularB-splines models having large number of control points are not
suitable for interactive geometric design. Thus, we incorporate a level-of-detail (LOD)
strategy to accommodate thin-shell deformation of sophisticated models. Any thin-shell
surfacesS can be decomposed to a smooth spline-based surfaceS0 and a scalar func-
tion d describing the additional displacements, i.e.:

S(x) = S0(x)+ d(x) ·n(x)

wheren is the normal vector ofS0. Practically,S0 can be estimated by fitting the orig-
inal surface using manifold triangularB-spline with relatively small number of control
points [8]. Then the magnitudes of the fitting errors along the normal directions will
be further modeled as a spline-based functiond with more degree of freedoms. For the
LOD simulation of a complicated thin-shell model, our system allows users to sculpt on



the base surfacesS0, then the previously recorded details will be automatically applied
to give the final design results. Figure.2 gives two examplesof geometric design with
LOD thin-shell simulation.

4 Results

Our system is implemented on a Microsoft Windows XP PC with Intel Pentium IV
3.0GHz CPU, 1.0GB RAM, and an nVidia GeForce Fx 5600 Ultra GPU. We have run
a variety of examples to verify and test the efficacy and performance of our method.
These examples includes a female face, the stanford bunny, atorus and a kitty. Both the
face and the bunny are LOD-modeled. And both the torus and thekitty models have
non-trivial genus.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. LOD thin-shell simulation (a)(e) the original surfaces with feature details. (b)(f) the base
surfaces with geometric constraints. (c)(g) the base surfaces after thin-shell deformation. (d)(h)
the original surface after LOD thin-shell deformation.

5 Conclusion

In this paper, we propose a novel paradigm that successfullysimulates the elastic de-
formation of thin-shell objects. We also provide users witha LOD sculpting tool for es-
thetical geometric design. The experiment results show demonstrate that the proposed
thin-shell FEM method has the following advantages over thetraditional ones. It can
easily achieve theC1 continuity requirement, and represent arbitrary thin-shell surfaces
using splines with minimum number of singular points. Our spline-based primitive nat-
urally integrates geometric modeling with physical simulation in the entire CAD/CAM
process, thus unnecessary data conversion and meshing procedure is total avoided. For



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a)(b) 6 points constraints applied on the torus surface. (c)(d) torus shell after deformation.
(e)(f) the front and side view of the kitty with points constraints. (g)(h) the front and side view of
the deformed kitty shell.

future work, we will extend current framework to handling large thin-shell deformation
by considering non-linear elastic energy, and solve the simulation problem in temporal
dimension for animation applications.
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